
Semantics and Verification of Software
Lecture 6: Denotational Semantics of WHILE II

(Chain-Complete Partial Orders)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/


Outline

1 Repetition: Denotational Semantics of WHILE

2 Making It Precise

3 Chain-Complete Partial Orders

Semantics and Verification of Software Winter Semester 2011/12 6.2



Semantics of Statements II

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ 99K Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

Semantics and Verification of Software Winter Semester 2011/12 6.3



Why Fixpoints?

Goal: preserve validity of equivalence

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

(cf. Lemma 4.3)
Using the known parts of Def. 5.3, we obtain:

CJwhile b do cK
(∗)
= CJif b then (c;while b do c) else skipK

Def. 5.3
= cond(BJbK,CJc;while b do cK,CJskipK)

Def. 5.3
= cond(BJbK,CJwhile b do cK ◦ CJcK, idΣ)

Abbreviating f := CJwhile b do cK this yields:
f = cond(BJbK, f ◦ CJcK, idΣ)

Hence f must be a solution of this recursive equation
In other words: f must be a fixpoint of the mapping

Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
(since the equation can be stated as f = Φ(f ))

Semantics and Verification of Software Winter Semester 2011/12 6.4



Characterization of fix(Φ)

For Φ(f0) = f0 and initial state σ0 ∈ Σ, case distinction yields:
1 Loop while b do c terminates after n iterations (n ∈ N)

=⇒ f0(σ0) = σn
2 Body c diverges in the nth iteration

=⇒ f0(σ0) = undefined
3 Loop while b do c diverges

=⇒ no condition on f0 (only f0(σ0) = f0(σi ) for every i ∈ N)

Not surprising since, e.g., for the loop while true do skip every
f : Σ 99K Σ is a fixpoint:

Φ(f ) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

On the other hand, our operational understanding requires, for every
σ0 ∈ Σ,

CJwhile true do skipKσ0 = undefined

Conclusion

fix(Φ) is the least defined fixpoint of Φ.

Semantics and Verification of Software Winter Semester 2011/12 6.5



Outline

1 Repetition: Denotational Semantics of WHILE

2 Making It Precise

3 Chain-Complete Partial Orders

Semantics and Verification of Software Winter Semester 2011/12 6.6



Making It Precise I

To use fixpoint theory, the notion of “least defined” has to be made
precise.

Given f , g : Σ 99K Σ, let

f v g ⇐⇒ for every σ, σ′ ∈ Σ : f (σ) = σ′ =⇒ g(σ) = σ′

(g is “at least as defined” as f )

Equivalent to requiring

graph(f ) ⊆ graph(g)

where

graph(h) := {(σ, σ′) | σ ∈ Σ, σ′ = h(σ) defined} ⊆ Σ× Σ

for every h : Σ 99K Σ

Semantics and Verification of Software Winter Semester 2011/12 6.7



Making It Precise I

To use fixpoint theory, the notion of “least defined” has to be made
precise.

Given f , g : Σ 99K Σ, let

f v g ⇐⇒ for every σ, σ′ ∈ Σ : f (σ) = σ′ =⇒ g(σ) = σ′

(g is “at least as defined” as f )

Equivalent to requiring

graph(f ) ⊆ graph(g)

where

graph(h) := {(σ, σ′) | σ ∈ Σ, σ′ = h(σ) defined} ⊆ Σ× Σ

for every h : Σ 99K Σ

Semantics and Verification of Software Winter Semester 2011/12 6.7



Making It Precise II

Example 6.1

Let x ∈ Var be fixed, and let f0, f1, f2, f3 : Σ 99K Σ be given by

f0(σ) := undefined

f1(σ) :=

{
σ if σ(x) even
undefined otherwise

f2(σ) :=

{
σ if σ(x) odd
undefined otherwise

f3(σ) := σ

This implies f0 v f1 v f3, f0 v f2 v f3, f1 6v f2, and f2 6v f1

Semantics and Verification of Software Winter Semester 2011/12 6.8



Making It Precise II

Example 6.1

Let x ∈ Var be fixed, and let f0, f1, f2, f3 : Σ 99K Σ be given by

f0(σ) := undefined

f1(σ) :=

{
σ if σ(x) even
undefined otherwise

f2(σ) :=

{
σ if σ(x) odd
undefined otherwise

f3(σ) := σ

This implies f0 v f1 v f3, f0 v f2 v f3, f1 6v f2, and f2 6v f1

Semantics and Verification of Software Winter Semester 2011/12 6.8



Characterization of fix(Φ) I

Now fix(Φ) can be characterized by:

fix(Φ) is a fixpoint of Φ, i.e.,

Φ(fix(Φ)) = fix(Φ)

fix(Φ) is minimal with respect to v, i.e., for every f0 : Σ 99K Σ such
that Φ(f0) = f0,

fix(Φ) v f0

Example 6.2

For while true do skip we obtain for every f : Σ 99K Σ:

