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Execution of Statements

Remember:
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Definition (Execution relation for statements)

For c ∈ Cmd and σ, σ′ ∈ Σ, the execution relation 〈c, σ〉 → σ′ is defined
by the following rules:

(skip)
〈skip, σ〉 → σ

(asgn)
〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z ]

(seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(if-t)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(wh-f)

〈b, σ〉 → false

〈while b do c , σ〉 → σ

(wh-t)
〈b, σ〉 → true 〈c , σ〉 → σ′ 〈while b do c , σ′〉 → σ′′

〈while b do c , σ〉 → σ′′
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Determinism of Execution Relation I

This operational semantics is well defined in the following sense:

Theorem

The execution relation for statements is deterministic, i.e., whenever
c ∈ Cmd and σ, σ′, σ′′ ∈ Σ such that 〈c , σ〉 → σ′ and 〈c , σ〉 → σ′′, then
σ′ = σ′′.

How to prove this theorem?

Idea:

employ corresponding result for expressions (Lemma 3.6)
use induction on the syntactic structure of c  

Instead: structural induction on derivation trees

Semantics and Verification of Software Winter Semester 2011/12 4.4



Determinism of Execution Relation II

Proof (Theorem 3.5).

To show:
〈c, σ〉 → σ′, 〈c , σ〉 → σ′′ =⇒ σ′ = σ′′

Proof by structural induction on derivation tree for 〈c, σ〉 → σ′.
Already considered:

(skip)
〈skip, σ〉 → σ

(i.e., c = skip, σ′ = σ):

since this axiom is the only applicable derivation rule, it follows that
also σ′′ = σ = σ′.

(asgn)
〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z ]
(i.e., c = (x := a), σ′ = σ[x 7→ z ]):

here the second derivation must be of the form

(asgn)
〈a, σ〉 → z ′

〈x := a, σ〉 → σ[x 7→ z ′]
such that Lemma 3.6(1) implies z = z ′, and hence
σ′′ = σ[x 7→ z ′] = σ[x 7→ z ] = σ′.
... (on the board)
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Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.5) justifies the
following definition:

Definition 4.1 (Operational functional)

The functional of the operational semantics,

OJ.K : Cmd → (Σ 99K Σ),

assigns to every statement c ∈ Cmd a partial state transformation
OJcK : Σ 99K Σ, which is defined as follows:

OJcKσ :=

{
σ′ if 〈c, σ〉 → σ′ for some σ′ ∈ Σ
undefined otherwise

Remark: OJcKσ can indeed be undefined
(consider e.g. c = while true do skip; see Corollary 3.4)
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Equivalence of Statements

Underlying principle: two (syntactic) objects are considered
(semantically) equivalent if they have the same “meaning”

finite automata: A1 ∼ A2 iff L(A1) = L(A2)

context-free grammars: G1 ∼ G2 iff L(G1) = L(G2)

Turing machines: T1 ∼ T2 iff both compute same function

Definition 4.2 (Operational equivalence)

Two statements c1, c2 ∈ Cmd are called (operationally) equivalent
(notation: c1 ∼ c2) iff

OJc1K = OJc2K.

Thus:

c1 ∼ c2 iff OJc1Kσ = OJc2Kσ for every σ ∈ Σ

In particular, OJc1Kσ is undefined iff OJc2Kσ is undefined
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“Unwinding” of Loops

Simple application of statement equivalence: test of execution condition in
a while loop can be represented by an if statement

Lemma 4.3

For every b ∈ BExp and c ∈ Cmd,

while b do c ∼ if b then (c;while b do c) else skip.

Proof.

on the board
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