Semantics and Verification of Software

Lecture 2: Operational Semantics of WHILE |
(Evaluation of Expressions)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svswill/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

© Repetition: Syntax of WHILE

“er Semantics and Verification of Software Winter Semester 2011/12

Syntactic Categories

WHILE: simple imperative programming language without procedures or
advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers z={0,1,-1,...} =z
Truth values B = {true, false} t
Variables Var = {x,y,...} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) ¢

“er Semantics and Verification of Software Winter Semester 2011/12 2.8

Syntax of WHILE Programs

Definition (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free
grammar:

a:; =z | X | aitas | ai—ar | air*xap € AEXp
[o= t|31=32 | 31>32’—|b|b1/\b2 ‘ b1 V by € BExp
c:=skip|x :=a|c;c | if b then ¢; else ¢ | while b do c € Cmd

v

Remarks: we assume that

@ the syntax of numbers, truth values and variables is predefined
(i.e., no "“lexical analysis")

@ the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

RWTH Semantics and Verification of Software Winter Semester 2011/12 2.4

A WHILE Program

X := 6;
y = 7T;
z = 0;

while x > 0 do
X :=x - 1;
v o=y,
while v > 0 d
v :=v - 1;
z =z + 1

RWTH Semantics and Verification of Software Winter Semester 2011/12 2.5

A WHILE Program and its Flow Diagram

X := 6;
y = 7T;
z := 0;

while x > 0 do
X :=x - 1;

v o=y,

while v > 0 d
v :=v - 1;
z =z + 1

“er Semantics and Verification of Software Winter Semester 2011/12 2.5

A WHILE Program and its Flow Diagram

X := 6;
y = 7T;
z := 0;
while x > 0 do
X :=x - 1;
v o=y,
while v > 0 d
v :=v - 1;
z =z + 1

Effect: z := x * y = 42

“er Semantics and Verification of Software Winter Semester 2011/12 2.5

@ Operational Semantics of WHILE

“er Semantics and Verification of Software Winter Semester 2011/12

Operational Semantics of WHILE

@ ldea: define meaning of programs by specifying its behavior being
executed on an (abstract) machine

“er Semantics and Verification of Software Winter Semester 2011/12

Operational Semantics of WHILE

@ ldea: define meaning of programs by specifying its behavior being
executed on an (abstract) machine

@ Here: evaluation/execution relation for program fragments
(expressions, statements)

“er Semantics and Verification of Software Winter Semester 2011/12

Operational Semantics of WHILE

@ ldea: define meaning of programs by specifying its behavior being
executed on an (abstract) machine
@ Here: evaluation/execution relation for program fragments
(expressions, statements)
@ Approach based on Structural Operational Semantics (SOS)
G.D. Plotkin: A structural approach to operational
semantics, DAIMI FN-19, Computer Science Department,
Aarhus University, 1981

“er Semantics and Verification of Software Winter Semester 2011/12

Operational Semantics of WHILE

@ ldea: define meaning of programs by specifying its behavior being
executed on an (abstract) machine
@ Here: evaluation/execution relation for program fragments
(expressions, statements)
@ Approach based on Structural Operational Semantics (SOS)
G.D. Plotkin: A structural approach to operational
semantics, DAIMI FN-19, Computer Science Department,
Aarhus University, 1981

@ Employs derivation rules of the form
Premise(s)

Namei_
Conclusion

e meaning: if every premise is fulfilled, then conclusion can be drawn
e a rule with no premises is called an axiom

“er Semantics and Verification of Software Winter Semester 2011/12 2.7

Operational Semantics of WHILE

@ ldea: define meaning of programs by specifying its behavior being
executed on an (abstract) machine

@ Here: evaluation/execution relation for program fragments
(expressions, statements)

@ Approach based on Structural Operational Semantics (SOS)

G.D. Plotkin: A structural approach to operational
semantics, DAIMI FN-19, Computer Science Department,
Aarhus University, 1981

@ Employs derivation rules of the form

Premise(s)
Namei_
Conclusion

e meaning: if every premise is fulfilled, then conclusion can be drawn
e a rule with no premises is called an axiom

@ Derivation rules can be composed to form derivation trees with
axioms as leafs (formal definition later)

RWTH Semantics and Verification of Software Winter Semester 2011/12 2.7

e Evaluation of Arithmetic Expressions

“er Semantics and Verification of Software Winter Semester 2011/12

Program States

@ Meaning of expression = value (in the usual sense)

@ Depends on the values of the variables in the expression

“er Semantics and Verification of Software Winter Semester 2011/12

Program States

@ Meaning of expression = value (in the usual sense)

@ Depends on the values of the variables in the expression

Definition 2.1 (Program state)

A (program) state is an element of the set
Y ={o|o: Var - Z},

called the state space.

