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Summary: Operational Semantics

e Formalized by evaluation/execution relations
@ Inductively defined by derivation trees using structural operational
rules

@ Enables proofs about operational behavior of programs using
structural induction on derivation trees
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Summary: Operational Semantics

e Formalized by evaluation/execution relations

@ Inductively defined by derivation trees using structural operational
rules

@ Enables proofs about operational behavior of programs using
structural induction on derivation trees

e Semantic functional characterizes complete input/output behavior of
programs
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9 The Denotational Approach
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Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output behavior
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Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output behavior

@ In operational semantics: indirect definition of semantic functional
O[.] : Cmd — (X --» ¥) by execution relation
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Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output behavior

@ In operational semantics: indirect definition of semantic functional
O[.] : Cmd — (X --» ¥) by execution relation

@ Now: abstract from operational details
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Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output behavior

@ In operational semantics: indirect definition of semantic functional
O[.] : Cmd — (X --» ¥) by execution relation

@ Now: abstract from operational details

@ Denotational semanics: direct definition of program effect by
induction on its syntactic structure
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© Denotational Semantics of Expressions
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Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition 5.1 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,
A[] : AExp — (X — Z),
is given by:
Alz]o =z Alar+az]o = Afai]o + Afaz]o

A[x]o = o(x) Alai-az]o = Afa1]o — A[az]o
Ql[[al*ag]]a = Ql[[al]]a o 91[[32]]0
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Semantics of Boolean Expressions

Definition 5.2 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions,
B[] : BExp — (X — B),
is given by:
Blto =t
oo = e, (el =il
O A e
e [
O
N e s

v
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@ Denotational Semantics of Statements
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Semantics of Statements |

@ Now: semantic functional

¢[.]: Cmd — (X --» )
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Semantics of Statements |

@ Now: semantic functional
¢[.]: Cmd — (X --» )
@ Same type as operational functional
O[] : Cmd — (X --» X)
(in fact, both will turn out to be the same
= equivalence of operational and denotational semantics)
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Semantics of Statements |

@ Now: semantic functional
¢[.]: Cmd — (X --» )
@ Same type as operational functional
O[] : Cmd — (X --» X)
(in fact, both will turn out to be the same
= equivalence of operational and denotational semantics)

@ Inductive definition employs auxiliary functions:
e identity on states: idy : X --» X 00
o (strict) composition of partial state transformations:
ol (Z-2X)x(T--»X)>(X--»%)
where, for every f,g: ¥~ --» X and o € L,

(65 10) = { ke ot

e semantic conditional:
cond: (Z = B)x (Z--»>X)Xx(Z--»%) = (X--»1)
where, forevery p: ¥ = B, f,g: X --» ¥, and o € ¥,
__Jf(o) if p(o) = true
cond(p, f,g)(0) := {g(a) otherwise
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Semantics of Statements Il

Definition 5.3 (Denotational semantics of statements)

The (denotational) semantic functional for statements,

C[.]: Cmd — (X --» X),

is given by:
¢[skip] := ids
Clx := aJo := o[x — A[a]o]
Q:[[Cl 5 Cg]] = Q:[[Cz]] (0) Q:[[Cl]]

C[if b then c; else ] := cond(B[b], C[c1], €[c2])
¢[while b do c] := fix(P)

where ® : (X --» ) = (X --» X) : f — cond(B[b], f o €[c],idy)

RWTH Semantics and Verification of Software Winter Semester 2011/12 5.13



Semantics of Statements IllI

Remarks:
e Definition of €[c] given by induction on syntactic structure of
ce Cmd

e in particular, ¢[while b do c] only refers to B[b] and €[c]
(and not to €while b do c] again)
e note difference to O[c]:

(b,o0) — true (c,0) — ¢’ (while b do c,o’) — o”

(wh-t)

(while b do c,0) — o”
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Semantics of Statements IllI

Remarks:
e Definition of €[c] given by induction on syntactic structure of
ce Cmd

e in particular, ¢[while b do c] only refers to B[b] and €[c]
(and not to €while b do c] again)
e note difference to O[c]:
(b,o0) — true (c,0) — ¢’ (while b do c,o’) — o”

(while b do c,0) — o”

(wh-t)

o In €fcy; ] := €[] o €[c1], function composition o has to be strict
since non-termination of ¢; implies non-termination of ¢;; ¢
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Semantics of Statements IllI

