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Compiler Correctness

programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

To do:

1 Definition of abstract machine

2 Definition (operational) semantics of machine instructions

3 Definition of translation WHILE → machine code (“compiler”)

4 Proof: semantics of generated machine code = semantics of original
source code
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The Abstract Machine

Definition (Abstract machine)

The abstract machine (AM) is given by

configurations of the form 〈d , e, σ〉 ∈ Cnf where

d ∈ Code is the sequence of instructions (code) to be executed
e ∈ Stk := (Z ∪ B)∗ is the evaluation stack (top left)
σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Code × Stk × Σ)

initial configurations of the form 〈d , ε, σ〉
final configurations of the form 〈ε, e, σ〉
code sequences d and instructions i :

d ::= ε | i : d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z ∈ Z and x ∈ Var)
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Extension of Code and Stack

Lemma

If 〈d1, e1, σ〉B∗ 〈d ′, e ′, σ′〉, then

〈d1 : d2, e1 : e2, σ〉B∗ 〈d ′ : d2, e
′ : e2, σ

′〉

for every d2 ∈ Code and e2 ∈ Stk.

Interpretation: both the code and the stack component can be extended
without changing the behavior of the machine

Proof.

by induction on the length of the computation
(on the board)
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Another Property: Determinism

Lemma 17.1

The semantics of AM is deterministic: for all γ, γ′, γ′′ ∈ Cnf ,
γ B γ′ and γ B γ′′ imply γ′ = γ′′.

Proof.

The successor configuration is determined by the first instruction in the
code component, which is unique.

Thus the following function is well defined:

Definition 17.2 (Semantics of AM)

The semantics of an instruction sequence is given by the mapping
MJ.K : Code → (Σ 99K Σ),

defined by

MJdK(σ) :=

{
σ′ if 〈d , ε, σ〉B∗ 〈ε, e, σ′〉
undefined otherwise
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Repetition: Syntax of WHILE Programs

Definition (Syntax of WHILE (Definition 1.2))

The syntax of WHILE programs is defined by the following context-free
grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd
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Translation of Arithmetic Expressions

Definition 17.3 (Translation of arithmetic expressions)

The translation function

TaJ.K : AExp → Code

is given by
TaJzK := PUSH(z)
TaJxK := LOAD(x)

TaJa1+a2K := TaJa2K : TaJa1K : ADD
TaJa1-a2K := TaJa2K : TaJa1K : SUB
TaJa1*a2K := TaJa2K : TaJa1K : MULT

Example 17.4

TaJx + 1K = TaJ1K : TaJxK : ADD
= PUSH(1) : LOAD(x) : ADD
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Translation of Boolean Expressions

Definition 17.5 (Translation of Boolean expressions)

The translation function

TbJ.K : BExp → Code

is given by
TbJtrueK := TRUE
TbJfalseK := FALSE

TbJa1=a2K := TaJa2K : TaJa1K : EQ
TbJa1>a2K := TaJa2K : TaJa1K : GT

TbJ¬bK := TbJbK : NEG
TbJb1 ∧ a2K := TbJb2K : TbJb1K : AND
TbJb1 ∨ a2K := TbJb2K : TbJb1K : OR
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Translation of Statements

Definition 17.6 (Translation of statements)

The translation function TcJ.K : Cmd → Code is given by
TcJskipK := NOOP

TcJx := aK := TaJaK : STORE(x)
TcJc1;c2K := TcJc1K : TcJc2K

TcJif b then c1 else c2K := TbJbK : BRANCH(TcJc1K,TcJc2K)
TcJwhile b do cK := LOOP(TbJbK,TcJcK)

Example 17.7 (Factorial program)

TcJy:=1; while ¬(x=1) do (y:=y*x; x:=x-1)K
= TcJy:=1K : TcJwhile ¬(x=1) do (y:=y*x; x:=x-1)K
= TaJ1K : STORE(y) : LOOP(TbJ¬(x=1)K,TcJy:=y*x; x:=x-1K)
= PUSH(1) : STORE(y) : LOOP(TbJx=1K:NEG,TcJy:=y*xK : TcJx:=x-1K)
...

= PUSH(1) : STORE(y) : LOOP(PUSH(1):LOAD(x):EQ:NEG,
LOAD(x):LOAD(y):MULT:STORE(y):
PUSH(1):LOAD(x):SUB:STORE(x))
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Execution of Factorial Program

Example 17.8 (Factorial program)

Let σ ∈ Σ with σ(x) = 2, d1 := PUSH(1):LOAD(x):EQ:NEG, and
d2 := LOAD(x):LOAD(y):MULT:STORE(y):PUSH(1):LOAD(x):SUB:STORE(x).

