Semantics and Verification of Software

Lecture 21: Nondeterminism and Parallelism IV
(Equivalence of CCS Processes & Wrap-Up)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-i2.informatik.rwth-aachen.de/i2/svswil/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

@ Repetition: Calculus of Communicating Systems

anl Semantics and Verification of Software Winter Semester 2011/12

Syntax of CCS |

Definition (Syntax of CCS)
@ Let N be a set of (action) names.
e N :={3|ac N} denotes the set of co-names.

@ Act := NUNU {7} is the set of actions where 7 denotes the silent
(or: unobservable) action.

@ Let Pid be a set of process identifiers.
@ The set Prc of process expressions is defined by the following syntax:

P ::= nil (inaction)
| a.P (prefixing)
| P1+ P, (choice)
| Pi P2 (parallel composition)
| newaP (restriction)
| A(a1,...,an) (process call)

where o € Act, a,a; € N, and A € Pid.

Imm Semantics and Verification of Software Winter Semester 2011/12 21.3

Semantics of CCS |

Definition (Semantics of CCS)

A process definition (Aj(ai1,...,ain;) = Pi | 1 < i < k) determines the
labeled transition system (LTS) (Prc, Act, —) whose transitions can be
inferred from the following rules (P, P/, Q, Q" € Prc, a € Act, A€ NUN,
a,be N, Ac Pid): A\ Y
P—=—P Q= Q
(Act)————— (Com) p-
a.P— P P|IQ—P | Q
« / @ /
(Suml)% (Sumz)%
P+Q—F P+Q—Q
a / @ /
(Pary P 7 P (Par2) Q T &
PIlQR—PF|Q PIQR—P|Q
P P 3 P[3 — b] %+ P’
(New) Eya #{2.3}) (Call) 3 -]a if AG)=P
newaP — newaP’ A(b) — P’
(Here P[3 — b] denotes the replacement of every a; by b; in P.)

4
Imm Semantics and Verification of Software Winter Semester 2011/12 21.4

Semantics of CCS Il

(on the board)
© One-place buffer:

B(in, out) = in.out.B(in, out)

@ Sequential two-place buffer:

Bo(in, out) = in.By(in, out)
By (in, out) = 7t By(in, out) + in.By(in, out)
Bs(in, out) = out.By(in, out)

© Parallel two-place buffer:

By (in, out) = new com (B(in, com) || B(com, out))
B(in, out) = in.out.B(in, out)

v

Imm Semantics and Verification of Software Winter Semester 2011/12 215

Semantics of CCS IiI

Example (continued)
Complete LTS of parallel two-place buffer (=: LTS(B)(in, out))):

By (in, out) [new com (B(in, com) || B(com, out))] empty
in : out
in
new com (com.B(in, com) || |7 |new com (B(in, com) || 1 entr
B(com, out)) out.B(com, out)) y
out in
[new com (com.B(in, com) || out.B(com, out))] full

.

Imm Semantics and Verification of Software Winter Semester 2011/12

21.6

© Equivalence of CCS Processes

anl Semantics and Verification of Software Winter Semester 2011/12

Equivalence of CCS Processes

@ Generally: two syntactic objects are equivalent if they have the same
“meaning”

@ Here: two processes are equivalent if they have the same “behavior”
(i.e., communication potential)

@ Communication potential described by LTS

o First idea: define (for P, Q € Prc)

P, Q are called LTS equivalent if LTS(P) = LTS(Q)
@ But: yields too many distinctions

X(a) = a.X(a) Y(a) = a.a.Y(a)
LTS: <;D £ a {T a

although both processes can (only) execute infinitely many a-actions, and
should therefore be considered equivalent

v

mm Semantics and Verification of Software Winter Semester 2011/12 21.8

Trace Equivalence |

Second idea: reduce process to its action sequences

Definition 21.2 (Trace language)
For every P € Prc, let

Tr(P) := {w € Act* | ex. P’ € Prc such that P % P}

be the trace language of P
w ai ai
(where — := =5 0...0 == forw = a;...a,).

P, Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 21.3 (One-place buffer)

B(in, out) = in.out.B(in, out)
= Tr(B(in, out)) = (in - out)* - (in+ ¢)

Imm Semantics and Verification of Software Winter Semester 2011/12 21.9

Trace Equivalence Il

Remarks:

The trace language of P € Prc is accepted by the LTS of P,
interpreted as an automaton with initial state P and where every
state is final.

Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

Trace equivalence identifies processes with identical LTSs: the trace
language of a process consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) = Tr(P) = Tr(Q)

me Semantics and Verification of Software Winter Semester 2011/12 21.10

Trace Equivalence Il

Are we satisfied with trace equivalence? No!

Example 21.4
e P: a,/\a and Q: ga
b¢ %b

are trace equivalent (Tr(P) = Tr(Q) = {¢, a, ab})
@ But P and @ are distinguishable:
e both can execute ab
e but P can deny b after a
e while Q always has to offer b after a
(e.g., consider a model of vending machine
with a = “insert coin”, b = “return coffee”)

= take into account such deadlock properties

Imm Semantics and Verification of Software Winter Semester 2011/12 21.11

© Strong Bisimulation

anl Semantics and Verification of Software Winter Semester 2011/12 21.12

Definition of Strong Bisimulation |

Observation: equivalence should be sensitive to deadlocks
= needs to take branching structure of processes into account

This is guaranteed by a definition according to the following scheme:

Bisimulation scheme

P, Q € Prc are equivalent iff, for every o € Act, every a-successor of P is
equivalent to some a-successor of @, and vice versa.

