Semantics and Verification of Software

Lecture 17: Provably Correct Implementation Il
(Compiler & Its Correctness)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-i2.informatik.rwth-aachen.de/i2/svswil/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

@ Repetition: The Abstract Machine

“er Semantics and Verification of Software Winter Semester 2011/12

Compiler Correctness

. compiler .
programming language ~—— machine code
semantics |, 1 (simple) semantics
?

meaning = meaning

To do:
@ Definition of abstract machine
@ Definition (operational) semantics of machine instructions
@ Definition of translation WHILE — machine code (“compiler”)

@ Proof: semantics of generated machine code = semantics of original
source code

“er Semantics and Verification of Software Winter Semester 2011/12

The Abstract Machine

Definition (Abstract machine)

The abstract machine (AM) is given by
e configurations of the form (d, e, o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
o e € Stk := (ZUB)* is the evaluation stack (top left)
o 0 € X :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x ¥)

initial configurations of the form (d, ¢, o)

(]

final configurations of the form (e, e, o)

code sequences d and instructions i:
dio=¢eli:d
i ::= PUSH(z) | ADD | MULT | SUB |
TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)
(where z € Z and x € Var)

V.

“w.rH Semantics and Verification of Software Winter Semester 2011/12 17.4

Extension of Code and Stack

If (dh,e1,0)>*(d',€,0'), then

(di: da,e1:e,0)>" (d': dy, e i e,0")

for every d> € Code and e, € Stk.

Interpretation: both the code and the stack component can be extended
without changing the behavior of the machine

by induction on the length of the computation
(on the board) O

RWTH Semantics and Verification of Software Winter Semester 2011/12 17.5

© Determinism of AM Executions

“er Semantics and Verification of Software Winter Semester 2011/12

Another Property: Determinism

The semantics of AM is deterministic: for all v,~',~v" € Cnf,
vy and v >~" imply v = +".

The successor configuration is determined by the first instruction in the
code component, which is unique. O

v

Thus the following function is well defined:

Definition 17.2 (Semantics of AM)

The semantics of an instruction sequence is given by the mapping
M[.] : Code — (X --» X),

defined by
o o if <d7€70> >* <€,€,UI>
Mdl(o) := {undefined otherwise

“w.rH Semantics and Verification of Software Winter Semester 2011/12 17.7

© The Compiler

“er Semantics and Verification of Software Winter Semester 2011/12

Repetition: Syntax of WHILE Programs

Definition (Syntax of WHILE (Definition 1.2))

The syntax of WHILE programs is defined by the following context-free
grammar:

a. =z ’ X ’ aijtar ’ ai—az ‘ ai*ap € AEXp
b:=t ’ ai=ar ‘ ai>ap ‘ —|b‘ bi N\ by | b1V by € BExp
c =skip|x :=a|c;c | if b then ¢ else ¢ | while b do ¢ € Cmd

v

RWTH Semantics and Verification of Software Winter Semester 2011/12 17.9

Translation of Arithmetic Expressions

Definition 17.3 (Translation of arithmetic expressions)

The translation function
Ta[l.] : AExp — Code

is given by
Ta[z] := PUSH(2)
Ta[x] := LOAD(x)
Ea[[aﬁaz]] = Ta[[az]] : ‘Ia[[al]] : ADD
‘Ia[[al-az]] = ‘Za[[az]] : Sa[[al]] : SUB
Talar*az] := T,[az] : ®a[a1] : MULT

Example 17.4

Tafx + 1] = T,[1] : T,[x] : ADD
= PUSH(1) : LOAD(x) : ADD

RWTH Semantics and Verification of Software Winter Semester 2011/12 17.10

Translation of Boolean Expressions

Definition 17.5 (Translation of Boolean expressions)

The translation function
Tp[.] : BExp — Code

is given by
T p[true] := TRUE
Tp[false] := FALSE
Sb[[81=a2]] = ‘3:3[[32]] : ‘Za[[al]] - EQ
‘Ib[[al>ag]] b= ‘Ia[[az]] : fa[[al]] : GT
Tp[b] := Tp[b] : NEG
Tb[[bl N 82]] = Tb[[bz]] : Tb[[bl]] : AND
Sb[[bl V 32]] = sb[[bg]] : ‘Zb[[bl]] : OR

