
Semantics and Verification of Software
Lecture 17: Provably Correct Implementation II

(Compiler & Its Correctness)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Outline

1 Repetition: The Abstract Machine

2 Determinism of AM Executions

3 The Compiler

4 Proof of Compiler Correctness

Semantics and Verification of Software Winter Semester 2011/12 17.2

Compiler Correctness

programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

To do:

1 Definition of abstract machine

2 Definition (operational) semantics of machine instructions

3 Definition of translation WHILE → machine code (“compiler”)

4 Proof: semantics of generated machine code = semantics of original
source code

Semantics and Verification of Software Winter Semester 2011/12 17.3

The Abstract Machine

Definition (Abstract machine)

The abstract machine (AM) is given by

configurations of the form 〈d , e, σ〉 ∈ Cnf where

d ∈ Code is the sequence of instructions (code) to be executed
e ∈ Stk := (Z ∪ B)∗ is the evaluation stack (top left)
σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Code × Stk × Σ)

initial configurations of the form 〈d , ε, σ〉
final configurations of the form 〈ε, e, σ〉
code sequences d and instructions i :

d ::= ε | i : d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z ∈ Z and x ∈ Var)

Semantics and Verification of Software Winter Semester 2011/12 17.4

Extension of Code and Stack

Lemma

If 〈d1, e1, σ〉B∗ 〈d ′, e ′, σ′〉, then

〈d1 : d2, e1 : e2, σ〉B∗ 〈d ′ : d2, e
′ : e2, σ

′〉

for every d2 ∈ Code and e2 ∈ Stk.

Interpretation: both the code and the stack component can be extended
without changing the behavior of the machine

Proof.

by induction on the length of the computation
(on the board)

Semantics and Verification of Software Winter Semester 2011/12 17.5

Outline

1 Repetition: The Abstract Machine

2 Determinism of AM Executions

3 The Compiler

4 Proof of Compiler Correctness

Semantics and Verification of Software Winter Semester 2011/12 17.6

Another Property: Determinism

Lemma 17.1

The semantics of AM is deterministic: for all γ, γ′, γ′′ ∈ Cnf ,
γ B γ′ and γ B γ′′ imply γ′ = γ′′.

Proof.

The successor configuration is determined by the first instruction in the
code component, which is unique.

Thus the following function is well defined:

Definition 17.2 (Semantics of AM)

The semantics of an instruction sequence is given by the mapping
MJ.K : Code → (Σ 99K Σ),

defined by

MJdK(σ) :=

{
σ′ if 〈d , ε, σ〉B∗ 〈ε, e, σ′〉
undefined otherwise

Semantics and Verification of Software Winter Semester 2011/12 17.7

Outline

1 Repetition: The Abstract Machine

2 Determinism of AM Executions

3 The Compiler

4 Proof of Compiler Correctness

Semantics and Verification of Software Winter Semester 2011/12 17.8

Repetition: Syntax of WHILE Programs

Definition (Syntax of WHILE (Definition 1.2))

The syntax of WHILE programs is defined by the following context-free
grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Semantics and Verification of Software Winter Semester 2011/12 17.9

Translation of Arithmetic Expressions

Definition 17.3 (Translation of arithmetic expressions)

The translation function

TaJ.K : AExp → Code

is given by
TaJzK := PUSH(z)
TaJxK := LOAD(x)

TaJa1+a2K := TaJa2K : TaJa1K : ADD
TaJa1-a2K := TaJa2K : TaJa1K : SUB
TaJa1*a2K := TaJa2K : TaJa1K : MULT

Example 17.4

TaJx + 1K = TaJ1K : TaJxK : ADD
= PUSH(1) : LOAD(x) : ADD

Semantics and Verification of Software Winter Semester 2011/12 17.10

Translation of Boolean Expressions

Definition 17.5 (Translation of Boolean expressions)

The translation function

TbJ.K : BExp → Code

is given by
TbJtrueK := TRUE
TbJfalseK := FALSE

TbJa1=a2K := TaJa2K : TaJa1K : EQ
TbJa1>a2K := TaJa2K : TaJa1K : GT

TbJ¬bK := TbJbK : NEG
TbJb1 ∧ a2K := TbJb2K : TbJb1K : AND
TbJb1 ∨ a2K := TbJb2K : TbJb1K : OR

