
Semantics and Verification of Software
Lecture 20: Nondeterminism and Parallelism III

(Calculus of Communicating Systems)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Outline

1 Repetition: Communicating Sequential Processes

2 Calculus of Communicating Systems

3 Semantics of CCS

Semantics and Verification of Software Winter Semester 2011/12 20.2

Syntax of CSP

Definition (Syntax of CSP)

The syntax of CSP is given by
a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | α?x | α!a |

c1; c2 | if gc fi | do gc od | c1 ‖ c2 ∈ Cmd
gc ::= b → c | b ∧ α?x → c | b ∧ α!a→ c | gc1 � gc2 ∈ GCmd

In c1 ‖ c2, statements c1 and c2 must not use common variables (only local
store)

Guarded command gc1 � gc2 represents an alternative

In b → c , b acts as a guard that enables the execution of c only if evaluated
to true

b ∧ α?x → c and b ∧ α!a→ c additionally require the respective I/O
operation to be enabled

If none of its alternatives is enabled, a guarded command gc fails (state fail)

if nondeterministically picks an enabled alternative

A do loop is iterated until its body fails
Semantics and Verification of Software Winter Semester 2011/12 20.3

CSP Examples

Example

(on the board)

1 do (true ∧ α?x → β!x) od

describes a process that repeatedly receives a value along α and
forwards it along β (i.e., a one-place buffer)

2 do true ∧ α?x → β!x od ‖ do true ∧ β?y → γ!y od

specifies a two-place buffer that receives along α and sends along γ
(using β for internal communication)

3 Nondeterministic choice between input channels:
1 if (true ∧ α?x → c1 � true ∧ β?y → c2) fi
2 if (true→ (α?x ; c1) � true→ (β?y ; c2)) fi

Expected: progress whenever environment provides data on α or β
1 correct
2 incorrect (can deadlock)

Semantics and Verification of Software Winter Semester 2011/12 20.4

Outline

1 Repetition: Communicating Sequential Processes

2 Calculus of Communicating Systems

3 Semantics of CCS

Semantics and Verification of Software Winter Semester 2011/12 20.5

The Calculus of Communicating Systems

History:

Robin Milner: A Calculus of Communicating Systems
LNCS 92, Springer, 1980

Robin Milner: Communication and Concurrency
Prentice-Hall, 1989

Robin Milner: Communicating and Mobile Systems: the π-calculus
Cambridge University Press, 1999

Approach: describing parallelism on a simple and abstract level, using
only a few basic primitives

no explicit storage (variables)

no explicit representation of values (numbers, Booleans, ...)

⇒ parallel system reduced to communication potential

Semantics and Verification of Software Winter Semester 2011/12 20.6

Syntax of CCS I

Definition 20.1 (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N} denotes the set of co-names.

Act := N ∪ N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following syntax:
P ::= nil (inaction)
| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| new a P (restriction)
| A(a1, . . . , an) (process call)

where α ∈ Act, a, ai ∈ N, and A ∈ Pid .

Semantics and Verification of Software Winter Semester 2011/12 20.7

Syntax of CCS II

Definition 20.1 (continued)

A (recursive) process definition is an equation system of the form

(Ai (ai1, . . . , aini) = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ai ∈ Pid (pairwise different), ni ∈ N, aij ∈ N
(ai1, . . . , aini pairwise different), and Pi ∈ Prc (with process identifiers
from {A1, . . . ,Ak}).

Notational Conventions:

a means a
A(a1, . . . , an) sometimes written as A(~a), A() as A
prefixing and restriction binds stronger than composition, composition
binds stronger than choice:

new a P + b.Q ‖ R means (new a P) + ((b.Q) ‖ R)

Semantics and Verification of Software Winter Semester 2011/12 20.8

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P.

An action a ∈ N (a ∈ N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the nondeterministic choice between P1 and P2.

P1 ‖ P2 denotes the parallel execution of P1 and P2, involving
interleaving or communication.

The restriction new a P declares a as a local name which is only
known within P.

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an
replace the formal name parameters.

Semantics and Verification of Software Winter Semester 2011/12 20.9

CCS Examples

Example 20.2

(on the board)

1 One-place buffer (see Example 19.1(1) for a CSP implementation)

2 Two-place buffer

3 Parallel specification of two-place buffer
(see Example 19.1(2) for a CSP implementation)

Semantics and Verification of Software Winter Semester 2011/12 20.10

Outline

1 Repetition: Communicating Sequential Processes

2 Calculus of Communicating Systems

3 Semantics of CCS

Semantics and Verification of Software Winter Semester 2011/12 20.11

Semantics of CCS I

Definition 20.3 (Semantics of CCS)

A process definition (Ai (ai1, . . . , aini) = Pi | 1 ≤ i ≤ k) determines the
labeled transition system (LTS) (Prc ,Act,−→) whose transitions can be
inferred from the following rules (P,P ′,Q,Q ′ ∈ Prc, α ∈ Act, λ ∈ N ∪ N,
a, b ∈ N, A ∈ Pid):

(Act)
α.P

α−→ P
(Com)

P
λ−→ P ′ Q

λ−→ Q ′

P ‖ Q τ−→ P ′ ‖ Q ′

(Sum1)
P

α−→ P ′

P + Q
α−→ P ′

(Sum2)
Q

α−→ Q ′

P + Q
α−→ Q ′

(Par1)
P

α−→ P ′

P ‖ Q α−→ P ′ ‖ Q
(Par2)

Q
α−→ Q ′

P ‖ Q α−→ P ‖ Q ′

(New)
P

α−→ P ′ (α /∈ {a, a})
new a P

α−→ new a P ′
(Call)

P[~a 7→ ~b]
α−→ P ′

A(~b)
α−→ P ′

if A(~a) = P

(Here P[~a 7→ ~b] denotes the replacement of every ai by bi in P.)

Semantics and Verification of Software Winter Semester 2011/12 20.12

Semantics of CCS II

Example 20.4

(on the board)

1 One-place buffer:

B(in, out) = in.out.B(in, out)

2 Sequential two-place buffer:

B0(in, out) = in.B1(in, out)
B1(in, out) = out.B0(in, out) + in.B2(in, out)
B2(in, out) = out.B1(in, out)

3 Parallel two-place buffer:

B‖(in, out) = new com (B(in, com) ‖ B(com, out))
B(in, out) = in.out.B(in, out)

Semantics and Verification of Software Winter Semester 2011/12 20.13

Semantics of CCS III

Example 20.4 (continued)

Complete LTS of parallel two-place buffer (=: LTS(B‖(in, out))):

B‖(in, out)

new com (com.B(in, com) ‖
B(com, out))

new com (com.B(in, com) ‖ out.B(com, out))

new com (B(in, com) ‖
out.B(com, out))

new com (B(in, com) ‖ B(com, out)) empty

1 entry

full

in
in

τ

out

inout

Semantics and Verification of Software Winter Semester 2011/12 20.14

	Repetition: Communicating Sequential Processes
	Calculus of Communicating Systems
	Semantics of CCS