Φ(f ) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

=⇒ fix(Φ) = f∅ where f∅(σ) := undefined for every σ ∈ Σ
(that is, graph(f∅) = ∅)

Semantics and Verification of Software Winter Semester 2011/12 6.9



Characterization of fix(Φ) I

Now fix(Φ) can be characterized by:

fix(Φ) is a fixpoint of Φ, i.e.,

Φ(fix(Φ)) = fix(Φ)

fix(Φ) is minimal with respect to v, i.e., for every f0 : Σ 99K Σ such
that Φ(f0) = f0,

fix(Φ) v f0

Example 6.2

For while true do skip we obtain for every f : Σ 99K Σ:

Φ(f ) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

=⇒ fix(Φ) = f∅ where f∅(σ) := undefined for every σ ∈ Σ
(that is, graph(f∅) = ∅)

Semantics and Verification of Software Winter Semester 2011/12 6.9



Characterization of fix(Φ) I

Now fix(Φ) can be characterized by:

fix(Φ) is a fixpoint of Φ, i.e.,

Φ(fix(Φ)) = fix(Φ)

fix(Φ) is minimal with respect to v, i.e., for every f0 : Σ 99K Σ such
that Φ(f0) = f0,

fix(Φ) v f0

Example 6.2

For while true do skip we obtain for every f : Σ 99K Σ:

Φ(f ) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

=⇒ fix(Φ) = f∅ where f∅(σ) := undefined for every σ ∈ Σ
(that is, graph(f∅) = ∅)

Semantics and Verification of Software Winter Semester 2011/12 6.9



Characterization of fix(Φ) II

Goals:

Prove existence of fix(Φ) for Φ(f ) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ 99K Σ: chain-complete partial order

on function Φ: continuity

Semantics and Verification of Software Winter Semester 2011/12 6.10



Characterization of fix(Φ) II

Goals:

Prove existence of fix(Φ) for Φ(f ) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ 99K Σ: chain-complete partial order

on function Φ: continuity

Semantics and Verification of Software Winter Semester 2011/12 6.10



Outline

1 Repetition: Denotational Semantics of WHILE

2 Making It Precise

3 Chain-Complete Partial Orders

Semantics and Verification of Software Winter Semester 2011/12 6.11



Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 6.2

1 (N,≤) is a total partial order

2 (2N,⊆) is a (non-total) partial order

3 (N, <) is not a partial order (since not reflexive)

Semantics and Verification of Software Winter Semester 2011/12 6.12



Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 6.2

1 (N,≤) is a total partial order

2 (2N,⊆) is a (non-total) partial order

3 (N, <) is not a partial order (since not reflexive)

Semantics and Verification of Software Winter Semester 2011/12 6.12



Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 6.2

1 (N,≤) is a total partial order

2 (2N,⊆) is a (non-total) partial order

3 (N, <) is not a partial order (since not reflexive)

Semantics and Verification of Software Winter Semester 2011/12 6.12



Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 6.2

1 (N,≤) is a total partial order

2 (2N,⊆) is a (non-total) partial order

3 (N, <) is not a partial order

(since not reflexive)

Semantics and Verification of Software Winter Semester 2011/12 6.12



Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 =⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 =⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 6.2

1 (N,≤) is a total partial order

2 (2N,⊆) is a (non-total) partial order

3 (N, <) is not a partial order (since not reflexive)

Semantics and Verification of Software Winter Semester 2011/12 6.12



Application to fix(Φ) I

Lemma 6.3

(Σ 99K Σ,v) is a partial order.

Proof.

on the board

Semantics and Verification of Software Winter Semester 2011/12 6.13



Application to fix(Φ) I

Lemma 6.3

(Σ 99K Σ,v) is a partial order.

Proof.

on the board

Semantics and Verification of Software Winter Semester 2011/12 6.13



Chains and Least Upper Bounds I

Definition 6.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S ,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).

2 An element d ∈ D is called an upper bound of S if s v d for every
s ∈ S (notation: S v d).

3 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d ′ for every upper bound d ′ of S
(notation: d =

⊔
S).

Semantics and Verification of Software Winter Semester 2011/12 6.14



Chains and Least Upper Bounds I

Definition 6.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S ,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s v d for every

s ∈ S (notation: S v d).