Remarks:
e Definition of €[c] given by induction on syntactic structure of
ce Cmd

e in particular, ¢[while b do c] only refers to B[b] and €[c]
(and not to €while b do c] again)
e note difference to O[c]:
(b,o0) — true (c,0) — ¢’ (while b do c,o’) — o”

(while b do c,0) — o”

(wh-t)

o In €fcy; ] := €[] o €[c1], function composition o has to be strict
since non-termination of ¢; implies non-termination of ¢;; ¢

e In €[while b do c] := fix(®P), fix denotes a fixpoint operator
(which remains to be defined)
= “fixpoint semantics”
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Semantics of Statements IllI

Remarks:
e Definition of €[c] given by induction on syntactic structure of
ce Cmd

e in particular, ¢[while b do c] only refers to B[b] and €[c]
(and not to €while b do c] again)
e note difference to O[c]:
(b,o0) — true (c,0) — ¢’ (while b do c,o’) — o”

(while b do c,0) — o”

(wh-t)

o In €fcy; ] := €[] o €[c1], function composition o has to be strict
since non-termination of ¢; implies non-termination of ¢;; ¢

e In €[while b do c] := fix(®P), fix denotes a fixpoint operator
(which remains to be defined)
= “fixpoint semantics”

But: why fixpoints?
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Why Fixpoints?

@ Goal: preserve validity of equivalence

C[while b do ] © C[if b then (c;while b do c) else skip]
(cf. Lemma 4.3)
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Why Fixpoints?

@ Goal: preserve validity of equivalence

C[while b do ] © C[if b then (c;while b do c) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 5.3, we obtain:

¢[while b do ]
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Why Fixpoints?

@ Goal: preserve validity of equivalence

C[while b do ] © C[if b then (c;while b do c) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 5.3, we obtain:
¢[while b do ]

©) C[if b then (c;while b do c) else skip]

Del53 cond(B[b], €[c;while b do c], €[skip])
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Why Fixpoints?

@ Goal: preserve validity of equivalence

C[while b do ] © C[if b then (c;while b do c) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 5.3, we obtain:
¢[while b do (]
©) C[if b then (c;while b do c) else skip]
L3 cond(B[b], €[c;while b do c], €[skip])

P2 cond(B[b]. ¢[while b do c] o €[e]. id)
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Why Fixpoints?

@ Goal: preserve validity of equivalence

C[while b do ] © C[if b then (c;while b do c) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 5.3, we obtain:
¢[while b do (]
©) C[if b then (c;while b do c) else skip]
L3 cond(B[b], €[c;while b do c], €[skip])

P2 cond(B[b]. ¢[while b do c] o €[e]. id)

@ Abbreviating f := €[while b do c] this yields:
f = cond(B[b], f o €[c],idx)
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Why Fixpoints?

@ Goal: preserve validity of equivalence

C[while b do ] © C[if b then (c;while b do c) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 5.3, we obtain:
¢[while b do ]

©) C[if b then (c;while b do c) else skip]

Del53 cond(B[b], €[c;while b do c], €[skip])

Pet33  cond(B[b], €[while b do c] o €[c],ids)
@ Abbreviating f := €[while b do c] this yields:

f = cond(B[b], f o €[c],idx)
@ Hence f must be a solution of this recursive equation
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Why Fixpoints?

@ Goal: preserve validity of equivalence

C[while b do ] © C[if b then (c;while b do c) else skip]
(cf. Lemma 4.3)
Using the known parts of Def. 5.3, we obtain:
¢[while b do (]
©) C[if b then (c;while b do c) else skip]
L3 cond(B[b], €[c;while b do c], €[skip])

cond(B[b], €[while b do c] o €[c],idx)

Def. 5.3

Abbreviating f := €[while b do c] this yields:
f = cond(B[b], f o €[c],idx)
Hence f must be a solution of this recursive equation
@ In other words: f must be a fixpoint of the mapping
O (X--%)—= (X--»X):f+— cond(B[b], f o €[c],idy)
(since the equation can be stated as f = ®(f))
R\NTH Semantics and Verification of Software Winter Semester 2011/12 5.15




Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics
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Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:
Existence: there does not need to exist any fixpoint. Examples:
Q@ ¢1:N—N:n+— n+1 has no fixpoint

