Semantics and Verification of Software

Lecture 18: Nondeterminism and Parallelism |
(Shared-Variables and Channel Communication)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-i2.informatik.rwth-aachen.de/i2/svswil/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Nacht der ©
"?PI‘"*OIBSS(II'EII

27.01. , Apollo 22; 00

Ab 23:00 legen eure Professoren von der RW

Prof. Fischer | Zahnmedj
rof. Lorz | Int

www studieren- -grenzen.org

Informatik-Kolloquium RWNTH

Rheinisch-Westfalische Technische Hochschule Aachen
Lehrstuhl fir Informatik 2

EINLADUNG

Zeit: Mittwoch, 25. Januar 2012, 15:00 Uhr
Ort: Hoérsaal AH 3, Ahornstr. 55
Referent: Dr. Thomas Noll

RWTH Aachen

Thema: Correctness, Safety and Fault Tolerance in
Aerospace Systems: The ESA COMPASS
Project

Building modern aerospace systems is highly demanding. They
should be extremely dependable, offering service without failures
for a very long time - typically years or decades. The need for an

d systs oftware co- i ing framework to support
the design of such systems is therefore pressing. However, cur-
rent tools and formalisms tend to be tailored to specific analysis
techniques and do not sufficiently cover the full spectrum of re-
quired system aspects such as safety, dependability and performa-
bility. Additionally, they cannot properly handle the intertwining
of hardware and software operation. As such, current engineering
practice lacks integration and coherence.

This talk gives an overview of the COMPASS project that was ini-
tiated by the European Space Agency to overcome this problem. It
supports system-software co-engineering of real-time embedded
systems by following a coherent and multidisciplinary approach.
We show how such systems and their possible failures can be mod-
eled in the Architecture and Analysis Design Language, how their
behavior can be formalized, and how to analyze them by means of
model checking and related techniques.

Es laden ein: Die Dozenten der Informatik

o Introduction

anl ics and Verification of Software Winter Semester 2011/12

o Essential question: what is the meaning of
al e

(parallel execution of c1,c; € Cmd)?

o Easy to answer when state spaces are disjoint:
(x := 1]y := 2,0) 2oz 1y 2]

(no interaction = corresponds to sequential execution)

@ But what if variables are shared?
(x := 1| x := 2);if x =1 then ¢ else

(runs c; or ¢ depending on execution order of initial assignments)

@ Even more complicated for non-atomic assignments...

anl Semantics and Verification of Software Winter Semester 2011/12

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 18.1

x:=0;
(x =x+1|x:=x+2) value of x: 0123
13 2

o At first glance: x is assigned 3

@ But: both parallel components could read x before it is written
@ Thus: x is assigned 2, 1, or 3
°

If exclusive access to shared memory and atomic execution of
assignments guaranteed
= only possible outcome: 3

Imm Semantics and Verification of Software Winter Semester 2011/12 18.6

Parallelism and Interaction

The problem arises due to the combination of
@ parallelism and

e interaction (here: via shared memory)

When modeling parallel systems, the precise description of the mechanisms
of both parallelism and interaction is crucially important.

anl Semantics and Verification of Software Winter Semester 2011/12

Reactive Systems

@ Thus: “classical” model for sequential systems
System : Input — Output

(transformational systems) is not adequate
@ Missing: aspect of interaction

@ Rather: reactive systems which interact with environment and among
themselves

@ Main interest: not terminating computations but infinite behavior
(system maintains ongoing interaction with environment)
@ Examples:

e operating systems

e embedded systems controlling mechanical or electrical devices
(planes, cars, home appliances, ...)

e power plants, production lines, ...

me Semantics and Verification of Software Winter Semester 2011/12 18.8

Here: study of parallelism in connection with different kinds of interaction
@ Shared-variables communication
@ Channel communication (CSP)
@ Algebraic approaches (CCS)

anl Semantics and Verification of Software Winter Semester 2011/12

© Shared-Variables Communication

anl Semantics and Verification of Software Winter Semester 2011/12 18.10

The ParWHILE Language

Definition 18.2 (Syntax of ParWHILE)

