
Semantics and Verification of Software
Lecture 5: Denotational Semantics of WHILE I

(Fixpoint Semantics)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

© 2011 SAP AG. All rights reserved. 1Confidential

CONFIDENTIAL

Technologie-Beratung @ SAP:

Über ein spannendes Unternehmen,
innovative Technologien und

Ihren möglichen Berufseinstieg
als Trainee im Consulting

SAP Firmenvortrag
Dienstag, 29. November 2011

17:30 bis 18:30
Hörsaal AH1, Ahornstraße

© 2011 SAP AG. All rights reserved. 2Confidential © 2011 SAP AG. All rights reserved. 2

Vortragsinhalte

 Vorstellung der SAP als Unternehmen und Arbeitgeber

 Schwerpunkte der Technologie-Beratung bei SAP

 Trainee-Programm für Berufseinsteiger
in der Technologie-Beratung

 Erfahrungsbericht eines Trainees über den Berufseinstieg

 Fragen- und Antwortrunde

Outline

1 Summary: Operational Semantics

2 The Denotational Approach

3 Denotational Semantics of Expressions

4 Denotational Semantics of Statements

5 Characterization of fix(Φ)

Semantics and Verification of Software Winter Semester 2011/12 5.4

Summary: Operational Semantics

Formalized by evaluation/execution relations

Inductively defined by derivation trees using structural operational
rules

Enables proofs about operational behavior of programs using
structural induction on derivation trees

Semantic functional characterizes complete input/output behavior of
programs

Semantics and Verification of Software Winter Semester 2011/12 5.5

Summary: Operational Semantics

Formalized by evaluation/execution relations

Inductively defined by derivation trees using structural operational
rules

Enables proofs about operational behavior of programs using
structural induction on derivation trees

Semantic functional characterizes complete input/output behavior of
programs

Semantics and Verification of Software Winter Semester 2011/12 5.5

Summary: Operational Semantics

Formalized by evaluation/execution relations

Inductively defined by derivation trees using structural operational
rules

Enables proofs about operational behavior of programs using
structural induction on derivation trees

Semantic functional characterizes complete input/output behavior of
programs

Semantics and Verification of Software Winter Semester 2011/12 5.5

Summary: Operational Semantics

Formalized by evaluation/execution relations

Inductively defined by derivation trees using structural operational
rules

Enables proofs about operational behavior of programs using
structural induction on derivation trees

Semantic functional characterizes complete input/output behavior of
programs

Semantics and Verification of Software Winter Semester 2011/12 5.5

Outline

1 Summary: Operational Semantics

2 The Denotational Approach

3 Denotational Semantics of Expressions

4 Denotational Semantics of Statements

5 Characterization of fix(Φ)

Semantics and Verification of Software Winter Semester 2011/12 5.6

Denotational Semantics of WHILE

Primary aspect of a program: its “effect”, i.e., input/output behavior

In operational semantics: indirect definition of semantic functional
OJ.K : Cmd → (Σ 99K Σ) by execution relation

Now: abstract from operational details

Denotational semanics: direct definition of program effect by
induction on its syntactic structure

Semantics and Verification of Software Winter Semester 2011/12 5.7

Denotational Semantics of WHILE

Primary aspect of a program: its “effect”, i.e., input/output behavior

In operational semantics: indirect definition of semantic functional
OJ.K : Cmd → (Σ 99K Σ) by execution relation

Now: abstract from operational details

Denotational semanics: direct definition of program effect by
induction on its syntactic structure

Semantics and Verification of Software Winter Semester 2011/12 5.7

Denotational Semantics of WHILE

Primary aspect of a program: its “effect”, i.e., input/output behavior

In operational semantics: indirect definition of semantic functional
OJ.K : Cmd → (Σ 99K Σ) by execution relation

Now: abstract from operational details

Denotational semanics: direct definition of program effect by
induction on its syntactic structure

Semantics and Verification of Software Winter Semester 2011/12 5.7

Denotational Semantics of WHILE

Primary aspect of a program: its “effect”, i.e., input/output behavior

In operational semantics: indirect definition of semantic functional
OJ.K : Cmd → (Σ 99K Σ) by execution relation

Now: abstract from operational details

Denotational semanics: direct definition of program effect by
induction on its syntactic structure

Semantics and Verification of Software Winter Semester 2011/12 5.7

Outline

1 Summary: Operational Semantics

2 The Denotational Approach

3 Denotational Semantics of Expressions

4 Denotational Semantics of Statements

5 Characterization of fix(Φ)

Semantics and Verification of Software Winter Semester 2011/12 5.8

Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition 5.1 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,