3 An upper bound d of S is called least upper bound (LUB) or
supremum of S if d v d ′ for every upper bound d ′ of S
(notation: d =

⊔
S).

Semantics and Verification of Software Winter Semester 2011/12 6.14



Chains and Least Upper Bounds I

Definition 6.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S ,
s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s v d for every

s ∈ S (notation: S v d).
3 An upper bound d of S is called least upper bound (LUB) or

supremum of S if d v d ′ for every upper bound d ′ of S
(notation: d =

⊔
S).

Semantics and Verification of Software Winter Semester 2011/12 6.14



Chains and Least Upper Bounds II

Example 6.5

1 Every subset S ⊆ N is a chain in (N,≤).
It has a LUB (its greatest element) iff it is finite.

2 {∅, {0}, {0, 1}, . . .} is a chain in (2N,⊆) with LUB N.

3 Let x ∈ Var , and let fi : Σ 99K Σ for every i ∈ N be given by

fi (σ) :=

{
σ[x 7→ σ(x) + 1] if σ(x) ≤ i
undefined otherwise

Then {f0, f1, f2, . . .} is a chain in (Σ 99K Σ,v), since for every i ∈ N
and σ, σ′ ∈ Σ:

fi (σ) = σ′

=⇒ σ(x) ≤ i , σ′ = σ[x 7→ σ(x) + 1]
=⇒ σ(x) ≤ i + 1, σ′ = σ[x 7→ σ(x) + 1]
=⇒ fi+1(σ) = σ′

=⇒ fi v fi+1

Semantics and Verification of Software Winter Semester 2011/12 6.15



Chains and Least Upper Bounds II

Example 6.5

1 Every subset S ⊆ N is a chain in (N,≤).
It has a LUB (its greatest element) iff it is finite.

2 {∅, {0}, {0, 1}, . . .} is a chain in (2N,⊆) with LUB N.

3 Let x ∈ Var , and let fi : Σ 99K Σ for every i ∈ N be given by

fi (σ) :=

{
σ[x 7→ σ(x) + 1] if σ(x) ≤ i
undefined otherwise

Then {f0, f1, f2, . . .} is a chain in (Σ 99K Σ,v), since for every i ∈ N
and σ, σ′ ∈ Σ:

fi (σ) = σ′

=⇒ σ(x) ≤ i , σ′ = σ[x 7→ σ(x) + 1]
=⇒ σ(x) ≤ i + 1, σ′ = σ[x 7→ σ(x) + 1]
=⇒ fi+1(σ) = σ′

=⇒ fi v fi+1

Semantics and Verification of Software Winter Semester 2011/12 6.15



Chains and Least Upper Bounds II

Example 6.5

1 Every subset S ⊆ N is a chain in (N,≤).
It has a LUB (its greatest element) iff it is finite.

2 {∅, {0}, {0, 1}, . . .} is a chain in (2N,⊆) with LUB N.

3 Let x ∈ Var , and let fi : Σ 99K Σ for every i ∈ N be given by

fi (σ) :=

{
σ[x 7→ σ(x) + 1] if σ(x) ≤ i
undefined otherwise

Then {f0, f1, f2, . . .} is a chain in (Σ 99K Σ,v), since for every i ∈ N
and σ, σ′ ∈ Σ:

fi (σ) = σ′

=⇒ σ(x) ≤ i , σ′ = σ[x 7→ σ(x) + 1]
=⇒ σ(x) ≤ i + 1, σ′ = σ[x 7→ σ(x) + 1]
=⇒ fi+1(σ) = σ′

=⇒ fi v fi+1

Semantics and Verification of Software Winter Semester 2011/12 6.15



Chain Completeness

Definition 6.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

Example 6.7

1 (2N,⊆) is a CCPO with
⊔
S =

⋃
M∈S M for every chain S ⊆ 2N.

2 (N,≤) is not chain complete
(since, e.g., the chain N has no upper bound).

Semantics and Verification of Software Winter Semester 2011/12 6.16



Chain Completeness

Definition 6.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

Example 6.7

1 (2N,⊆) is a CCPO with
⊔
S =

⋃
M∈S M for every chain S ⊆ 2N.

2 (N,≤) is not chain complete
(since, e.g., the chain N has no upper bound).

Semantics and Verification of Software Winter Semester 2011/12 6.16



Chain Completeness

Definition 6.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

Example 6.7

1 (2N,⊆) is a CCPO with
⊔
S =

⋃
M∈S M for every chain S ⊆ 2N.

2 (N,≤) is not chain complete

(since, e.g., the chain N has no upper bound).