RWTH Semantics and Verification of Software Winter Semester 2011/12 17.11

Translation of Statements

Definition 17.6 (Translation of statements)

The translation function T.[.] : Cmd — Code is given by
T [skip] := NOOP
Tclx := a] := F,[a] : STORE(x)
Telas] = F]a] : Tcle]
T [if b then ¢ else] := Tp[b] : BRANCH(Z [c1], Fc[e2])
Tc[while b do c| := LOOP(Zp[b],ZTc[c])

Example 17.7 (Factorial program)

Tely:=1; while —(x=1) do (y:=y*x; x:=x-1)]

= T [y:=1] : Tc[while —(x=1) do (y:=y*x; x:=x-1)]

= T,[1] : STORE(y) : LOOP (Zp[~(x=1)],Fc[y:=y*x; x:=x-1])

= PUSH(1) : STORE(y) : LOOP(¥p[x=1] :NEG, T [y :=y*x] : T[x:=x-1])

; PUSH(1) : STDRE(y) : LOOP (PUSH(1) : LOAD(x) :EQ:NEG,
LOAD (x) : LOAD(y) : MULT : STORE (y) :
PUSH(1) :LOAD(x) : SUB: STORE (%))

v

RWTH Semantics and Verification of Software Winter Semester 2011/12 17.12

Execution of Factorial Program

Example 17.8 (Factorial program)

Let o € ¥ with o(x) = 2, di := PUSH(1) : LOAD(x) : EQ:NEG, and
dr := LOAD(x) : LOAD(y) :MULT:STORE(y) : PUSH(1) : LOAD(x) : SUB: STORE(x).

(PUSH(1) : STORE (y) : LOOP (d , d2) , &0)
> (STORE(y) :LOOP(dh ,d») , Lo)
> (LOOP(dy,d>) , &oy—1)
&> (dy :BRANCH (d» : LOOP (d; , d) , NOOP) . e oyl)
> (LOAD(x) :EQ:NEG:BRANCH (d, : LOOP (d} , d») ,NOOP) 9 1,oly—1)
> (EQ:NEG:BRANCH(d> : LOOP (d; , d>) ,NOOP) ,2:1, 0ly— 1)
> (NEG:BRANCH (d,:LOOP (d; ,d>) ,NOOP) , false, oy — 1)
> (BRANCH(d, : LOOP (d; , d>) ,NOOP) , true, oy — 1)
> (dp:LOOP(dy ,d>) s g, oly—1)
> (LOAD(y) :MULT: STORE (y) :PUSH(1) : LOAD(x) : SUB: STORE(x) :LOOP(d;,d>), 2,0y — 1)
> (MULT:STORE(y) : PUSH(1) : LOAD (x) : SUB: STORE (x) : LOOP (d} , d>) ,1:2,0ly—1)
> (STORE(y) :PUSH(1) : LOAD (x) : SUB: STORE (x) : LOOP (dy , d) s 2, 0ly—1)
> (PUSH(1) :LOAD(x) : SUB:STORE (x) : LOOP(d} , d) 9 g, oly—2)
> (LOAD(x) : SUB:STORE (x) : LOOP(d} , d>) 9 1, oy — 2)
> (SUB:STORE(x) :LOOP(d ,d>) ,2:1, oly— 2)
> (STORE(x) :LOOP (di , d) P)
> (LOOP(dy,d>) , &ox—1ly—2])
> (dy :BRANCH (dy : LOOP (d , d>) ,NOOP) . e ox—1y—2])
> (LOAD(x) :EQ:NEG:BRANCH (d» : LOOP(d; , d>) ,NOOP) 5 1L, ox—1,y— 2]>
> (EQ:NEG:BRANCH (d,:L0OOP(d; ,d>) ,NOOP) ,1:1, o[x— 1,y — 2])
> (NEG:BRANCH(d, : LOOP (d; , d>) ,NOOP) , true, o[x — 1,y — 2])
> (BRANCH(d»:LOOP (dy , d) ,NOOP) , false, ofx — 1,y — 2])
> (NOOP , & ox—=1ly—2])
> (e , g ox—1ly—2])

y

RWTH Semantics and Verification of Software Winter Semester 2011/12 17.13

@ Proof of Compiler Correctness

“er Semantics and Verification of Software Winter Semester 2011/12 17.14

Correctness of T,[.]