AJ.K : AExp → (Σ→ Z),

is given by:

AJzKσ := z AJa1+a2Kσ := AJa1Kσ + AJa2Kσ
AJxKσ := σ(x) AJa1-a2Kσ := AJa1Kσ − AJa2Kσ

AJa1*a2Kσ := AJa1Kσ · AJa2Kσ

Semantics and Verification of Software Winter Semester 2011/12 5.9

Semantics of Boolean Expressions

Definition 5.2 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions,

BJ.K : BExp → (Σ→ B),

is given by:
BJtKσ := t

BJa1=a2Kσ :=

{
true if AJa1Kσ = AJa2Kσ
false otherwise

BJa1>a2Kσ :=

{
true if AJa1Kσ > AJa2Kσ
false otherwise

BJ¬bKσ :=

{
true if BJbKσ = false
false otherwise

BJb1 ∧ b2Kσ :=

{
true if BJb1Kσ = BJb2Kσ = true
false otherwise

BJb1 ∨ b2Kσ :=

{
false if BJb1Kσ = BJb2Kσ = false
true otherwise

Semantics and Verification of Software Winter Semester 2011/12 5.10

Outline

1 Summary: Operational Semantics

2 The Denotational Approach

3 Denotational Semantics of Expressions

4 Denotational Semantics of Statements

5 Characterization of fix(Φ)

Semantics and Verification of Software Winter Semester 2011/12 5.11

Semantics of Statements I

Now: semantic functional
CJ.K : Cmd → (Σ 99K Σ)

Same type as operational functional
OJ.K : Cmd → (Σ 99K Σ)

(in fact, both will turn out to be the same
=⇒ equivalence of operational and denotational semantics)

Inductive definition employs auxiliary functions:

identity on states: idΣ : Σ 99K Σ : σ 7→ σ
(strict) composition of partial state transformations:

◦ : (Σ 99K Σ)× (Σ 99K Σ)→ (Σ 99K Σ)
where, for every f , g : Σ 99K Σ and σ ∈ Σ,

(g ◦ f)(σ) :=

{
g(f (σ)) if f (σ) defined
undefined otherwise

semantic conditional:
cond : (Σ→ B)× (Σ 99K Σ)× (Σ 99K Σ)→ (Σ 99K Σ)

where, for every p : Σ→ B, f , g : Σ 99K Σ, and σ ∈ Σ,

cond(p, f , g)(σ) :=

{
f (σ) if p(σ) = true
g(σ) otherwise

Semantics and Verification of Software Winter Semester 2011/12 5.12

Semantics of Statements I

Now: semantic functional
CJ.K : Cmd → (Σ 99K Σ)

Same type as operational functional
OJ.K : Cmd → (Σ 99K Σ)

(in fact, both will turn out to be the same
=⇒ equivalence of operational and denotational semantics)

Inductive definition employs auxiliary functions:

identity on states: idΣ : Σ 99K Σ : σ 7→ σ
(strict) composition of partial state transformations:

◦ : (Σ 99K Σ)× (Σ 99K Σ)→ (Σ 99K Σ)
where, for every f , g : Σ 99K Σ and σ ∈ Σ,

(g ◦ f)(σ) :=

{
g(f (σ)) if f (σ) defined
undefined otherwise

semantic conditional:
cond : (Σ→ B)× (Σ 99K Σ)× (Σ 99K Σ)→ (Σ 99K Σ)

where, for every p : Σ→ B, f , g : Σ 99K Σ, and σ ∈ Σ,

cond(p, f , g)(σ) :=

{
f (σ) if p(σ) = true
g(σ) otherwise

Semantics and Verification of Software Winter Semester 2011/12 5.12

Semantics of Statements I

Now: semantic functional
CJ.K : Cmd → (Σ 99K Σ)

Same type as operational functional
OJ.K : Cmd → (Σ 99K Σ)

(in fact, both will turn out to be the same
=⇒ equivalence of operational and denotational semantics)

Inductive definition employs auxiliary functions:

identity on states: idΣ : Σ 99K Σ : σ 7→ σ
(strict) composition of partial state transformations:

