Semantics and Verification of Software

Lecture 7: Denotational Semantics of WHILE |11
(Continuous Functions and Fixpoint Theorem)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svswill/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Technologie-Beratung @ SAP:

Uber ein spannendes Unternehmen,
innovative Technologien und
lhren moglichen Berufseinstieg
als Trainee im Consulting

SAP Firmenvortrag
Dienstag, 29. November 2011
17:30 bis 18:30
Horsaal AH1, AhornstraRe

Ringvorlesung
Forum Informatik

28. November 2011
Imagination-Innovation-Intervention -
Mensch-Roboter Interaktion in der Techno-
wissenschaftskultur

Prof. Dr. Jutta Weber - Universitat Paderborn

SuperC, 6. Etage, Generali-Saal
17:15 bis 18:45 Uhr

19. Dezember 2011
Von der Hand in den Kopf -

Was Hande, Gehirne und Roboter verbindet
Prof. Dr. Helge Ritter - Universitit Bielefeld

SuperC, 6. Etage, Generali-Saal
17:15 bis 18:45 Uhr

16. Januar 2012
Morphogenetic Robotics
Prof. Yaochu Jin - University of Surrey
SuperC, 6. Etage, Ford-Saal

17:15 bis 18:45 Uhr

23. Januar 2012

The robotic Scientist: Distilling Natural Laws
from Experimental Data, from cognitive ro-
botics to computional biology

Prof. Hod Lipson - Cornell University

SuperC, 6. Etage, Generali-Saal
17:15 bis 18:45 Uhr

N B mM HEN
Navina von Felbert, MA.
fon 94104 1 n T

22ld.d [V 1LV

@ Repetition: Denotational Semantics of WHILE

“er Semantics and Verification of Software Winter Semester 2011/12

Semantics of Statements

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

C[.]: Cmd — (X --» X),

is given by:
¢[skip] := ids
Clx := aJo := o[x — A[a]o]
Q:[[Cl 5 Cg]] = Q:[[Cz]] (0) Q:[[Cl]]

C[if b then c; else] := cond(B[b], C[c1], €[c2])
¢[while b do c] := fix(P)

where ® : (X --») = (X --» X) : f — cond(B[b], f o €[c],idy)

Semantics and Verification of Software Winter Semester 2011/12

Characterization of [

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,

O (fix(P)) = fix(P)

o fix(®) is minimal with respect to C, i.e., for every f : & --» ¥ such
that ®(fy) = fo,
fix(®) C fo

For while true do skip we obtain for every f : ¥ --» ¥

®(f) = cond(B[true], f o €[skip],ids) = f

= fix(®) = fy where fy(0) := undefined for every o € ¥
(that is, graph(fy) = 0)

“er Semantics and Verification of Software Winter Semester 2011/12 7.6

Characterization of 1]

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c], idy)

@ Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain X --+» X: chain-complete partial order

on function ®: continuity

“er Semantics and Verification of Software Winter Semester 2011/12

Application to |

(X --» X,C) is a partial order.

on the board] \

“er Semantics and Verification of Software Winter Semester 2011/12

Application to I

@ (X --»X,C) is a CCPO with least element fy where graph(fy) = 0.

@ In particular, for every chain S C¥ --» ¥,
graph (] S) = Uscs graph(f).

on the board]

Example (cf. Example 6.5(3))
Let x € Var, and let f; : X --+ ¥ for every i € N be given by

(o) = olx—o(x)+1] ifo(x)<i

e undefined otherwise

Then S := {fy, fi, fo,...} is a chain (Example 6.5(3)) with | | S = f where
f:X—=Y:0-ox—o(x)+1]

RWTH Semantics and Verification of Software Winter Semester 2011/12 7.9

© Monotonic and Continuous Functions

“er Semantics and Verification of Software Winter Semester 2011/12

Monotonicity |

Definition 7.1 (Monotonicity)

Let (D,C) and (D’,C’) be partial orders, and let F : D — D’. F is called
monotonic (w.r.t. (D,C) and (D', ")) if, for every di,d» € D,

d Cdo = F(di) T’ F(db).