〈PUSH(1):STORE(y):LOOP(d1,d2) , ε, σ 〉
B 〈STORE(y):LOOP(d1,d2) , 1, σ 〉
B 〈LOOP(d1,d2) , ε, σ[y 7→ 1] 〉
B 〈d1:BRANCH(d2:LOOP(d1,d2),NOOP) , ε, σ[y 7→ 1] 〉
B 〈LOAD(x):EQ:NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , 1, σ[y 7→ 1] 〉
B 〈EQ:NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , 2 : 1, σ[y 7→ 1] 〉
B 〈NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , false, σ[y 7→ 1] 〉
B 〈BRANCH(d2:LOOP(d1,d2),NOOP) , true, σ[y 7→ 1] 〉
B 〈d2:LOOP(d1,d2) , ε, σ[y 7→ 1] 〉
B 〈LOAD(y):MULT:STORE(y):PUSH(1):LOAD(x):SUB:STORE(x):LOOP(d1,d2), 2, σ[y 7→ 1] 〉
B 〈MULT:STORE(y):PUSH(1):LOAD(x):SUB:STORE(x):LOOP(d1,d2) , 1 : 2, σ[y 7→ 1] 〉
B 〈STORE(y):PUSH(1):LOAD(x):SUB:STORE(x):LOOP(d1,d2) , 2, σ[y 7→ 1] 〉
B 〈PUSH(1):LOAD(x):SUB:STORE(x):LOOP(d1,d2) , ε, σ[y 7→ 2] 〉
B 〈LOAD(x):SUB:STORE(x):LOOP(d1,d2) , 1, σ[y 7→ 2] 〉
B 〈SUB:STORE(x):LOOP(d1,d2) , 2 : 1, σ[y 7→ 2] 〉
B 〈STORE(x):LOOP(d1,d2) , 1, σ[y 7→ 2] 〉
B 〈LOOP(d1,d2) , ε, σ[x 7→ 1, y 7→ 2]〉
B 〈d1:BRANCH(d2:LOOP(d1,d2),NOOP) , ε, σ[x 7→ 1, y 7→ 2]〉
B 〈LOAD(x):EQ:NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , 1, σ[x 7→ 1, y 7→ 2]〉
B 〈EQ:NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , 1 : 1, σ[x 7→ 1, y 7→ 2]〉
B 〈NEG:BRANCH(d2:LOOP(d1,d2),NOOP) , true, σ[x 7→ 1, y 7→ 2]〉
B 〈BRANCH(d2:LOOP(d1,d2),NOOP) , false, σ[x 7→ 1, y 7→ 2]〉
B 〈NOOP , ε, σ[x 7→ 1, y 7→ 2]〉
B 〈ε , ε, σ[x 7→ 1, y 7→ 2]〉
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Correctness of TaJ.K

Definition (Repetition: Semantics of arithm. expr. (Def. 5.1))

The (denotational) semantic functional for arithmetic expressions,
AJ.K : AExp → (Σ→ Z),

is given by:
AJzKσ := z AJa1+a2Kσ := AJa1Kσ + AJa2Kσ
AJxKσ := σ(x) AJa1-a2Kσ := AJa1Kσ − AJa2Kσ

AJa1*a2Kσ := AJa1Kσ ∗ AJa2Kσ

Lemma 17.9 (Correctness of TaJ.K)

For every a ∈ AExp and σ ∈ Σ,
〈TaJaK, ε, σ〉B∗ 〈ε,AJaKσ, σ〉.

Proof.

by induction on the syntactic structure of a (on the board)
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Correctness of TbJ.K I

Definition (Repetition: Semantics of Boolean expr. (Def. 5.2))

The (denotational) semantic functional for Boolean expressions,
BJ.K : BExp → (Σ→ B),

is given by:
BJtKσ := t

BJa1=a2Kσ :=

{
true if AJa1Kσ = AJa2Kσ
false otherwise

BJa1>a2Kσ :=

{
true if AJa1Kσ > AJa2Kσ
false otherwise

BJ¬bKσ :=

{
true if BJbKσ = false
false otherwise

BJb1 ∧ b2Kσ :=

{
true if BJb1Kσ = BJb2Kσ = true
false otherwise

BJb1 ∨ b2Kσ :=

{
false if BJb1Kσ = BJb2Kσ = false
true otherwise
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Correctness of TbJ.K II

Lemma 17.10 (Correctness of TbJ.K)

For every b ∈ BExp and σ ∈ Σ,

〈TbJbK, ε, σ〉B∗ 〈ε,BJbKσ, σ〉

Proof.

by induction on the syntactic structure of b (omitted)
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Correctness of TcJ.K I

Definition (Repetition: Operational functional (Def. 4.1))

The functional of the operational semantics,
OJ.K : Cmd → (Σ 99K Σ),

assigns to every statement c ∈ Cmd a partial state transformation
OJcK : Σ 99K Σ, which is defined as follows:

OJcKσ :=

{
σ′ if 〈c, σ〉 → σ′ for some σ′ ∈ Σ
undefined otherwise

Definition (Repetition: Semantics of machine code (Def. 17.2))

The semantics of an instruction sequence is given by the mapping
MJ.K : Code → (Σ 99K Σ),

defined by

MJdKσ :=

{
σ′ if 〈d , ε, σ〉B∗ 〈ε, e, σ′〉
undefined otherwise
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Correctness of TcJ.K II

Theorem 17.11 (Correctness of TcJ.K)

For every c ∈ Cmd,
OJcK = MJTcJcKK.

Proof carried out in two parts. First step: from source to machine code

Lemma 17.12

For every c ∈ Cmd and σ, σ′ ∈ Σ,

〈c, σ〉 → σ′ implies 〈TcJcK, ε, σ〉B∗ 〈ε, ε, σ′〉.

Proof.

by induction on the derivation tree of 〈c , σ〉 → σ′ (on the board)
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Correctness of TcJ.K III

Second step: from machine to source code

Lemma 17.13

For every c ∈ Cmd, σ, σ′ ∈ Σ, and e ∈ Stk,

〈TcJcK, ε, σ〉B∗ 〈ε, e, σ′〉 implies 〈c , σ〉 → σ′ and e = ε.

Proof.

by induction on the length of the computation sequence
〈TcJcK, ε, σ〉B∗ 〈ε, e, σ′〉 (see Exercise 10.3)
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