= Z ’ X ’ ait+as ‘ ai—ap ‘ ai*ay € AEXp

= ’ ai=ap ‘ ai>ap ‘ —|b‘ b1 N\ by | b1 V by € BExp
c=skip|x :=a|c;c | if b then ¢; else ¢ | while b do c |
¢ || e Cmd

[@ i)
]

@ Approach for defining semantics:
e assignments are executed atomically

e parallelism is modeled by interleaving, i.e., the actions of parallel
statements are merged

= Reduction of parallelism to nondeterminism + sequential execution
(similar to multitasking on sequential computers)
@ Requires single-step execution relation for statements
(cf. Exercise 1.1 for single-step evaluation of expressions)

Imm Semantics and Verification of Software Winter Semester 2011/12 18.11

Semantics of ParWHILE

Definition 18.3 (Single-step execution relation)

The single-step execution relation,
—1C (Cmd x) x ((Cmd x L) U X),
is defined by the following rules:
(a,0) = z
(skip,0) —1 0 (x :=a,0) =1 o[x — Z]
(c1,0) =1 (cf,0") (c1,0) =10
(c1; c2,0) =1 {cf; @2, 0") (c1; 0,0) =1 (2, 0")
(b,o) — true (b,o) — false
(if b then ¢ else ¢,0) —1 (c1,0) (if b then ¢ else ¢,0) —1 (¢, 0)
(b,o) — true (b,o) — false
(while b do c,0) —1 (c;while b do c,0) (while bdo c,0) —1 0
(c1,0) =1 (¢}, ") (c1,0) =1 0"
(all e,0) =1 {q || c2,0") (a |l e2,0) =1 {c,0’)
(c2,0) =1 {(q,0") (c2,0) 10’
(all e,0) =1 {all q,0) (a |l e2,0) =1 {c,0’)

4

Imm Semantics and Verification of Software Winter Semester 2011/12 18.12

Semantics of ParWHILE Il

Let c:=(x:=1| x:=2);if x =1 then ¢; else ¢ and 0 € ¥.

(c,0) =1 (x:=2;if x =1 then ¢j else ¢p,0[x — 1])

(1,0) > 1
(x :=1,0) =1 o[x — 1]

(x:=1|x:=2,0) =1 (x:=2,0[x — 1])
—1 (if x =1 then ¢j else ¢, 0[x — 2])

(2,0) — 2
(x :=2,0) =1 o[x — 2]
—1 (2, 0[x — 2])

since

since

(x,0lx—=2]) 2 (Lox—2]) =1

sinee (x=1,0[x — 2]) — false

Analogously:

(c,0) =3 (c,o[x = 1])

v

Imm Semantics and Verification of Software Winter Semester 2011/12 18.13

© Channel Communication

anl Semantics and Verification of Software Winter Semester 2011/12 18.14

Communicating Sequential Processes

@ Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner
@ Models system of processors that
e have (only) local store and
e run a sequential program (“process”)
@ Communication proceeds in the following way:
e processes communicate along channels
e process can send/receive on a channel if another process

simultaneously performs the complementary 1/0O operation
= no buffering (synchronous communication)

@ New syntactic domains:

Channel names: a,B,7,... € Chn

Input operations: a?x where o € Chn, x € Var
Output operations: «ala where o € Chn, a € AExp
Guarded commands: gc € GCmd

anl Semantics and Verification of Software Winter Semester 2011/12

Syntax of CSP

Definition 18.5 (Syntax of CSP)

The syntax of CSP is given by

a ..*Z|X|21+32 | ai—ar ‘ 31*32€AEX[)
b= t]|a=ay | a>ay | —b| by Aby| b1V by € BExp
c:=skip|x:=a|a?x|ala|

c1;¢ | if gc fi|do gcod| ¢ || &2 € Cmd
gc:=b—c|bha’x—c|bAala— c|geOge e GCmd

In ¢ || o, statements ¢; and ¢, must not use common variables (only local
store)

@ Guarded command gc; [J gcp represents an alternative

In b — ¢, b acts as a guard that enables the execution of ¢ only if evaluated
to true

bAa?x — c and b A ala — c additionally require the respective 1/0
operation to be enabled

If none of its alternatives is enabled, a guarded command gc fails (state fail)
if nondeterministically picks an enabled alternative