Thus o(x) denotes the value of x € Var in state o € .

RWTH Semantics and Verification of Software Winter Semester 2011/12 2.9

Evaluation of Arithmetic Expressions |

Remember: a ::=z | x | aj+ay | a1-ay | a1*ax € AExp

“er Semantics and Verification of Software Winter Semester 2011/12

Evaluation of Arithmetic Expressions |

Remember: a::=z | x| ai+ap | a1-ax | a1*xax € AExp

Definition 2.2 (Evaluation relation for arithmetic expressions)

If a € AExp and o € X, then (a,0) is called a configuration.

Expression a evaluates to z € Z in state o (notation: (a,o) — z) if this
relationship is derivable by means of the following rules:

Axioms:

(z,0) = z (x,0) = o(x)
<al, — Z1 <32,0> — 22

Rules: where z .= z1 + 2

aitap, O’> — Z

where z .= z1 — 2z
31-32,0> — Z

<al, — Z1 <32,0> — 22

o)
(
<31,U> — 71 <a2,U> — 72
(
Uz where z .= z1 - z»

ai*ap, O’> — Z

v

RWTH Semantics and Verification of Software Winter Semester 2011/12 2.10

Evaluation of Arithmetic Expressions Il
Example 2.3

a= (x+3)*(y-2), o(x) =3, 0(y) = 9:

RWTH Semantics and Verification of Software Winter Semester 2011/12 211

Evaluation of Arithmetic Expressions Il
Example 2.3

a= (x+3)*(y-2), o(x) =3, 0(y) = 9:

((x+3)*(y-2),0) —

RWTH Semantics and Verification of Software Winter Semester 2011/12 211

Evaluation of Arithmetic Expressions Il
Example 2.3

a= (x+3)*(y-2), o(x) =3, o(y) =9

<X+3a J> — <y_2a U) —
((x+3)*(y-2),0) —

<31,0'> — Z1 <32,0'> — 22

where z := 71 * o
<31*32,0'> — Z

RWTH Semantics and Verification of Software Winter Semester 2011/12 211

Evaluation of Arithmetic Expressions Il
Example 2.3

a= (x+3)*(y-2), o(x) =3, o(y) =9

(x,0) = (3,0) =
<X+3a J> — <y_2a U) —
((x+3)*(y-2),0) —

<31,0> — 71 <32,0'> — 22

where z := z1 + 2
<al+32,0'> — Z

RWTH Semantics and Verification of Software Winter Semester 2011/12 211

Evaluation of Arithmetic Expressions Il
Example 2.3

a= (x+3)*(y-2), o(x) =3, 0(y) = 9:

(x,0) >3 (3,0)—
(x+3,0) — (y-2,0) —
((x+3)*(y-2),0) —

(x,0) — o(x)

RWTH Semantics and Verification of Software Winter Semester 2011/12 211

Evaluation of Arithmetic Expressions Il
Example 2.3

a= (x+3)*(y-2), o(x) =3, 0(y) = 9:

(x,0) >3 (3,0) —3
(x+3,0) = (y-2,0) =
((x+3)*(y-2),0) —

(z,0) > z

RWTH Semantics and Verification of Software Winter Semester 2011/12 211

Evaluation of Arithmetic Expressions Il
Example 2.3

a= (x+3)*(y-2), o(x) =3, o(y) =9

(x,0) >3 (3,0) >3
(x+3,0) — 6 (y-2,0) —
((x+3)*(y-2),0) —

<31,0>—>21 <32,0'>—>22]
where z := z1 + 2

<al+a2, 0') — Z

RWTH Semantics and Verification of Software Winter Semester 2011/12 211

Evaluation of Arithmetic Expressions Il
Example 2.3

a= (x+3)*(y-2), o(x) =3, o(y) =9

(x,0) >3 (3,0) —3 (y,0) — (2,0) —
(x+3,0) — 6 (y-2,0) —
((x+3)*(y-2),0) —

<31,0>—>21 <32,0'>—>22]
where z := 721 — 2

<al—a2, 0') — Z

RWTH Semantics and Verification of Software Winter Semester 2011/12 211

Evaluation of Arithmetic Expressions Il
Example 2.3

a= (x+3)*(y-2), o(x) =3, 0(y) = 9:

(x,0) >3 (3,0) =3 (y,0) =9 (2,0)—
(x+3,0) — 6 (y-2,0) —
((x+3)*(y-2),0) —

(x,0) — o(x)

