Semantics and Verification of Software

Lecture 20: Nondeterminism and Parallelism 11l
(Calculus of Communicating Systems)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-i2.informatik.rwth-aachen.de/i2/svswil/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

© Repetition: Communicating Sequential Processes

anl Semantics and Verification of Software Winter Semester 2011/12

Syntax of CSP

Definition (Syntax of CSP)

The syntax of CSP is given by

a ..*Z|X|21+32 | ai—ar ‘ 31*32€AEX[)
b= t]|a=ay | a>ay | —b| by Aby| b1V by € BExp
c:=skip|x:=a|a?x|ala|

c1;¢ | if gc fi|do gcod| ¢ || &2 € Cmd
gc:=b—c|bha’x—c|bAala— c|geOge e GCmd

In ¢ || o, statements ¢; and ¢, must not use common variables (only local
store)

@ Guarded command gc; [J gcp represents an alternative

In b — ¢, b acts as a guard that enables the execution of ¢ only if evaluated
to true

bAa?x — c and b A ala — c additionally require the respective 1/0
operation to be enabled

If none of its alternatives is enabled, a guarded command gc fails (state fail)
if nondeterministically picks an enabled alternative

A do loop is iterated until its body fails
mm Semantics and Verification of Software Winter Semester 2011/12 20.3

CSP Examples

(on the board)

@ do (true A a?x — SBlx) od
describes a process that repeatedly receives a value along « and
forwards it along [(i.e., a one-place buffer)
@ do true A a?x — Blx od || do true A f?7y — vly od
specifies a two-place buffer that receives along « and sends along
(using /3 for internal communication)
© Nondeterministic choice between input channels:
@ if (true Aa?x — ¢ Otrue A 57y — o) fi
@ if (true — (a?x;c) Otrue = (B?%y;) £i
Expected: progress whenever environment provides data on « or 3

@ correct
@ incorrect (can deadlock)

Imm Semantics and Verification of Software Winter Semester 2011/12 20.4

© Calculus of Communicating Systems

anl Semantics and Verification of Software Winter Semester 2011/12

The Calculus of Communicating Systems

History:
@ Robin Milner: A Calculus of Communicating Systems
LNCS 92, Springer, 1980
@ Robin Milner: Communication and Concurrency
Prentice-Hall, 1989

@ Robin Milner: Communicating and Mobile Systems: the m-calculus
Cambridge University Press, 1999

anl Semantics and Verification of Software Winter Semester 2011/12

The Calculus of Communicating Systems

History:

@ Robin Milner: A Calculus of Communicating Systems
LNCS 92, Springer, 1980

@ Robin Milner: Communication and Concurrency
Prentice-Hall, 1989

@ Robin Milner: Communicating and Mobile Systems: the m-calculus
Cambridge University Press, 1999

Approach: describing parallelism on a simple and abstract level, using
only a few basic primitives

@ no explicit storage (variables)
@ no explicit representation of values (numbers, Booleans, ...)

= parallel system reduced to communication potential

anl Semantics and Verification of Software Winter Semester 2011/12

Syntax of CCS |

Definition 20.1 (Syntax of CCS)

@ Let N be a set of (action) names.

Imm Semantics and Verification of Software Winter Semester 2011/12 20.7

Syntax of CCS |

Definition 20.1 (Syntax of CCS)

@ Let N be a set of (action) names.

e N :={3|ac N} denotes the set of co-names.

Imm Semantics and Verification of Software Winter Semester 2011/12 20.7

Syntax of CCS |

Definition 20.1 (Syntax of CCS)

@ Let N be a set of (action) names.

e N :={3|ac N} denotes the set of co-names.

@ Act := NUNU {7} is the set of actions where 7 denotes the silent
(or: unobservable) action.

Imm Semantics and Verification of Software Winter Semester 2011/12 20.7

Syntax of CCS |

Definition 20.1 (Syntax of CCS)

@ Let N be a set of (action) names.

e N :={3|ac N} denotes the set of co-names.

@ Act := NUNU {7} is the set of actions where 7 denotes the silent
(or: unobservable) action.

@ Let Pid be a set of process identifiers.

Imm Semantics and Verification of Software Winter Semester 2011/12 20.7

Syntax of CCS |

Definition 20.1 (Syntax of CCS)
@ Let N be a set of (action) names.
e N :={3|ac N} denotes the set of co-names.

@ Act := NUNU {7} is the set of actions where 7 denotes the silent
(or: unobservable) action.

@ Let Pid be a set of process identifiers.
@ The set Prc of process expressions is defined by the following syntax:

P ::= nil (inaction)
| a.P (prefixing)
| P14+ P> (choice)
| Pi P2 (parallel composition)
| newaP (restriction)
| A(a1,...,an) (process call)

where o € Act, a,a; € N, and A € Pid.

Imm Semantics and Verification of Software Winter Semester 2011/12 20.7

Syntax of CCS Il

Definition 20.1 (continued)

@ A (recursive) process definition is an equation system of the form

(Ai(ait, -y ain) = P | 1 < i < k)

where k > 1, A; € Pid (pairwise different), n; € N, ajj € N
(ai1, - -, ain,; pairwise different), and P; € Prc (with process identifiers
from {A1,..., Ac}).

v

mm Semantics and Verification of Software Winter Semester 2011/12 20.8

Syntax of CCS Il

Definition 20.1 (continued)

@ A (recursive) process definition is an equation system of the form
(Ai(ait, -y ain) = P | 1 < i < k)

where k > 1, A; € Pid (pairwise different), n; € N, ajj € N
(ai1, - -, ain,; pairwise different), and P; € Prc (with process identifiers
from {A1,..., Ac}).

v

Notational Conventions:
@ 3 means a
e A(ai,...,a,) sometimes written as A(a), A() as A
@ prefixing and restriction binds stronger than composition, composition
binds stronger than choice:

newaP+b.Q || R means (newaP)+ ((b.Q)] R)

Imm Semantics and Verification of Software Winter Semester 2011/12 20.8

Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.

anl Semantics and Verification of Software Winter Semester 2011/12

Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.