A do loop is iterated until its body fails
mm Semantics and Verification of Software Winter Semester 2011/12 18.16

Semantics of CSP |

@ Most important aspect: 1/O operations

e E.g., (a?x;c,0) can only execute if a parallel statement provides
corresponding output

= Indicate communication potential by labels
L={a?z|ae€ Chn,zc Z}U{alz|a € Chn,z € Z}

@ Yields following labeled transitions:

(a?x; ¢, o) o (c,olx — z]) (forall z € Z)

(ala; o) 25 (¢, o) (if (a,0) — 2)

@ Now both statements, if running in parallel, can communicate:
((a?x;¢) || (ala; '), o) = (c || ,o[x — z]).
@ To allow communication with other processes, the following

transitions should also be possible (for all z’ € Z):

((a?x; ¢) || (ala; '), 0) LILS (c|l (ala;c),olx — 2'])

alz

((a?x;¢) || (la;), o) — ((a?x;¢) || ¢/, 0)

anl Semantics and Verification of Software Winter Semester 2011/12

Semantics of CSP Il

Definition of transition relation
25 C(Cmd x) x (Cmd x ¥) U (GCmd x ¥) x (Cmd x T U {fail})

(see following slides)
e Marking A can be a label or empty: A € LU {c}
e Uniform treatment of configurations of the form (c,o) € Cmd x ©
and 0 € X
o o interpreted as (x,0) with “empty” statement
o x satisfies x;c=c;x=x||c=c|*x=c

@ Thus: read (x :=0 | *,0) as (x :=0,0)

anl Semantics and Verification of Software Winter Semester 2011/12 18.18

Semantics of CSP Il

Definition 18.6 (Semantics of CSP)

Rules for statements
(a,0) = z
(skip,0) = o (x:=a,0) = og[x — Z]
(a,0) = z
(a?x,0) o o[x — z] (ala, o) o2 5
(e, 0) = (d], o) (ge,) = (c,0")
(c1; 02, 0) =25 (i ca, 07) (if gc £i,0) 2 (c,0")
(ge, o) = (c, o) (gc, o) — fail
(do gc od, o) 2, (c;do gc od,o’) (do gc od,0) — o
(e, 0) = (d], o) (2, 0) = (¢4, 0")
(a1 || c2,0) = (] || 2, 0") (a1 || c2,0) = (a1 || &, 0")
(1, 0) 2B (], 0"), {2, 0) <5 (ch,0) e, 0) 25 (], o), (e, 0) 25 (), 0)
(alle,0) = (e || 6, 0") (all e,0) = {c || c,0")

Imm Semantics and Verification of Software Winter Semester 2011/12 18.19

Semantics of CSP IV

Definition 18.6 (Semantics of CSP; continued)

Rules for guarded commands:

(b,o) — true (b,o) — false
(b—c,0) = (c,0) (b— c,o) — fail
(b,o) — true (b,o) — false
(bANa?x — c,0) o (c,o[x — z]) (bAalx = c o) — fail
(b,o) — true,(a,o) — z (b,0) — false
<b/\a!a—>c,a>a—!z><c,a> (bAala— c,0) — fail
(gc1,0) = {c, o) (g22,0) =+ (€, o)
(gan O gy, 0) 2, (c,0") (ga O ger, o) 2 c,o’)

(gc1,0) — fail, (gep, o) — fail

(gc1 O gep, o) — fail

v

Imm Semantics and Verification of Software Winter Semester 2011/12 18.20

Semantics of CSP V

Q do (true A a?x — [lx) od
describes a process that repeatedly receives a value along « and
forwards it along
(reception and forwarding of value 1: on the board)

@ do true A a?x — (lx od || do true A B?7y — !y od
specifies a buffer of capacity 2 that receives along « and sends along
(using 3 for internal communication)
© Nondeterministic choice between input channels:
@ if (true Aa?x — ¢ Otrue A 5?7y —) fi
@ if (true — (a?x;c1) Otrue — (B?y; o)) £i
Expected: progress whenever environment provides data on « or 3

@ correct
@ incorrect (can deadlock — on the board)

Imm Semantics and Verification of Software Winter Semester 2011/12 18.21

	Introduction
	Shared-Variables Communication
	Channel Communication