RWTH Semantics and Verification of Software Winter Semester 2011/12 211

Evaluation of Arithmetic Expressions Il
Example 2.3

a= (x+3)*(y-2), o(x) =3, 0(y) = 9:

(x,0) >3 (3,0) =3 (y,0) =9 (2,0)—2
(x+3,0) — 6 (y-2,0) —
((x+3)*(y-2),0) —

(z,0) > z

RWTH Semantics and Verification of Software Winter Semester 2011/12 211

Evaluation of Arithmetic Expressions Il
Example 2.3

a= (x+3)*(y-2), o(x) =3, o(y) =9

(x,0) >3 (3,0) —3 (y,0) =9 (2,0) =2
(x+3,0) — 6 (y=2,0) =7
((x+3)*(y-2),0) —

<31,0>—>21 <32,0'>—>22]
where z := 721 — 2

<al—a2, 0') — Z

RWTH Semantics and Verification of Software Winter Semester 2011/12 211

Evaluation of Arithmetic Expressions Il
Example 2.3

a= (x+3)*(y-2), o(x) =3, o(y) =9

(x,0) >3 (3,0) —3 (y,0) =9 (2,0) =2
(x+3,0) = 6 (y=2,0) =7
((x+3)*(y-2),0) — 42

<31,0'>—>21 <32,0'>—>22)
where z := 71 * o

<31*32,0'> — Z

RWTH Semantics and Verification of Software Winter Semester 2011/12 211

Evaluation of Arithmetic Expressions Il
Example 2.3

a= (x+3)*(y-2), o(x) =3, 0(y) = 9:

(x,0) >3 (3,0) =3 (y,0) =9 (2,0)—2
(x+3,0) = 6 (y-2,0) =7
((x+3)*(y-2),0) — 42

Here: structure of derivation tree = structure of program fragment
(not generally true)

RWTH Semantics and Verification of Software Winter Semester 2011/12 211

Free Variables |

First formal result: value of an expression only depends on valuation of
variables which occur (freely) in the expression

“er Semantics and Verification of Software Winter Semester 2011/12

Free Variables |

First formal result: value of an expression only depends on valuation of
variables which occur (freely) in the expression

Definition 2.4 (Free variables)

The set of free variables of an expression is given by the function

FV : AExp — 2V°"

where

=0 FV(ai+ap) := FV(a1) U FV(a2)
= {X} FV(al-ag) = FV(al) U FV(32)
FV(al*ag) = FV(al) U FV(az)

RWTH Semantics and Verification of Software Winter Semester 2011/12 212

Free Variables |

First formal result: value of an expression only depends on valuation of
variables which occur (freely) in the expression

Definition 2.4 (Free variables)

The set of free variables of an expression is given by the function

FV : AExp — 2V°"

where
FV(z):=10 FV(31+32) FV(a1) U FV(a2)
FV(x) = {x} FV(ai-a) := FV(a1) U FV(a2)
FV(al*ag) = FV(al) U FV(az)

Result will be shown by structural induction on the expression

RWTH Semantics and Verification of Software Winter Semester 2011/12 212

@ Excursus: Proof by Structural Induction

“er Semantics and Verification of Software Winter Semester 2011/12

Excursus: Proof by Structural Induction |

Proof principle
Given: an inductive set, i.e., a set S whose elements are either
@ atomic or

@ obtained from atomic elements by (finite) application of

certain operations
To show: property P(s) applies to every s € S
Proof: we verify:

Induction base: P(s) holds for every atomic element s

Induction hypothesis: assume that P(s1), P(s) etc.

Induction step: then also P(f(si,...,s,)) holds for every
operation f of arity n

RWTH Semantics and Verification of Software Winter Semester 2011/12

2.14

Excursus: Proof by Structural Induction |

Proof principle
Given: an inductive set, i.e., a set S whose elements are either
@ atomic or

@ obtained from atomic elements by (finite) application of

certain operations
To show: property P(s) applies to every s € S
Proof: we verify:

Induction base: P(s) holds for every atomic element s

Induction hypothesis: assume that P(s1), P(s) etc.