@ Strong version ignores special function of silent action 7
(alternative: weak bisimulation; not considered here)

@ Unidirectional version: simulation
(not considered here)

anl Semantics and Verification of Software Winter Semester 2011/12 PARK]

Definition of Strong Bisimulation Il

Definition 21.5 (Strong bisimulation)

A relation p C Prc x Prc is called a strong bisimulation if PpQ implies, for
every a € Act,

Q@ P P = ex. Q € Prcsuch that @Q = Q" and P'pQ’
Q@ Q= Q = ex. P' € Prc such that P - P' and P/pQ’

P, Q € Prc are called strongly bisimilar (notation: P ~ Q) if there exists a
strong bisimulation p such that PpQ.

Theorem 21.6

~ Is an equivalence relation.

omitted]

Imm Semantics and Verification of Software Winter Semester 2011/12 21.14

Example 21.7

(on the board)

@ Bisimilar but not LTS equivalent (cf. Example 21.1):

P ~ @
O alfla
a @)

@ Trace equivalent (cf. Example 21.4) but not bisimilar:

P # Q
la ay N\ a
Py Q1 @3
1b bl

P> @2

v

Semantics and Verification of Software

Winter Semester 2011/12

pARE)

Bisimulation vs. LTS /Trace Equivalence

Theorem 21.8
For every P, Q € Prc,

LTS(P)=LTS(Q) Z P~Q L Ti(P)=Tr(Q)

@ LTS(P) = LTS(Q) = P ~ Q: clear as Definition 21.5 (of ~) is
directly based on LTS(p) and LTS(Q)

@ P~ Q# LTS(p) = LTS(Q): see Example 21.7(1)
@ P~ Q= Tr(P)= Tr(Q): by contradiction

(show: dw € Tr(P)\ Tr(Q) = P + Q by induction on |w|)
o Tr(P) = Tr(Q) # P ~ Q: see Example 21.7(2)

Ol

v

Imm Semantics and Verification of Software Winter Semester 2011/12 21.16

More Examples |

Example 21.9

Binary semaphore
(controls exclusive access to two instances of a resource)
Sequential definition:

Semq(get, put) = get.Sem;(get, put)
Sem;(get, put) = get.Semy(get, put) + put.Semg(get, put)
Semy(get, put) = put.Sem;(get, put)

Parallel definition:

S(get,put) = So(get, put) || So(get, put)
So(get, put) = get.S1(get, put)
Si(get, put) = put.So(get, put)

Proposition: Semg(get, put) ~ S(get, put)

Imm Semantics and Verification of Software Winter Semester 2011/12 21.17

More Examples Il
Example 21.10

Two-place buffer
Sequential definition:

Bo(in,out) = in.Bi(in, out)
Bi(in,out) = out.By(in,out) + in.By(in, out)
By(in,out) = out.Bi(in,out)

Parallel definition:

By (in,out) = new com (B(in,com) || B(com, out))
B(in,out) = in.out.B(in,out)

Proposition: By (in, out) % B (in, out)

4

Imm Semantics and Verification of Software Winter Semester 2011/12 21.18

© Further Topics in Formal Semantics

anl Semantics and Verification of Software Winter Semester 2011/12 21.19

Semantics of Functional Languages |

@ Program = list of function definitions

@ Simplest setting: first-order function definitions of the form
(X1, .., xp) =t

e function name f
o formal parameters xi, ..., X,
o term t over (base and defined) function calls and xi, ..., x,

@ Operational semantics (only function calls)
o call-by-value case:

tt—=2z1 ... th— 2z, txa—2z1,..., X2y > 2
f(t,...,th) > 2

o call-by-name case:

t[Xl'—>t1,...,an—>tn]—>Z

f(t,...,th) > 2

anl Semantics and Verification of Software Winter Semester 2011/12

Semantics of Functional Languages ||

@ Denotational semantics

program = equation system (for functions)

induces call-by-value and call-by-name functional
monotonic and continuous w.r.t. graph inclusion
semantics := least fixpoint (Tarski/Knaster Theorem)
coincides with operational semantics

@ Extensions: higher-order types, data types, ...
@ see [Winskel 1996, Sct. 9] and Functional Programming course [Giesl]

anl Semantics and Verification of Software Winter Semester 2011/12 21.21

© Upcoming Courses

anl Semantics and Verification of Software Winter Semester 2011/12 21.22

Courses Summer 2012

o Course Advanced Model Checking [Katoen]

@ Course Compiler Construction [Noll] (“Hiwi" jobs available!)

anl Semantics and Verification of Software Winter Semester 2011/12 PARK]

	Repetition: Calculus of Communicating Systems
	Equivalence of CCS Processes
	Strong Bisimulation
	Further Topics in Formal Semantics
	Upcoming Courses