◦ : (Σ 99K Σ)× (Σ 99K Σ)→ (Σ 99K Σ)
where, for every f , g : Σ 99K Σ and σ ∈ Σ,

(g ◦ f)(σ) :=

{
g(f (σ)) if f (σ) defined
undefined otherwise

semantic conditional:
cond : (Σ→ B)× (Σ 99K Σ)× (Σ 99K Σ)→ (Σ 99K Σ)

where, for every p : Σ→ B, f , g : Σ 99K Σ, and σ ∈ Σ,

cond(p, f , g)(σ) :=

{
f (σ) if p(σ) = true
g(σ) otherwise

Semantics and Verification of Software Winter Semester 2011/12 5.12

Semantics of Statements II

Definition 5.3 (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ 99K Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

Semantics and Verification of Software Winter Semester 2011/12 5.13

Semantics of Statements III

Remarks:

Definition of CJcK given by induction on syntactic structure of
c ∈ Cmd

in particular, CJwhile b do cK only refers to BJbK and CJcK
(and not to CJwhile b do cK again)
note difference to OJcK:

(wh-t)
〈b, σ〉 → true 〈c , σ〉 → σ′ 〈while b do c , σ′〉 → σ′′

〈while b do c , σ〉 → σ′′

In CJc1;c2K := CJc2K ◦ CJc1K, function composition ◦ has to be strict
since non-termination of c1 implies non-termination of c1;c2

In CJwhile b do cK := fix(Φ), fix denotes a fixpoint operator
(which remains to be defined)
=⇒ “fixpoint semantics”

But: why fixpoints?

Semantics and Verification of Software Winter Semester 2011/12 5.14

Semantics of Statements III

Remarks:

Definition of CJcK given by induction on syntactic structure of
c ∈ Cmd

in particular, CJwhile b do cK only refers to BJbK and CJcK
(and not to CJwhile b do cK again)
note difference to OJcK:

(wh-t)
〈b, σ〉 → true 〈c , σ〉 → σ′ 〈while b do c , σ′〉 → σ′′

〈while b do c , σ〉 → σ′′

In CJc1;c2K := CJc2K ◦ CJc1K, function composition ◦ has to be strict
since non-termination of c1 implies non-termination of c1;c2

In CJwhile b do cK := fix(Φ), fix denotes a fixpoint operator
(which remains to be defined)
=⇒ “fixpoint semantics”

But: why fixpoints?

Semantics and Verification of Software Winter Semester 2011/12 5.14

Semantics of Statements III

Remarks:

Definition of CJcK given by induction on syntactic structure of
c ∈ Cmd

in particular, CJwhile b do cK only refers to BJbK and CJcK
(and not to CJwhile b do cK again)
note difference to OJcK:

(wh-t)
〈b, σ〉 → true 〈c , σ〉 → σ′ 〈while b do c , σ′〉 → σ′′

〈while b do c , σ〉 → σ′′

In CJc1;c2K := CJc2K ◦ CJc1K, function composition ◦ has to be strict
since non-termination of c1 implies non-termination of c1;c2

In CJwhile b do cK := fix(Φ), fix denotes a fixpoint operator
(which remains to be defined)
=⇒ “fixpoint semantics”

But: why fixpoints?

Semantics and Verification of Software Winter Semester 2011/12 5.14

Semantics of Statements III

Remarks:

Definition of CJcK given by induction on syntactic structure of
c ∈ Cmd

in particular, CJwhile b do cK only refers to BJbK and CJcK
(and not to CJwhile b do cK again)
note difference to OJcK:

(wh-t)
〈b, σ〉 → true 〈c , σ〉 → σ′ 〈while b do c , σ′〉 → σ′′

〈while b do c , σ〉 → σ′′

In CJc1;c2K := CJc2K ◦ CJc1K, function composition ◦ has to be strict
since non-termination of c1 implies non-termination of c1;c2

In CJwhile b do cK := fix(Φ), fix denotes a fixpoint operator
(which remains to be defined)
=⇒ “fixpoint semantics”

But: why fixpoints?

Semantics and Verification of Software Winter Semester 2011/12 5.14

Why Fixpoints?

Goal: preserve validity of equivalence

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

(cf. Lemma 4.3)

Using the known parts of Def. 5.3, we obtain:

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

Def. 5.3
= cond(BJbK,CJc;while b do cK,CJskipK)

Def. 5.3
= cond(BJbK,CJwhile b do cK ◦ CJcK, idΣ)

Abbreviating f := CJwhile b do cK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

Hence f must be a solution of this recursive equation
In other words: f must be a fixpoint of the mapping

Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
(since the equation can be stated as f = Φ(f))

Semantics and Verification of Software Winter Semester 2011/12 5.15

Why Fixpoints?