Induction step: then also P(f(si,...,s,)) holds for every
operation f of arity n

Generalization: well-founded induction

RWTH Semantics and Verification of Software Winter Semester 2011/12

2.14

Excursus: Proof by Structural Induction |l

Application: natural numbers (“mathematical induction™)

Definition: N is the least set which

@ contains 0 and
@ contains n+ 1 whenever n € N

Induction base: P(0) holds
Induction hypothesis: P(n) holds
Induction step: P(n+ 1) holds

RWTH Semantics and Verification of Software

Winter Semester 2011/12

2.15

Excursus: Proof by Structural Induction |l

Application: natural numbers (“mathematical induction™)

Definition: N is the least set which

@ contains 0 and
@ contains n+ 1 whenever n € N

Induction base: P(0) holds
Induction hypothesis: P(n) holds
Induction step: P(n+ 1) holds

Generalization: complete (strong, course-of-values) induction
e induction step: P(0), P(1),...,P(n) = P(n+1)

@ corresponds to well-founded induction over natural numbers

RWTH Semantics and Verification of Software Winter Semester 2011/12 2.15

Excursus: Proof by Structural Induction I

Example 2.5 (Mathematical induction)
We prove that P(n): > " ;i = "(";1) holds for every n € N.

RWTH Semantics and Verification of Software Winter Semester 2011/12 2.16

Excursus: Proof by Structural Induction I

Example 2.5 (Mathematical induction)
We prove that P(n): > " ;i = "(";1) holds for every n € N.
o 0(0+1
P(0) holds: 9 i =0= 220

RWTH Semantics and Verification of Software Winter Semester 2011/12 2.16

Excursus: Proof by Structural Induction I

Example 2.5 (Mathematical induction)
We prove that P(n): > " ;i = "(";1) holds for every n € N.
o 0(0+1
P(0) holds: 9 i =0= 220
Assume P(n): >7 i= w

RWTH Semantics and Verification of Software Winter Semester 2011/12

2.16

Excursus: Proof by Structural Induction I

Example 2.5 (Mathematical induction)
We prove that P(n): > " ;i = "(";1) holds for every n € N.
o 0(0+1
P(0) holds: 9 i =0= 220
Assume P(n): >7 i= w
Show P(n+1): M i= S i+ (n+1)

RWTH Semantics and Verification of Software Winter Semester 2011/12

2.16

Excursus: Proof by Structural Induction I

Example 2.5 (Mathematical induction)

We prove that P(n): > " ;i = "(";1) holds for every n € N.

P(0) holds: 9 i =0= 220
Assume P(n): >7 ;i= n(n2+1)

Show P(n+1): M Li= S i+ (n+1)
= % +(n+1)

RWTH Semantics and Verification of Software

Winter Semester 2011/12

2.16

Excursus: Proof by Structural Induction I

Example 2.5 (Mathematical induction)

We prove that P(n): > " ;i = "(";1) holds for every n € N.

P(0) holds: 9 i =0= 220
Assume P(n): >7 i= @

Show P(n+1): M i= S i+ (n+1)
= w +(n+1)

n(n+1 2(n+1
_ nlot1) | 2es)

RWTH Semantics and Verification of Software

Winter Semester 2011/12

2.16

Excursus: Proof by Structural Induction I

Example 2.5 (Mathematical induction)

We prove that P(n): > " ;i = "(";1) holds for every n € N.

P(0) holds: 9 i =0= 220
Assume P(n): >7 i= w

Show P(n+1): M i= S i+ (n+1)

= n(n2+1) =+ (n+ 1)
n(n+1) + 2(n+1)

_ (n+2)(n+1) 2

RWTH Semantics and Verification of Software

Winter Semester 2011/12

2.16

Excursus: Proof by Structural Induction I

Example 2.5 (Mathematical induction)

We prove that P(n): .7

1

n(n+1)

0(0+1
P(0) holds: 9 i =0= 220

Assume P(n): >7 i=

Show P(n+1): Mt i =

n(n+1)
2

S i+ (n+1)

= n(n2+1) =+ (n+ 1)

n(n+1) + 2(n2+1)
(n+2)(n+1)

2
n+1)((n+1)+1
CESY(CEEVEEV

11 = == holds for every n € N.

Semantics and Verification of Software

Winter Semester 2011/12

2.16

Excursus: Proof by Structural Induction IV

Application: arithmetic expressions (Def. 1.2)

Definition: AExp is the least set which

@ contains all integers z € Z and all variables x € Var and
@ contains aj+ap, a;—ap and aj*ar whenever
ai,az € AEXp

Induction base: P(z) and P(x) holds (for every z € Z and x € Var)
Induction hypothesis: P(a;) and P(az) holds
Induction step: P(ai+az), P(ai-a2) and P(ai*az) holds

RWTH Semantics and Verification of Software Winter Semester 2011/12 217

Free Variables Il

Let a € AExp and 0,0’ € ¥ such that o(x) = o'(x) for every x € FV/(a).
Then, for every z € 7,

(a,0) = z < (a,0) — z.