Definition (Repetition: Semantics of arithm. expr. (Def. 5.1))

The (denotational) semantic functional for arithmetic expressions,
A[.] : AExp — (X — Z),
is given by:
Alz]o =z Alar+az]o = Afar]o + A[az]o
Alx]o := o(x) Alar-az]o = Afai]o — A[az]o
Ql[[al*ag]]a = Ql[[al]]o * Ql[[az]]()'

Lemma 17.9 (Correctness of T,[.])

For every a € AExp and o € %,
(%a[a],e,0) >* (e, A[a]o, o).

by induction on the syntactic structure of a (on the board) O

RWTH Semantics and Verification of Software Winter Semester 2011/12 17.15

Correctness of T,[.] |

Definition (Repetition: Semantics of Boolean expr. (Def. 5.2))

The (denotational) semantic functional for Boolean expressions,
B[.] : BExp — (X — B),
is given by:
Bt]e =t
~ _Jtrue if Afa1]o = A[az]o
Blar=az]o := false otherwise
__Jtrue if Afar]o > A[az]o
Blai>a]o = false otherwise
__ ftrue if B[b]o = false
B[-b]o := false otherwise
__ Jtrue if B[b1]o = B[bz]o = true
B[b1 A bo]o = false otherwise
_ [false if B[bi]o = B[bo]o = false
B[b1V bo]o = true otherwise

RWTH Semantics and Verification of Software Winter Semester 2011/12 17.16

Correctness of T,[.] Il

Lemma 17.10 (Correctness of Tp[.])
For every b € BExp and o € ¥,

(Tp[b],e,0) >* (e, B[b]o, o)

by induction on the syntactic structure of b (omitted)

RWTH Semantics and Verification of Software Winter Semester 2011/12 17.17

Correctness of T [.] |

Definition (Repetition: Operational functional (Def. 4.1))

The functional of the operational semantics,
O[] : Cmd — (X --» ¥),
assigns to every statement ¢ € Cmd a partial state transformation
Olc] : £ --» X, which is defined as follows:
e if (c,0) — o' for some ¢/ € ©
Dleleor= {undefined otherwise

Definition (Repetition: Semantics of machine code (Def. 17.2))

The semantics of an instruction sequence is given by the mapping
M[.] : Code — (X --» X),
defined by
e if (d,e,0) >* (g,e,0")
M{d]o:= {undefined otherwise

RWTH Semantics and Verification of Software Winter Semester 2011/12 17.18

Correctness of T [.] Il

Theorem 17.11 (Correctness of T.[.])

For every c € Cmd,

O[c] = M[T[c]].

Proof carried out in two parts. First step: from source to machine code

For every c € Cmd and 0,0’ € ¥,

(c,0) — o' implies (Zc[c],e,0) >* (g,¢,0).

by induction on the derivation tree of (c,o) — ¢’ (on the board) O

RWTH Semantics and Verification of Software Winter Semester 2011/12 17.19

Correctness of T [.] I

Second step: from machine to source code

For every c € Cmd, 0,0’ € ¥, and e € Stk,

(Tclcl,e,0) >* (e, e,0') implies (c,0) — ¢’ and e = ¢.

by induction on the length of the computation sequence
(Zclc],e,0) >* (e, e,0") (see Exercise 10.3) O

RWTH Semantics and Verification of Software Winter Semester 2011/12 17.20

	Repetition: The Abstract Machine
	Determinism of AM Executions
	The Compiler
	Proof of Compiler Correctness

