Semantics and Verification of Software

Lecture 6: Denotational Semantics of WHILE II
(Chain-Complete Partial Orders)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svswill/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

@ Repetition: Denotational Semantics of WHILE

“w.rH Semantics and Verification of Software Winter Semester 2011/12

Semantics of Statements Il

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

C[.]: Cmd — (X --» X),

is given by:
¢[skip] := ids
Clx := aJo := o[x — A[a]o]
Q:[[Cl 5 Cg]] = Q:[[Cz]] (0) Q:[[Cl]]

C[if b then c; else] := cond(B[b], C[c1], €[c2])
¢[while b do c] := fix(P)

where ® : (X --») = (X --» X) : f — cond(B[b], f o €[c],idy)

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.3

Why Fixpoints?

@ Goal: preserve validity of equivalence

C[while b do] © C[if b then (c;while b do c) else skip]
(cf. Lemma 4.3)
Using the known parts of Def. 5.3, we obtain:
¢[while b do (]
©) C[if b then (c;while b do c) else skip]
L3 cond(B[b], €[c;while b do c], €[skip])

cond(B[b], €[while b do c] o €[c],idx)

Def. 5.3

Abbreviating f := €[while b do c] this yields:
f = cond(B[b], f o €[c],idx)
Hence f must be a solution of this recursive equation
@ In other words: f must be a fixpoint of the mapping
O (X--%)—> (X-->X):f+— cond(B[b], f o €[c],idy)
(since the equation can be stated as f = ®(f))
R\NTH Semantics and Verification of Software Winter Semester 2011/12 6.4

Characterization of

For ®(fy) = fo and initial state og € ¥, case distinction yields:
© Loop while b do ¢ terminates after n iterations (n € N)
= fo(oo) = on
@ Body c diverges in the nth iteration
= fo(00) = undefined
© Loop while b do c diverges
= no condition on fy (only fy(cg) = fo(c;) for every i € N)
@ Not surprising since, e.g., for the loop while true do skip every
f:X --» X is a fixpoint:
&(f) = cond(B[true], f o €[skip],idy) = f
@ On the other hand, our operational understanding requires, for every
oo € Z,
¢[while true do skip]og = undefined

fix(®) is the least defined fixpoint of ®.

“er Semantics and Verification of Software Winter Semester 2011/12 6.5

© Making It Precise

“er Semantics and Verification of Software Winter Semester 2011/12

Making It Precise |

To use fixpoint theory, the notion of “least defined” has to be made
precise.

o Given f,g: 2 —--» X1, let

/

fCg « foreveryo,0 €X:f(o)=0" = glo)=0

(g is “at least as defined” as f)

“er Semantics and Verification of Software Winter Semester 2011/12

Making It Precise |

To use fixpoint theory, the notion of “least defined” has to be made
precise.

o Given f,g: 2 —--» X1, let

/

fCg « foreveryo,0 €X:f(o)=0" = glo)=0

(g is “at least as defined” as f)

@ Equivalent to requiring
graph(f) < graph(g)
where
graph(h) := {(0,0") | 0 € £,0' = h(c) defined} C ¥ x ¥

forevery h: ¥ --» ¥

“er Semantics and Verification of Software Winter Semester 2011/12

Making It Precise Il

Example 6.1

Let x € Var be fixed, and let fy, f1,f>, 3 : £ —-+» ¥ be given by

fo(o) := undefined
fi(0) = ?J if o(x) even
(o) =

undefined otherwise
_Jo if o(x) odd
fo(0) = undefined otherwise

(o) =0

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.8

Making It Precise Il

Example 6.1

Let x € Var be fixed, and let fy, f1,f>, 3 : £ —-+» ¥ be given by
fo(o) := undefined

if o(x) even
fi(o) = undeflned otherwise

if o(x) odd
fo(0) = undefmed otherwise
(o) =0

This implies h CH T, HhCHTfh AL H and L f

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.8

Characterization of [

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,

O (fix(P)) = fix(P)

o fix(®) is minimal with respect to C, i.e., for every f : & --» ¥ such
that ®(fy) = fo,

fix(®) C fo

“er Semantics and Verification of Software Winter Semester 2011/12

Characterization of [

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,

O (fix(P)) = fix(P)

o fix(®) is minimal with respect to C, i.e., for every f : & --» ¥ such
that ®(fy) = fo,
fix(®) C fo