Semantics and Verification of Software Winter Semester 2011/12 6.16



Chain Completeness

Definition 6.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

Example 6.7

1 (2N,⊆) is a CCPO with
⊔
S =

⋃
M∈S M for every chain S ⊆ 2N.

2 (N,≤) is not chain complete
(since, e.g., the chain N has no upper bound).

Semantics and Verification of Software Winter Semester 2011/12 6.16



Least Elements in CCPOs

Corollary 6.8

Every CCPO has a least element
⊔
∅.

Proof.

Let (D,v) be a CCPO.

By definition, ∅ is a chain in D.

By definition, every d ∈ D is an upper bound of ∅.
Thus

⊔
∅ exists and is the least element of D.

Semantics and Verification of Software Winter Semester 2011/12 6.17



Least Elements in CCPOs

Corollary 6.8

Every CCPO has a least element
⊔
∅.

Proof.

Let (D,v) be a CCPO.

By definition, ∅ is a chain in D.

By definition, every d ∈ D is an upper bound of ∅.
Thus

⊔
∅ exists and is the least element of D.

Semantics and Verification of Software Winter Semester 2011/12 6.17



Least Elements in CCPOs

Corollary 6.8

Every CCPO has a least element
⊔
∅.

Proof.

Let (D,v) be a CCPO.

By definition, ∅ is a chain in D.

By definition, every d ∈ D is an upper bound of ∅.

Thus
⊔
∅ exists and is the least element of D.

Semantics and Verification of Software Winter Semester 2011/12 6.17



Least Elements in CCPOs

Corollary 6.8

Every CCPO has a least element
⊔
∅.

Proof.

Let (D,v) be a CCPO.

By definition, ∅ is a chain in D.

By definition, every d ∈ D is an upper bound of ∅.
Thus

⊔
∅ exists and is the least element of D.

Semantics and Verification of Software Winter Semester 2011/12 6.17



Application to fix(Φ) II

Lemma 6.9

(Σ 99K Σ,v) is a CCPO with least element f∅ where graph(f∅) = ∅.
In particular, for every chain S ⊆ Σ 99K Σ,

graph (
⊔
S) =

⋃
f ∈S graph(f ).

Proof.

on the board

Example 6.10 (cf. Example 6.5(3))

Let x ∈ Var , and let fi : Σ 99K Σ for every i ∈ N be given by

fi (σ) :=

{
σ[x 7→ σ(x) + 1] if σ(x) ≤ i
undefined otherwise

Then S := {f0, f1, f2, . . .} is a chain (Example 6.5(3)) with
⊔
S = f where

f : Σ→ Σ : σ 7→ σ[x 7→ σ(x) + 1]

Semantics and Verification of Software Winter Semester 2011/12 6.18



Application to fix(Φ) II

Lemma 6.9

(Σ 99K Σ,v) is a CCPO with least element f∅ where graph(f∅) = ∅.
In particular, for every chain S ⊆ Σ 99K Σ,

graph (
⊔
S) =

⋃
f ∈S graph(f ).

Proof.

on the board

Example 6.10 (cf. Example 6.5(3))

Let x ∈ Var , and let fi : Σ 99K Σ for every i ∈ N be given by

fi (σ) :=

{
σ[x 7→ σ(x) + 1] if σ(x) ≤ i
undefined otherwise

Then S := {f0, f1, f2, . . .} is a chain (Example 6.5(3)) with
⊔
S = f where

f : Σ→ Σ : σ 7→ σ[x 7→ σ(x) + 1]

Semantics and Verification of Software Winter Semester 2011/12 6.18



Application to fix(Φ) II

Lemma 6.9

(Σ 99K Σ,v) is a CCPO with least element f∅ where graph(f∅) = ∅.
In particular, for every chain S ⊆ Σ 99K Σ,

graph (
⊔
S) =

⋃
f ∈S graph(f ).

Proof.

on the board

Example 6.10 (cf. Example 6.5(3))

Let x ∈ Var , and let fi : Σ 99K Σ for every i ∈ N be given by

fi (σ) :=

{
σ[x 7→ σ(x) + 1] if σ(x) ≤ i
undefined otherwise

Then S := {f0, f1, f2, . . .} is a chain (Example 6.5(3)) with
⊔
S = f where

f : Σ→ Σ : σ 7→ σ[x 7→ σ(x) + 1]

Semantics and Verification of Software Winter Semester 2011/12 6.18


	Repetition: Denotational Semantics of WHILE
	Making It Precise
	Chain-Complete Partial Orders