Goal: preserve validity of equivalence

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

(cf. Lemma 4.3)
Using the known parts of Def. 5.3, we obtain:

CJwhile b do cK

(∗)
= CJif b then (c;while b do c) else skipK

Def. 5.3
= cond(BJbK,CJc;while b do cK,CJskipK)

Def. 5.3
= cond(BJbK,CJwhile b do cK ◦ CJcK, idΣ)

Abbreviating f := CJwhile b do cK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

Hence f must be a solution of this recursive equation
In other words: f must be a fixpoint of the mapping

Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
(since the equation can be stated as f = Φ(f))

Semantics and Verification of Software Winter Semester 2011/12 5.15

Why Fixpoints?

Goal: preserve validity of equivalence

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

(cf. Lemma 4.3)
Using the known parts of Def. 5.3, we obtain:

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

Def. 5.3
= cond(BJbK,CJc;while b do cK,CJskipK)

Def. 5.3
= cond(BJbK,CJwhile b do cK ◦ CJcK, idΣ)

Abbreviating f := CJwhile b do cK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

Hence f must be a solution of this recursive equation
In other words: f must be a fixpoint of the mapping

Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
(since the equation can be stated as f = Φ(f))

Semantics and Verification of Software Winter Semester 2011/12 5.15

Why Fixpoints?

Goal: preserve validity of equivalence

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

(cf. Lemma 4.3)
Using the known parts of Def. 5.3, we obtain:

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

Def. 5.3
= cond(BJbK,CJc;while b do cK,CJskipK)

Def. 5.3
= cond(BJbK,CJwhile b do cK ◦ CJcK, idΣ)

Abbreviating f := CJwhile b do cK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

Hence f must be a solution of this recursive equation
In other words: f must be a fixpoint of the mapping

Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
(since the equation can be stated as f = Φ(f))

Semantics and Verification of Software Winter Semester 2011/12 5.15

Why Fixpoints?

Goal: preserve validity of equivalence

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

(cf. Lemma 4.3)
Using the known parts of Def. 5.3, we obtain:

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

Def. 5.3
= cond(BJbK,CJc;while b do cK,CJskipK)

Def. 5.3
= cond(BJbK,CJwhile b do cK ◦ CJcK, idΣ)

Abbreviating f := CJwhile b do cK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

Hence f must be a solution of this recursive equation
In other words: f must be a fixpoint of the mapping

Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
(since the equation can be stated as f = Φ(f))

Semantics and Verification of Software Winter Semester 2011/12 5.15

Why Fixpoints?

Goal: preserve validity of equivalence

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

(cf. Lemma 4.3)
Using the known parts of Def. 5.3, we obtain:

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

Def. 5.3
= cond(BJbK,CJc;while b do cK,CJskipK)

Def. 5.3
= cond(BJbK,CJwhile b do cK ◦ CJcK, idΣ)

Abbreviating f := CJwhile b do cK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

Hence f must be a solution of this recursive equation
In other words: f must be a fixpoint of the mapping

Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
(since the equation can be stated as f = Φ(f))

Semantics and Verification of Software Winter Semester 2011/12 5.15

Why Fixpoints?

Goal: preserve validity of equivalence

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

(cf. Lemma 4.3)
Using the known parts of Def. 5.3, we obtain:

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

Def. 5.3
= cond(BJbK,CJc;while b do cK,CJskipK)

Def. 5.3
= cond(BJbK,CJwhile b do cK ◦ CJcK, idΣ)

Abbreviating f := CJwhile b do cK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

Hence f must be a solution of this recursive equation

In other words: f must be a fixpoint of the mapping
Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

(since the equation can be stated as f = Φ(f))

Semantics and Verification of Software Winter Semester 2011/12 5.15

Why Fixpoints?