Q ¢1:(Z——+Z)—>(Z——+Z):f|—>{g1 iff = g

g» otherwise

(where g1 # g») has no fixpoint
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Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:
Existence: there does not need to exist any fixpoint. Examples:
Q@ ¢1:N—N:n+— n+1 has no fixpoint

Q ¢1:(Z——+Z)—>(Z——+Z):f|—>{g1 iff = g

g» otherwise

(where g1 # g») has no fixpoint
Solution: in our setting, fixpoints always exist
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Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:
Existence: there does not need to exist any fixpoint. Examples:
Q@ ¢1:N—N:n+— n+1 has no fixpoint

' B - ] g1 If f = 82
Q@O :(X-»X)>(X-»X):fr {g2 otherwise

(where g1 # g») has no fixpoint
Solution: in our setting, fixpoints always exist
Uniqueness: there might exist several fixpoints. Examples:
@ ¢ : N — N:nw n? has fixpoints {0,1}
@ every state transformation f is a fixpoint of
O (E-2Y)=>(E--X):ff
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Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:
Existence: there does not need to exist any fixpoint. Examples:
Q@ ¢1:N—N:n+— n+1 has no fixpoint

' B - ] g1 If f = 82
Q@O :(X-»X)>(X-»X):fr {g2 otherwise

(where g1 # g») has no fixpoint
Solution: in our setting, fixpoints always exist
Uniqueness: there might exist several fixpoints. Examples:
@ ¢ : N — N:nw n? has fixpoints {0,1}
@ every state transformation f is a fixpoint of
O (E-2Y)=>(E--X):ff

Solution: uniqueness guaranteed by choosing a special fixpoint
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© Characterization of fix(®)
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Characterization of

@ Let b€ BExp and c € Cmd
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Characterization of

@ Let b€ BExp and c € Cmd
o Let ®(f) := cond(B[b], f o €[c],idx)
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Characterization of

@ Let b€ BExp and c € Cmd
o Let ®(f) := cond(B[b], f o €[c],idx)
o Let fy : ¥ --» X be a fixpoint of @, i.e.,, ®(fH) =1
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Characterization of

Let b € BExp and ¢ € Cmd
Let &(f) := cond(B[b], f o €[c],idx)
Let fp : ¥ --» ¥ be a fixpoint of ®, i.e., P(fp) =1
Given some initial state og € ¥, we will distinguish the following
cases:
@ loop while b do ¢ terminates after n iterations (n € N)
@ body c diverges in the nth iteration

(since it contains a non-terminating while statement)
© loop while b do c itself diverges

“er Semantics and Verification of Software Winter Semester 2011/12



Case 1: Termination of Loop

@ Loop while b do c¢ terminates after n iterations (n € N)
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Case 1: Termination of Loop

@ Loop while b do c¢ terminates after n iterations (n € N)

@ Formally: there exist 01,...,0, € X such that
true f0<i<n
Blbloi = {false ifi=n and

Clc]oi = ot forevery 0 < i <n
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Case 1: Termination of Loop

@ Loop while b do c¢ terminates after n iterations (n € N)

@ Formally: there exist 01,...,0, € X such that
_ Jtrue if0<i<n
Blbloi = false ifi=n and
Clc]oi = ot forevery 0 < i <n
o Now the definition ®(f) := cond(B[b], f o €[c],idx)
implies, for every 0 </ < n,
®(fy)(oi) = (fo o €[c])(oi) since B[b]o; = true
= fo(oit1) and
®(fo)(on) = on since B[b]o, = false
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Case 1: Termination of Loop

@ Loop while b do c¢ terminates after n iterations (n € N)

@ Formally: there exist 01,...,0, € X such that
true f0<i<n
B[b]oi = false ifi=n and
Clc]oi = ot forevery 0 < i <n
o Now the definition ®(f) := cond(B[b], f o €[c],idx)
implies, for every 0 </ < n,
®(fy)(oi) = (fo o €[c])(oi) since B[b]o; = true
= fo(oit1) and
®(fo)(on) = on since B[b]o, = false
e Since ®(fy) = fy it follows that
N fo(O’,'+1) if0§i<n
foloi) = {U,, ifi=n
and hence

fo(oo) = fo(o1) = ... fo(on) = op
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Case 1: Termination of Loop