Semantics and Verification of Software Winter Semester 2011/12 17.11

Translation of Statements

Definition 17.6 (Translation of statements)

The translation function TcJ.K : Cmd → Code is given by
TcJskipK := NOOP

TcJx := aK := TaJaK : STORE(x)
TcJc1;c2K := TcJc1K : TcJc2K

TcJif b then c1 else c2K := TbJbK : BRANCH(TcJc1K,TcJc2K)
TcJwhile b do cK := LOOP(TbJbK,TcJcK)

Example 17.7 (Factorial program)

TcJy:=1; while ¬(x=1) do (y:=y*x; x:=x-1)K
= TcJy:=1K : TcJwhile ¬(x=1) do (y:=y*x; x:=x-1)K
= TaJ1K : STORE(y) : LOOP(TbJ¬(x=1)K,TcJy:=y*x; x:=x-1K)
= PUSH(1) : STORE(y) : LOOP(TbJx=1K:NEG,TcJy:=y*xK : TcJx:=x-1K)
...

= PUSH(1) : STORE(y) : LOOP(PUSH(1):LOAD(x):EQ:NEG,
LOAD(x):LOAD(y):MULT:STORE(y):
PUSH(1):LOAD(x):SUB:STORE(x))

Semantics and Verification of Software Winter Semester 2011/12 17.12

Execution of Factorial Program

Example 17.8 (Factorial program)

Let σ ∈ Σ with σ(x) = 2, d1 := PUSH(1):LOAD(x):EQ:NEG, and
d2 := LOAD(x):LOAD(y):MULT:STORE(y):PUSH(1):LOAD(x):SUB:STORE(x).

〈PUSH(1):STORE(y):LOOP(d1,d2) , ε, σ 〉
B 〈STORE(y):LOOP(d1,d2) , 1, σ 〉
B 〈LOOP(d1,d2) , ε, σ[y 7→ 1] 〉
B 〈d1:BRANCH(d2:LOOP(d1,d2),NOOP) , ε, σ[y 7→ 1] 〉
B 〈LOAD(x):EQ:NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , 1, σ[y 7→ 1] 〉
B 〈EQ:NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , 2 : 1, σ[y 7→ 1] 〉
B 〈NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , false, σ[y 7→ 1] 〉
B 〈BRANCH(d2:LOOP(d1,d2),NOOP) , true, σ[y 7→ 1] 〉
B 〈d2:LOOP(d1,d2) , ε, σ[y 7→ 1] 〉
B 〈LOAD(y):MULT:STORE(y):PUSH(1):LOAD(x):SUB:STORE(x):LOOP(d1,d2), 2, σ[y 7→ 1] 〉
B 〈MULT:STORE(y):PUSH(1):LOAD(x):SUB:STORE(x):LOOP(d1,d2) , 1 : 2, σ[y 7→ 1] 〉
B 〈STORE(y):PUSH(1):LOAD(x):SUB:STORE(x):LOOP(d1,d2) , 2, σ[y 7→ 1] 〉
B 〈PUSH(1):LOAD(x):SUB:STORE(x):LOOP(d1,d2) , ε, σ[y 7→ 2] 〉
B 〈LOAD(x):SUB:STORE(x):LOOP(d1,d2) , 1, σ[y 7→ 2] 〉
B 〈SUB:STORE(x):LOOP(d1,d2) , 2 : 1, σ[y 7→ 2] 〉
B 〈STORE(x):LOOP(d1,d2) , 1, σ[y 7→ 2] 〉
B 〈LOOP(d1,d2) , ε, σ[x 7→ 1, y 7→ 2]〉
B 〈d1:BRANCH(d2:LOOP(d1,d2),NOOP) , ε, σ[x 7→ 1, y 7→ 2]〉
B 〈LOAD(x):EQ:NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , 1, σ[x 7→ 1, y 7→ 2]〉
B 〈EQ:NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , 1 : 1, σ[x 7→ 1, y 7→ 2]〉
B 〈NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , true, σ[x 7→ 1, y 7→ 2]〉
B 〈BRANCH(d2:LOOP(d1,d2),NOOP) , false, σ[x 7→ 1, y 7→ 2]〉
B 〈NOOP , ε, σ[x 7→ 1, y 7→ 2]〉
B 〈ε , ε, σ[x 7→ 1, y 7→ 2]〉