Goal: preserve validity of equivalence

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

(cf. Lemma 4.3)
Using the known parts of Def. 5.3, we obtain:

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

Def. 5.3
= cond(BJbK,CJc;while b do cK,CJskipK)

Def. 5.3
= cond(BJbK,CJwhile b do cK ◦ CJcK, idΣ)

Abbreviating f := CJwhile b do cK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

Hence f must be a solution of this recursive equation
In other words: f must be a fixpoint of the mapping

Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
(since the equation can be stated as f = Φ(f))

Semantics and Verification of Software Winter Semester 2011/12 5.15

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:

Existence: there does not need to exist any fixpoint. Examples:

1 φ1 : N→ N : n 7→ n + 1 has no fixpoint

2 Φ1 : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→
{
g1 if f = g2

g2 otherwise
(where g1 6= g2) has no fixpoint

Solution: in our setting, fixpoints always exist

Uniqueness: there might exist several fixpoints. Examples:

1 φ2 : N→ N : n 7→ n3 has fixpoints {0, 1}
2 every state transformation f is a fixpoint of

Φ2 : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ f

Solution: uniqueness guaranteed by choosing a special fixpoint

Semantics and Verification of Software Winter Semester 2011/12 5.16

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:

Existence: there does not need to exist any fixpoint. Examples:

1 φ1 : N→ N : n 7→ n + 1 has no fixpoint

2 Φ1 : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→
{
g1 if f = g2

g2 otherwise
(where g1 6= g2) has no fixpoint

Solution: in our setting, fixpoints always exist

Uniqueness: there might exist several fixpoints. Examples:

1 φ2 : N→ N : n 7→ n3 has fixpoints {0, 1}
2 every state transformation f is a fixpoint of

Φ2 : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ f

Solution: uniqueness guaranteed by choosing a special fixpoint

Semantics and Verification of Software Winter Semester 2011/12 5.16

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:

Existence: there does not need to exist any fixpoint. Examples:

1 φ1 : N→ N : n 7→ n + 1 has no fixpoint

2 Φ1 : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→
{
g1 if f = g2

g2 otherwise
(where g1 6= g2) has no fixpoint

Solution: in our setting, fixpoints always exist

Uniqueness: there might exist several fixpoints. Examples:

1 φ2 : N→ N : n 7→ n3 has fixpoints {0, 1}
2 every state transformation f is a fixpoint of

Φ2 : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ f

Solution: uniqueness guaranteed by choosing a special fixpoint

Semantics and Verification of Software Winter Semester 2011/12 5.16

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:

Existence: there does not need to exist any fixpoint. Examples:

1 φ1 : N→ N : n 7→ n + 1 has no fixpoint

2 Φ1 : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→
{
g1 if f = g2

g2 otherwise
(where g1 6= g2) has no fixpoint

Solution: in our setting, fixpoints always exist

Uniqueness: there might exist several fixpoints. Examples:

1 φ2 : N→ N : n 7→ n3 has fixpoints {0, 1}
2 every state transformation f is a fixpoint of

Φ2 : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ f

Solution: uniqueness guaranteed by choosing a special fixpoint

Semantics and Verification of Software Winter Semester 2011/12 5.16

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:

Existence: there does not need to exist any fixpoint. Examples:

1 φ1 : N→ N : n 7→ n + 1 has no fixpoint

2 Φ1 : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→
{
g1 if f = g2

g2 otherwise
(where g1 6= g2) has no fixpoint

Solution: in our setting, fixpoints always exist

Uniqueness: there might exist several fixpoints. Examples:

1 φ2 : N→ N : n 7→ n3 has fixpoints {0, 1}
2 every state transformation f is a fixpoint of

Φ2 : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ f

Solution: uniqueness guaranteed by choosing a special fixpoint

Semantics and Verification of Software Winter Semester 2011/12 5.16

Outline

1 Summary: Operational Semantics

2 The Denotational Approach

3 Denotational Semantics of Expressions

4 Denotational Semantics of Statements

5 Characterization of fix(Φ)

Semantics and Verification of Software Winter Semester 2011/12 5.17

Characterization of fix(Φ)

Let b ∈ BExp and c ∈ Cmd

Let Φ(f) := cond(BJbK, f ◦ CJcK, idΣ)

Let f0 : Σ 99K Σ be a fixpoint of Φ, i.e., Φ(f0) = f0
Given some initial state σ0 ∈ Σ, we will distinguish the following
cases:

1 loop while b do c terminates after n iterations (n ∈ N)
2 body c diverges in the nth iteration

(since it contains a non-terminating while statement)
3 loop while b do c itself diverges

Semantics and Verification of Software Winter Semester 2011/12 5.18

Characterization of fix(Φ)

Let b ∈ BExp and c ∈ Cmd

Let Φ(f) := cond(BJbK, f ◦ CJcK, idΣ)

Let f0 : Σ 99K Σ be a fixpoint of Φ, i.e., Φ(f0) = f0
Given some initial state σ0 ∈ Σ, we will distinguish the following
cases:

1 loop while b do c terminates after n iterations (n ∈ N)
2 body c diverges in the nth iteration