Semantics and Verification of Software Winter Semester 2011/12

Free Variables Il

Let a € AExp and 0,0’ € ¥ such that o(x) = o'(x) for every x € FV/(a).
Then, for every z € 7,

(a,0) = z < (a,0) — z.

by structural induction on a (on the board)

RWTH Semantics and Verification of Software Winter Semester 2011/12 2.18

e Evaluation of Boolean Expressions

“er Semantics and Verification of Software Winter Semester 2011/12

Evaluation of Boolean Expressions |

Remember: b::=t|aj=ay | a1>ax | b | by A by | by V by € BExp

“er Semantics and Verification of Software Winter Semester 2011/12

Evaluation of Boolean Expressions |

Remember: b::=t|aj=ay | a1>ax | b | by A by | by V by € BExp

Definition 2.7 (Evaluation relation for Boolean expressions)

For b € BExp, 0 € ¥, and t € B, the evaluation relation (b,c) — t is defined by
the following rules:
(t,0) >t
(a1,0) = z (ap,0) — z (a1,0) = z1 (ap,0) = z» if 2, +
IT Z V4
(a1=ap, o) — true (a1=ap,0) — false Lo
<3170'>—>21 <3270'>—>22 i <31,0'>—>21 <32,0'>—>22 .
if z1 > 2 if z1 < 2
(a1>ap,0) — true (a1>ap,0) — false
(b,c) — false (b,c) — true
(=b, o) — true (—b, o) — false
(b1,0) — true (bp, o) — true (b1,0) — true (by, o) — false
(b1 A\ by, 0) — true (b1 A\ by, o) — false
(b1,0) — false (bp, o) — true (b1,0) — false (bp, o) — false
(b1 A bp,0) — false (b1 A b, o) — false
(Vv analogously)

RWTH Semantics and Verification of Software Winter Semester 2011/12 2.20

Evaluation of Boolean Expressions ||

Remarks:

@ Binary Boolean operators A and V are interpreted as strict, i.e.,
always evaluate both arguments.

Important in situations like
while p <> nil and p~.key < val do ...!

(see following slides for alternatives)

“er Semantics and Verification of Software Winter Semester 2011/12

Evaluation of Boolean Expressions ||

Remarks:

@ Binary Boolean operators A and V are interpreted as strict, i.e.,
always evaluate both arguments.

Important in situations like
while p <> nil and p~.key < val do ...!

(see following slides for alternatives)
o FV : BExp — 2V can be defined in analogy to Def. 2.4.

“er Semantics and Verification of Software Winter Semester 2011/12

Evaluation of Boolean Expressions ||

Remarks:

@ Binary Boolean operators A and V are interpreted as strict, i.e.,
always evaluate both arguments.

Important in situations like
while p <> nil and p~.key < val do ...!

(see following slides for alternatives)
o FV : BExp — 2V can be defined in analogy to Def. 2.4.

@ Lemma 2.6 holds analogously for Boolean expressions, i.e., the value
of b € BExp does not depend on variables in Var \ FV(b).

“er Semantics and Verification of Software Winter Semester 2011/12 2.21

Evaluation of Boolean Expressions 11l

Definition 2.8 (Sequential evaluation of Boolean expressions)

For b € BExp, 0 € ¥, and t € B, the sequential evaluation relation
(b,o) — t is defined by the following rules:

(b1,0) — false (b1,0) — true (bo, >
(bl/\bz,a)%false <b1/\b2 (T>

(b1,0) — true (b1,0) — false (b >
(b1 V by, 0) — true (b1 V bo,0) —

RWTH Semantics and Verification of Software Winter Semester 2011/12 2.22

Evaluation of Boolean Expressions IV

Definition 2.9 (Parallel evaluation of Boolean expressions)

For b € BExp, o0 € ¥, and t € B, the parallel evaluation relation
(b,o) — t is defined by the following rules:

(b1,0) — false (by, o) — false
(b1 A\ by, o) — false (b1 A bp,0) — false

(b1,0) — true (bp, o) — true
(b1 A by, 0) — true

(b1,0) — true (by, o) — true
(b1 V by,0) — true (b1 V bo,0) — true

(b1,0) — false (bp, o) — false
(b1 V by,) — false

v

“w.rH Semantics and Verification of Software Winter Semester 2011/12 2.23

	Repetition: Syntax of WHILE
	Operational Semantics of WHILE
	Evaluation of Arithmetic Expressions
	Excursus: Proof by Structural Induction
	Evaluation of Boolean Expressions