Example 6.2
For while true do skip we obtain for every f : ¥ --» ¥

®(f) = cond(B[true], f o €[skip],ids) = f

“er Semantics and Verification of Software Winter Semester 2011/12 6.9

Characterization of [

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,

O (fix(P)) = fix(P)

o fix(®) is minimal with respect to C, i.e., for every f : & --» ¥ such
that ®(fy) = fo,
fix(®) C fo

Example 6.2

For while true do skip we obtain for every f : ¥ --» ¥

®(f) = cond(B[true], f o €[skip],ids) = f

= fix(®) = fy where fy(0) := undefined for every o € ¥
(that is, graph(fy) = 0)

“er Semantics and Verification of Software Winter Semester 2011/12 6.9

Characterization of 1]

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c], idy)

@ Show how it can be “computed” (more exactly: approximated)

“er Semantics and Verification of Software Winter Semester 2011/12

Characterization of 1]

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c], idy)

@ Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain X --+ X: chain-complete partial order

on function ®: continuity

“er Semantics and Verification of Software Winter Semester 2011/12

© Chain-Complete Partial Orders

“er Semantics and Verification of Software Winter Semester 2011/12

Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a
relation C C D x D such that, for every di, d», d3 € D,

reflexivity: di C dy
transitivity: di Cdr and do C d3 = di C d3
antisymmetry: di C drand db C di = di = d>
It is called total if, in addition, always di C d» or d» C dj.

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.12

Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a
relation C C D x D such that, for every di, d», d3 € D,

reflexivity: di C dy
transitivity: di Cdr and do C d3 = di C d3
antisymmetry: di C drand db C di = di = d>
It is called total if, in addition, always di C d» or d» C dj.

Example 6.2
O (N, <) is a total partial order

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.12

Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a
relation C C D x D such that, for every di, d», d3 € D,

reflexivity: di C dy
transitivity: di Cdr and do C d3 = di C d3
antisymmetry: di C drand db C di = di = d>
It is called total if, in addition, always di C d» or d» C dj.

Example 6.2
O (N, <) is a total partial order
@ (2%, C) is a (non-total) partial order

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.12

Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a
relation C C D x D such that, for every di, d», d3 € D,

reflexivity: di C dy
transitivity: di Cdr and do C d3 = di C d3
antisymmetry: di C drand db C di = di = d>
It is called total if, in addition, always di C d» or d» C dj.

Example 6.2
O (N, <) is a total partial order
@ (2%, C) is a (non-total) partial order
@ (N, <) is not a partial order

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.12

Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a
relation C C D x D such that, for every di, d», d3 € D,

reflexivity: di C dy
transitivity: di Cdr and do C d3 = di C d3
antisymmetry: di C drand db C di = di = d>
It is called total if, in addition, always di C d» or d» C dj.

Example 6.2

O (N, <) is a total partial order
@ (2%, C) is a (non-total) partial order

@ (N, <) is not a partial order (since not reflexive)

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.12

Application to |

(X --» X,C) is a partial order.

“er Semantics and Verification of Software Winter Semester 2011/12

Application to |

(X --» X,C) is a partial order.

on the board] \

“er Semantics and Verification of Software Winter Semester 2011/12

Chains and Least Upper Bounds |

Definition 6.4 (Chain, (least) upper bound)
Let (D,C) be a partial order and S C D.

© S is called a chain in D if, for every s1,s, € S,
stbsaors s
(that is, S is a totally ordered subset of D).

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.14

Chains and Least Upper Bounds |

Definition 6.4 (Chain, (least) upper bound)
Let (D,C) be a partial order and S C D.

© S is called a chain in D if, for every s1,s, € S,
stEsors L s
(that is, S is a totally ordered subset of D).
@ An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.14

Chains and Least Upper Bounds |

Definition 6.4 (Chain, (least) upper bound)
Let (D,C) be a partial order and S C D.