(since it contains a non-terminating while statement)
3 loop while b do c itself diverges

Semantics and Verification of Software Winter Semester 2011/12 5.18

Characterization of fix(Φ)

Let b ∈ BExp and c ∈ Cmd

Let Φ(f) := cond(BJbK, f ◦ CJcK, idΣ)

Let f0 : Σ 99K Σ be a fixpoint of Φ, i.e., Φ(f0) = f0

Given some initial state σ0 ∈ Σ, we will distinguish the following
cases:

1 loop while b do c terminates after n iterations (n ∈ N)
2 body c diverges in the nth iteration

(since it contains a non-terminating while statement)
3 loop while b do c itself diverges

Semantics and Verification of Software Winter Semester 2011/12 5.18

Characterization of fix(Φ)

Let b ∈ BExp and c ∈ Cmd

Let Φ(f) := cond(BJbK, f ◦ CJcK, idΣ)

Let f0 : Σ 99K Σ be a fixpoint of Φ, i.e., Φ(f0) = f0
Given some initial state σ0 ∈ Σ, we will distinguish the following
cases:

1 loop while b do c terminates after n iterations (n ∈ N)
2 body c diverges in the nth iteration

(since it contains a non-terminating while statement)
3 loop while b do c itself diverges

Semantics and Verification of Software Winter Semester 2011/12 5.18

Case 1: Termination of Loop

Loop while b do c terminates after n iterations (n ∈ N)

Formally: there exist σ1, . . . , σn ∈ Σ such that

BJbKσi =

{
true if 0 ≤ i < n
false if i = n

and

CJcKσi = σi+1 for every 0 ≤ i < n

Now the definition Φ(f) := cond(BJbK, f ◦ CJcK, idΣ)
implies, for every 0 ≤ i < n,

Φ(f0)(σi) = (f0 ◦ CJcK)(σi) since BJbKσi = true
= f0(σi+1) and

Φ(f0)(σn) = σn since BJbKσn = false

Since Φ(f0) = f0 it follows that

f0(σi) =

{
f0(σi+1) if 0 ≤ i < n
σn if i = n

and hence
f0(σ0) = f0(σ1) = . . . f0(σn) = σn

=⇒ All fixpoints f0 coincide on σ0 (with result σn)!

Semantics and Verification of Software Winter Semester 2011/12 5.19

Case 1: Termination of Loop

Loop while b do c terminates after n iterations (n ∈ N)

Formally: there exist σ1, . . . , σn ∈ Σ such that

BJbKσi =

{
true if 0 ≤ i < n
false if i = n

and

CJcKσi = σi+1 for every 0 ≤ i < n

Now the definition Φ(f) := cond(BJbK, f ◦ CJcK, idΣ)
implies, for every 0 ≤ i < n,

Φ(f0)(σi) = (f0 ◦ CJcK)(σi) since BJbKσi = true
= f0(σi+1) and

Φ(f0)(σn) = σn since BJbKσn = false

Since Φ(f0) = f0 it follows that

f0(σi) =

{
f0(σi+1) if 0 ≤ i < n
σn if i = n

and hence
f0(σ0) = f0(σ1) = . . . f0(σn) = σn

=⇒ All fixpoints f0 coincide on σ0 (with result σn)!

Semantics and Verification of Software Winter Semester 2011/12 5.19

Case 1: Termination of Loop

Loop while b do c terminates after n iterations (n ∈ N)

Formally: there exist σ1, . . . , σn ∈ Σ such that

BJbKσi =

{
true if 0 ≤ i < n
false if i = n

and

CJcKσi = σi+1 for every 0 ≤ i < n

Now the definition Φ(f) := cond(BJbK, f ◦ CJcK, idΣ)
implies, for every 0 ≤ i < n,

Φ(f0)(σi) = (f0 ◦ CJcK)(σi) since BJbKσi = true
= f0(σi+1) and

Φ(f0)(σn) = σn since BJbKσn = false

Since Φ(f0) = f0 it follows that

f0(σi) =

{
f0(σi+1) if 0 ≤ i < n
σn if i = n

and hence
f0(σ0) = f0(σ1) = . . . f0(σn) = σn

=⇒ All fixpoints f0 coincide on σ0 (with result σn)!