@ Loop while b do c¢ terminates after n iterations (n € N)

@ Formally: there exist 01,...,0, € X such that
true f0<i<n
B[b]oi = false ifi=n and
Clc]oi = ot forevery 0 < i <n
o Now the definition ®(f) := cond(B[b], f o €[c],idx)
implies, for every 0 </ < n,
®(fy)(oi) = (fo o €[c])(oi) since B[b]o; = true
= fo(oit1) and
®(fo)(on) = on since B[b]o, = false
e Since ®(fy) = fy it follows that
N fo(O’,'+1) ifo<i<n
foloi) = {U,, ifi=n
and hence
fO(O'O) = fO(Ul) = ... f()(o'n) = 0On

= All fixpoints fy coincide on og (with result o,)!

“er Semantics and Verification of Software Winter Semester 2011/12



Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)
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Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

@ Formally: there exist 01,...,0,-1 € X such that

B[b]o; = true for every 0 </ < n and

. )0in1 if0§i§n—2
Cleloi = {undefined if i =n—1
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Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

@ Formally: there exist 01,...,0,-1 € X such that
B[b]o; = true for every 0 </ < n and
. )0in1 if0§i§n—2
Cleloi =\ undefined if i=n—1

@ Just as in the previous case (setting o, := undefined) it follows that

fo(o0) = undefined
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Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

@ Formally: there exist 01,...,0,-1 € X such that
B[b]o; = true for every 0 </ < n and

. )0in1 if0§i§n—2
Cleloi = {undefined if i =n—1

@ Just as in the previous case (setting o, := undefined) it follows that

fo(o0) = undefined

= Again all fixpoints fy coincide on oy (with undefined result)!
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Case 3: Divergence of Loop

@ Loop while b do c diverges
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Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist 01,07,... € X such that

B[b]o; = true and
Clc]loi = oiy1 for every i € N
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Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist 01,07,... € X such that

B[b]o; = true and
Clc]loi = oiy1 for every i € N

@ Here only derivable:

fo(oo) = fo(oj) forevery i € N
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Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist 01,07,... € X such that

B[b]o; = true and
Clc]loi = oiy1 for every i € N

@ Here only derivable:

fo(oo) = fo(oj) forevery i € N

= Value of fy(op) not determined!
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For ®(fy) = fo and initial state og € ¥, case distinction yields:
© Loop while b do ¢ terminates after n iterations (n € N)
= fo(oo) = on
@ Body c diverges in the nth iteration
= fo(00) = undefined
© Loop while b do c diverges
= no condition on fy (only fy(cg) = fo(c;) for every i € N)
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For ®(fy) = fo and initial state og € ¥, case distinction yields:
© Loop while b do ¢ terminates after n iterations (n € N)
= fo(oo) = on
@ Body c diverges in the nth iteration
= fo(00) = undefined
© Loop while b do c diverges
= no condition on fy (only fy(cg) = fo(c;) for every i € N)
@ Not surprising since, e.g., for the loop while true do skip every
f:X --» X is a fixpoint:
®(f) = cond(B[true], f o €[skip],idy) = f
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For ®(fy) = fo and initial state og € ¥, case distinction yields:
© Loop while b do ¢ terminates after n iterations (n € N)
= fo(oo) = on
@ Body c diverges in the nth iteration
= fo(00) = undefined
© Loop while b do c diverges
= no condition on fy (only fy(cg) = fo(c;) for every i € N)
@ Not surprising since, e.g., for the loop while true do skip every
f:X --» X is a fixpoint:
®(f) = cond(B[true], f o €[skip],idy) = f
@ On the other hand, our operational understanding requires, for every
oo € Z,
¢[while true do skip]og = undefined
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For ®(fy) = fo and initial state og € ¥, case distinction yields:
© Loop while b do ¢ terminates after n iterations (n € N)
= fo(oo) = on
@ Body c diverges in the nth iteration
= fo(00) = undefined
© Loop while b do c diverges
= no condition on fy (only fy(cg) = fo(c;) for every i € N)
@ Not surprising since, e.g., for the loop while true do skip every
f:X --» X is a fixpoint:
®(f) = cond(B[true], f o €[skip],idy) = f
@ On the other hand, our operational understanding requires, for every
oo € Z,
¢[while true do skip]og = undefined

fix(®) is the least defined fixpoint of ®.
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