@ «.P can execute «v and then behaves as P.

anl Semantics and Verification of Software Winter Semester 2011/12

Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.
@ «.P can execute «v and then behaves as P.

@ An action a € N (a € N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
Pi || P2), they are merged into a T-action.

le Semantics and Verification of Software Winter Semester 2011/12

Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.
@ «.P can execute «v and then behaves as P.

@ An action a € N (a € N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
Pi || P2), they are merged into a T-action.

@ P; + P, represents the nondeterministic choice between P; and P.

le Semantics and Verification of Software Winter Semester 2011/12

Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.
@ «.P can execute «v and then behaves as P.

@ An action a € N (a € N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
Pi || P2), they are merged into a T-action.

@ P; + P, represents the nondeterministic choice between P; and P.

@ Py || P> denotes the parallel execution of Py and P,, involving
interleaving or communication.

anl Semantics and Verification of Software Winter Semester 2011/12

Meaning of CCS Constructs

@ nil is an inactive process that can do nothing.
@ «.P can execute «v and then behaves as P.

@ An action a € N (a € N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
Pi || P2), they are merged into a T-action.

@ P; + P, represents the nondeterministic choice between P; and P.

@ Py || P> denotes the parallel execution of Py and P,, involving
interleaving or communication.

@ The restriction new a P declares a as a local name which is only
known within P.

le Semantics and Verification of Software Winter Semester 2011/12

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

«.P can execute o and then behaves as P.

@ An action a € N (a € N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
Pi || P2), they are merged into a T-action.

@ P; + P, represents the nondeterministic choice between P; and P.

@ Py || P> denotes the parallel execution of Py and P,, involving
interleaving or communication.

@ The restriction new a P declares a as a local name which is only
known within P.

@ The behavior of a process call A(ai,...,a,) is defined by the
right-hand side of the corresponding equation where as, ..., a,
replace the formal name parameters.

me Semantics and Verification of Software Winter Semester 2011/12 20.9

CCS Examples

Example 20.2

(on the board)
© One-place buffer (see Example 19.1(1) for a CSP implementation)
@ Two-place buffer

© Parallel specification of two-place buffer
(see Example 19.1(2) for a CSP implementation)

Rwr“ Semantics and Verification of Software Winter Semester 2011/12 20.10

© Semantics of CCS

anl Semantics and Verification of Software Winter Semester 2011/12 20.11

Semantics of CCS |

Definition 20.3 (Semantics of CCS)

A process definition (Aj(ai1,...,ain;) = Pi | 1 < i < k) determines the
labeled transition system (LTS) (Prc, Act, —) whose transitions can be
inferred from the following rules (P, P/, Q, Q" € Prc, a € Act, A€ NUN,
a,be N, Ac Pid): A\ Y
P—=—P Q= Q
(Act)————— (Com) p-
a.P— P P|IQ—P | Q
« / @ /
(Suml)% (Sumz)%
P+Q—F P+Q—Q
a / @ /
(Pary P 7 P (Par2) Q T &
PIlQR—PF|Q PIQR—P|Q
P P 3 P[3 — b] %+ P’
(New) Eya #{2.3}) (Call) 3 -]a if AG)=P
newaP — newaP’ A(b) — P’
(Here P[3 — b] denotes the replacement of every a; by b; in P.)

4
Imm Semantics and Verification of Software Winter Semester 2011/12 20.12

Semantics of CCS Il
Example 20.4

(on the board)
© One-place buffer:

B(in, out) = in.out.B(in, out)

v

Imm Semantics and Verification of Software Winter Semester 2011/12 20.13

Semantics of CCS Il
Example 20.4

(on the board)
© One-place buffer:

B(in, out) = in.out.B(in, out)

@ Sequential two-place buffer:

Bo(in, out) = in.By(in, out)
By (in, out) = 7t By(in, out) + in.By(in, out)
Bs(in, out) = out.By(in, out)

v

Imm Semantics and Verification of Software Winter Semester 2011/12 20.13

Semantics of CCS Il
Example 20.4

(on the board)
© One-place buffer:

B(in, out) = in.out.B(in, out)

@ Sequential two-place buffer:

Bo(in, out) = in.By(in, out)
By (in, out) = 7t By(in, out) + in.By(in, out)
Bs(in, out) = out.By(in, out)

© Parallel two-place buffer:

By (in, out) = new com (B(in, com) || B(com, out))
B(in, out) = in.out.B(in, out)

v

Imm Semantics and Verification of Software Winter Semester 2011/12 20.13

Semantics of CCS IiI

Example 20.4 (continued)
Complete LTS of parallel two-place buffer (=: LTS(B)(in, out))):

By (in, out) [new com (B(in, com) || B(com, out))] empty
in : out
in
new com (com.B(in, com) || |7 |new com (B(in, com) || 1 entr
B(com, out)) out.B(com, out)) y
out in
[new com (com.B(in, com) || out.B(com, out))] full

.

Imm Semantics and Verification of Software Winter Semester 2011/12

20.14

	Repetition: Communicating Sequential Processes
	Calculus of Communicating Systems
	Semantics of CCS
	Equivalence of CCS Processes
	Strong Bisimulation