Semantics and Verification of Software Winter Semester 2011/12 5.19

Case 1: Termination of Loop

Loop while b do c terminates after n iterations (n ∈ N)

Formally: there exist σ1, . . . , σn ∈ Σ such that

BJbKσi =

{
true if 0 ≤ i < n
false if i = n

and

CJcKσi = σi+1 for every 0 ≤ i < n

Now the definition Φ(f) := cond(BJbK, f ◦ CJcK, idΣ)
implies, for every 0 ≤ i < n,

Φ(f0)(σi) = (f0 ◦ CJcK)(σi) since BJbKσi = true
= f0(σi+1) and

Φ(f0)(σn) = σn since BJbKσn = false

Since Φ(f0) = f0 it follows that

f0(σi) =

{
f0(σi+1) if 0 ≤ i < n
σn if i = n

and hence
f0(σ0) = f0(σ1) = . . . f0(σn) = σn

=⇒ All fixpoints f0 coincide on σ0 (with result σn)!

Semantics and Verification of Software Winter Semester 2011/12 5.19

Case 1: Termination of Loop

Loop while b do c terminates after n iterations (n ∈ N)

Formally: there exist σ1, . . . , σn ∈ Σ such that

BJbKσi =

{
true if 0 ≤ i < n
false if i = n

and

CJcKσi = σi+1 for every 0 ≤ i < n

Now the definition Φ(f) := cond(BJbK, f ◦ CJcK, idΣ)
implies, for every 0 ≤ i < n,

Φ(f0)(σi) = (f0 ◦ CJcK)(σi) since BJbKσi = true
= f0(σi+1) and

Φ(f0)(σn) = σn since BJbKσn = false

Since Φ(f0) = f0 it follows that

f0(σi) =

{
f0(σi+1) if 0 ≤ i < n
σn if i = n

and hence
f0(σ0) = f0(σ1) = . . . f0(σn) = σn

=⇒ All fixpoints f0 coincide on σ0 (with result σn)!

Semantics and Verification of Software Winter Semester 2011/12 5.19

Case 2: Divergence of Body

Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

Formally: there exist σ1, . . . , σn−1 ∈ Σ such that

BJbKσi = true for every 0 ≤ i < n and

CJcKσi =

{
σi+1 if 0 ≤ i ≤ n − 2
undefined if i = n − 1

Just as in the previous case (setting σn := undefined) it follows that

f0(σ0) = undefined

=⇒ Again all fixpoints f0 coincide on σ0 (with undefined result)!

Semantics and Verification of Software Winter Semester 2011/12 5.20

Case 2: Divergence of Body

Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

Formally: there exist σ1, . . . , σn−1 ∈ Σ such that

BJbKσi = true for every 0 ≤ i < n and

CJcKσi =

{
σi+1 if 0 ≤ i ≤ n − 2
undefined if i = n − 1

Just as in the previous case (setting σn := undefined) it follows that

f0(σ0) = undefined

=⇒ Again all fixpoints f0 coincide on σ0 (with undefined result)!

Semantics and Verification of Software Winter Semester 2011/12 5.20

Case 2: Divergence of Body

Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

Formally: there exist σ1, . . . , σn−1 ∈ Σ such that

BJbKσi = true for every 0 ≤ i < n and

CJcKσi =

{
σi+1 if 0 ≤ i ≤ n − 2
undefined if i = n − 1

Just as in the previous case (setting σn := undefined) it follows that

f0(σ0) = undefined

=⇒ Again all fixpoints f0 coincide on σ0 (with undefined result)!

Semantics and Verification of Software Winter Semester 2011/12 5.20

Case 2: Divergence of Body

Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

Formally: there exist σ1, . . . , σn−1 ∈ Σ such that

BJbKσi = true for every 0 ≤ i < n and

CJcKσi =

{
σi+1 if 0 ≤ i ≤ n − 2
undefined if i = n − 1

Just as in the previous case (setting σn := undefined) it follows that

f0(σ0) = undefined

=⇒ Again all fixpoints f0 coincide on σ0 (with undefined result)!

Semantics and Verification of Software Winter Semester 2011/12 5.20

Case 3: Divergence of Loop

Loop while b do c diverges

Formally: there exist σ1, σ2, . . . ∈ Σ such that

BJbKσi = true and
CJcKσi = σi+1 for every i ∈ N

Here only derivable:

f0(σ0) = f0(σi) for every i ∈ N

=⇒ Value of f0(σ0) not determined!

Semantics and Verification of Software Winter Semester 2011/12 5.21

Case 3: Divergence of Loop

Loop while b do c diverges

Formally: there exist σ1, σ2, . . . ∈ Σ such that

BJbKσi = true and
CJcKσi = σi+1 for every i ∈ N

Here only derivable:

f0(σ0) = f0(σi) for every i ∈ N

=⇒ Value of f0(σ0) not determined!