Semantics and Verification of Software Winter Semester 2011/12 17.13

Outline

1 Repetition: The Abstract Machine

2 Determinism of AM Executions

3 The Compiler

4 Proof of Compiler Correctness

Semantics and Verification of Software Winter Semester 2011/12 17.14

Correctness of TaJ.K

Definition (Repetition: Semantics of arithm. expr. (Def. 5.1))

The (denotational) semantic functional for arithmetic expressions,
AJ.K : AExp → (Σ→ Z),

is given by:
AJzKσ := z AJa1+a2Kσ := AJa1Kσ + AJa2Kσ
AJxKσ := σ(x) AJa1-a2Kσ := AJa1Kσ − AJa2Kσ

AJa1*a2Kσ := AJa1Kσ ∗ AJa2Kσ

Lemma 17.9 (Correctness of TaJ.K)

For every a ∈ AExp and σ ∈ Σ,
〈TaJaK, ε, σ〉B∗ 〈ε,AJaKσ, σ〉.

Proof.

by induction on the syntactic structure of a (on the board)

Semantics and Verification of Software Winter Semester 2011/12 17.15

Correctness of TbJ.K I

Definition (Repetition: Semantics of Boolean expr. (Def. 5.2))

The (denotational) semantic functional for Boolean expressions,
BJ.K : BExp → (Σ→ B),

is given by:
BJtKσ := t

BJa1=a2Kσ :=

{
true if AJa1Kσ = AJa2Kσ
false otherwise

BJa1>a2Kσ :=

{
true if AJa1Kσ > AJa2Kσ
false otherwise

BJ¬bKσ :=

{
true if BJbKσ = false
false otherwise

BJb1 ∧ b2Kσ :=

{
true if BJb1Kσ = BJb2Kσ = true
false otherwise

BJb1 ∨ b2Kσ :=

{
false if BJb1Kσ = BJb2Kσ = false
true otherwise

Semantics and Verification of Software Winter Semester 2011/12 17.16

Correctness of TbJ.K II

Lemma 17.10 (Correctness of TbJ.K)

For every b ∈ BExp and σ ∈ Σ,

〈TbJbK, ε, σ〉B∗ 〈ε,BJbKσ, σ〉

Proof.

by induction on the syntactic structure of b (omitted)

Semantics and Verification of Software Winter Semester 2011/12 17.17

Correctness of TcJ.K I

Definition (Repetition: Operational functional (Def. 4.1))

The functional of the operational semantics,
OJ.K : Cmd → (Σ 99K Σ),

assigns to every statement c ∈ Cmd a partial state transformation
OJcK : Σ 99K Σ, which is defined as follows:

OJcKσ :=

{
σ′ if 〈c, σ〉 → σ′ for some σ′ ∈ Σ
undefined otherwise

Definition (Repetition: Semantics of machine code (Def. 17.2))

The semantics of an instruction sequence is given by the mapping
MJ.K : Code → (Σ 99K Σ),

defined by

MJdKσ :=

{
σ′ if 〈d , ε, σ〉B∗ 〈ε, e, σ′〉
undefined otherwise

Semantics and Verification of Software Winter Semester 2011/12 17.18

Correctness of TcJ.K II

Theorem 17.11 (Correctness of TcJ.K)

For every c ∈ Cmd,
OJcK = MJTcJcKK.

Proof carried out in two parts. First step: from source to machine code

Lemma 17.12

For every c ∈ Cmd and σ, σ′ ∈ Σ,

〈c, σ〉 → σ′ implies 〈TcJcK, ε, σ〉B∗ 〈ε, ε, σ′〉.

Proof.

by induction on the derivation tree of 〈c , σ〉 → σ′ (on the board)

Semantics and Verification of Software Winter Semester 2011/12 17.19

Correctness of TcJ.K III

Second step: from machine to source code

Lemma 17.13

For every c ∈ Cmd, σ, σ′ ∈ Σ, and e ∈ Stk,

〈TcJcK, ε, σ〉B∗ 〈ε, e, σ′〉 implies 〈c , σ〉 → σ′ and e = ε.

Proof.

by induction on the length of the computation sequence
〈TcJcK, ε, σ〉B∗ 〈ε, e, σ′〉 (see Exercise 10.3)

Semantics and Verification of Software Winter Semester 2011/12 17.20

	Repetition: The Abstract Machine
	Determinism of AM Executions
	The Compiler
	Proof of Compiler Correctness