© S is called a chain in D if, for every s1,s, € S,
sitEssorssEos;
(that is, S is a totally ordered subset of D).
@ An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).
© An upper bound d of S is called least upper bound (LUB) or
supremum of S if d C d’ for every upper bound d’ of S
(notation: d =] |5).

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.14

Chains and Least Upper Bounds Il

© Every subset S C N is a chain in (N, <).
It has a LUB (its greatest element) iff it is finite.

v

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.15

Chains and Least Upper Bounds Il

© Every subset S C N is a chain in (N, <).
It has a LUB (its greatest element) iff it is finite.

Q@ {0,{0},{0,1},...} is a chain in (2, C) with LUB N.

v

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.15

Chains and Least Upper Bounds Il

© Every subset S C N is a chain in (N, <).
It has a LUB (its greatest element) iff it is finite.

Q@ {0,{0},{0,1},...} is a chain in (2, C) with LUB N.
© Let x € Var, and let f; : ¥ --+ ¥ for every i € N be given by

(o) = {U[X —o(x)+1] ifo(x)<i
e undefined otherwise
Then {fy, fi,f,...} is a chain in (X --» ¥,), since for every i € N
and 0,0’ € X:
(o) = o’

= o(x) <i,o’ =o[x— a(x)+1]

= o(x)<i+1l,0 =0o[x+— o(x)+1]

= fin(o) =o'

= fiCfiq

v

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.15

Chain Completeness

Definition 6.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

“er Semantics and Verification of Software Winter Semester 2011/12

Chain Completeness

Definition 6.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

Example 6.7
Q (2V,C) is a CCPO with | S = Upeg M for every chain S C 21

RWTH Semantics and Verification of Software Winter Semester 2011/12

Chain Completeness

Definition 6.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

Example 6.7
Q (2V,C) is a CCPO with | S = Upeg M for every chain S C 21
@ (N, <) is not chain complete

RWTH Semantics and Verification of Software Winter Semester 2011/12

Chain Completeness

Definition 6.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

Example 6.7

Q (2V,C) is a CCPO with | S = Upeg M for every chain S C 21

@ (N, <) is not chain complete
(since, e.g., the chain N has no upper bound).

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.16

Least Elements in CCPOs

Corollary 6.8
Every CCPO has a least element | | 0.

Semantics and Verification of Software Winter Semester 2011/12

Least Elements in CCPOs

Corollary 6.8
Every CCPO has a least element | | ().

Proof.
Let (D,C) be a CCPO.
e By definition, () is a chain in D.

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.17

Least Elements in CCPOs

Corollary 6.8
Every CCPO has a least element | | ().

Proof.
Let (D,C) be a CCPO.
e By definition, () is a chain in D.

@ By definition, every d € D is an upper bound of ().

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.17

Least Elements in CCPOs

Corollary 6.8
Every CCPO has a least element | | ().

Proof.
Let (D,C) be a CCPO.
e By definition, () is a chain in D.

@ By definition, every d € D is an upper bound of ().
@ Thus | | exists and is the least element of D.

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.17

Application to I

@ (X --»X,C) is a CCPO with least element fy where graph(fy) = 0.

@ In particular, for every chain S C¥ --» ¥,
graph (] S) = Uscs graph(f).

“er Semantics and Verification of Software Winter Semester 2011/12

Application to I

e (X --»%,C) isa CCPO with least element fy where graph(fy) = 0.

@ In particular, for every chain S C¥ --» ¥,
graph (] S) = Uscs graph(f).

on the board]

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.18

Application to I

@ (X --»X,C) is a CCPO with least element fy where graph(fy) = 0.

@ In particular, for every chain S C¥ --» ¥,
graph (] S) = Uscs graph(f).

on the board]

Example 6.10 (cf. Example 6.5(3))
Let x € Var, and let f; : X --+ ¥ for every i € N be given by

(o) = olx—o(x)+1] ifo(x)<i

e undefined otherwise

Then S := {fy, fi, fo,...} is a chain (Example 6.5(3)) with | | S = f where
f:X—=Y:0-ox—o(x)+1]

RWTH Semantics and Verification of Software Winter Semester 2011/12 6.18

	Repetition: Denotational Semantics of WHILE
	Making It Precise
	Chain-Complete Partial Orders