Semantics and Verification of Software Winter Semester 2011/12 5.21

Case 3: Divergence of Loop

Loop while b do c diverges

Formally: there exist σ1, σ2, . . . ∈ Σ such that

BJbKσi = true and
CJcKσi = σi+1 for every i ∈ N

Here only derivable:

f0(σ0) = f0(σi) for every i ∈ N

=⇒ Value of f0(σ0) not determined!

Semantics and Verification of Software Winter Semester 2011/12 5.21

Case 3: Divergence of Loop

Loop while b do c diverges

Formally: there exist σ1, σ2, . . . ∈ Σ such that

BJbKσi = true and
CJcKσi = σi+1 for every i ∈ N

Here only derivable:

f0(σ0) = f0(σi) for every i ∈ N

=⇒ Value of f0(σ0) not determined!

Semantics and Verification of Software Winter Semester 2011/12 5.21

Summary

For Φ(f0) = f0 and initial state σ0 ∈ Σ, case distinction yields:
1 Loop while b do c terminates after n iterations (n ∈ N)

=⇒ f0(σ0) = σn
2 Body c diverges in the nth iteration

=⇒ f0(σ0) = undefined
3 Loop while b do c diverges

=⇒ no condition on f0 (only f0(σ0) = f0(σi) for every i ∈ N)

Not surprising since, e.g., for the loop while true do skip every
f : Σ 99K Σ is a fixpoint:

Φ(f) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

On the other hand, our operational understanding requires, for every
σ0 ∈ Σ,

CJwhile true do skipKσ0 = undefined

Conclusion

fix(Φ) is the least defined fixpoint of Φ.

Semantics and Verification of Software Winter Semester 2011/12 5.22

Summary

For Φ(f0) = f0 and initial state σ0 ∈ Σ, case distinction yields:
1 Loop while b do c terminates after n iterations (n ∈ N)

=⇒ f0(σ0) = σn
2 Body c diverges in the nth iteration

=⇒ f0(σ0) = undefined
3 Loop while b do c diverges

=⇒ no condition on f0 (only f0(σ0) = f0(σi) for every i ∈ N)

Not surprising since, e.g., for the loop while true do skip every
f : Σ 99K Σ is a fixpoint:

Φ(f) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

On the other hand, our operational understanding requires, for every
σ0 ∈ Σ,

CJwhile true do skipKσ0 = undefined

Conclusion

fix(Φ) is the least defined fixpoint of Φ.

Semantics and Verification of Software Winter Semester 2011/12 5.22

Summary

For Φ(f0) = f0 and initial state σ0 ∈ Σ, case distinction yields:
1 Loop while b do c terminates after n iterations (n ∈ N)

=⇒ f0(σ0) = σn
2 Body c diverges in the nth iteration

=⇒ f0(σ0) = undefined
3 Loop while b do c diverges

=⇒ no condition on f0 (only f0(σ0) = f0(σi) for every i ∈ N)

Not surprising since, e.g., for the loop while true do skip every
f : Σ 99K Σ is a fixpoint:

Φ(f) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

On the other hand, our operational understanding requires, for every
σ0 ∈ Σ,

CJwhile true do skipKσ0 = undefined

Conclusion

fix(Φ) is the least defined fixpoint of Φ.

Semantics and Verification of Software Winter Semester 2011/12 5.22

Summary

For Φ(f0) = f0 and initial state σ0 ∈ Σ, case distinction yields:
1 Loop while b do c terminates after n iterations (n ∈ N)

=⇒ f0(σ0) = σn
2 Body c diverges in the nth iteration

=⇒ f0(σ0) = undefined
3 Loop while b do c diverges

=⇒ no condition on f0 (only f0(σ0) = f0(σi) for every i ∈ N)

Not surprising since, e.g., for the loop while true do skip every
f : Σ 99K Σ is a fixpoint:

Φ(f) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

On the other hand, our operational understanding requires, for every
σ0 ∈ Σ,

CJwhile true do skipKσ0 = undefined

Conclusion

fix(Φ) is the least defined fixpoint of Φ.

Semantics and Verification of Software Winter Semester 2011/12 5.22

	Summary: Operational Semantics
	The Denotational Approach
	Denotational Semantics of Expressions
	Denotational Semantics of Statements
	Characterization of fix()