Interpretation: monotonic functions “preserve information”

Q Let T:={SCN|Sfinite}. Then F; : T = N:S5—= 3 _snis
monotonic w.r.t. (2, C) and (N, <).

Q@ F: 2N 2V S+3 N\ S is not monotonic w.r.t. (21, C)
(since, e.g., D C N but F(0) = N & F(N) = 0).

RWTH Semantics and Verification of Software Winter Semester 2011/12 7.11

Application to

Let b € BExp, c € Cmd, and ® : (X --» ¥) — (X --» X) with
®(f) := cond(B[b], f o €[c],idx). Then & is monotonic w.r.t.
(X --»%,0).

on the board

RWTH Semantics and Verification of Software Winter Semester 2011/12 7.12

Monotonicity Il

The following lemma states how chains behave under monotonic functions.

Let (D,C) and (D',C") be CCPOs, F : D — D' monotonic, and S C D a
chain in D. Then:

Q F(S):={F(d)|de S} isa chainin D'
@ [IF(S) T F(US).

on the board

RWTH Semantics and Verification of Software Winter Semester 2011/12 7.13

Continuity

A function F is continuous if the order of applying F and taking LUBs can
be reversed:

Definition 7.5 (Continuity)

Let (D,C) and (D’,C') be CCPOs and F : D — D’ monotonic. Then F is
called continuous (w.r.t. (D,C) and (D', ")) if, for every non-empty

chain S C D,

F (|_| 5) =||F(S):

Let b € BExp, c € Cmd, and ®(f) := cond(B[b], f o €[c],idy). Then ®
is continuous w.r.t. (X --» X, C).

omitted OJ

RWTH Semantics and Verification of Software Winter Semester 2011/12 7.14

© The Fixpoint Theorem

“er Semantics and Verification of Software Winter Semester 2011/12

The Fixpoint Theorem

Theorem 7.7 (Fixpoint Theorem by Tarski and Knaster)
Let (D,C) be a CCPO and F : D — D continuous. Then

fix(F) := | | {F" (| |0) | ne N}

is the least fixpoint of F where

FO(d) := d and F"T1(d) := F(F"(d)).

on the board

RWTH Semantics and Verification of Software Winter Semester 2011/12 7.16

Application to

Altogether this completes the definition of €[.]. In particular, for the
while statement we obtain:

Corollary 7.8

Let b € BExp, c € Cmd, and ®(f) := cond(B[b], f o €[c],idx). Then

graph(fix(®)) = _J graph(®"(f)))
neN

Proof.
Using
@ Lemma 7.4

e (X --»X,C) CCPO with least element f;
e LUB = union of graphs
@ Lemma 7.6 ($ continuous)
@ Theorem 7.7 (Fixpoint Theorem)]

v

“w.rH Semantics and Verification of Software Winter Semester 2011/12 7.17

@ An Example

“er Semantics and Verification of Software Winter Semester 2011/12

Denotational Semantics of Factorial Program |

Example 7.9 (Factorial program)

@ Let ¢ € Cmd be given by
y:=1; while —(x=1) do (y:=y*x; x:=x-1)
@ For every initial state g9 € ¥, Def. 5.3 yields:
€[c](o0) = fix(®)(01)
where o1 := og[y — 1] and, for every f : ¥ --» X and 0 € ¥,
d(f)(o) = cond(B[-(x=1)], f o €[y:=y*x; x:=x-1],idx)(0)
_Jo if o(x) =1
~ | f(¢’') otherwise
with o’ := o[y — o(y) * o(x),x — o(x) — 1].
@ Approximations of least fixpoint of ® according to Theorem 7.7:
fix(®) = [{®"(fy) | n € N}
(where graph(f;) = 0)

RWTH Semantics and Verification of Software Winter Semester 2011/12 7.19

Denotational Semantics of Factorial Program |l

Example 7.9 (Factorial program; continued)

hlo) = $i)e)
(o) = O (o) (o o) =1
= foplo) - {fl(a’) otherwise
= undefined o if o(x) = 1
B {Jld fined I; 2ET i anj Ui(X) 2 i
f(0) = ®(f)(0) (L;n efine ;f ggg 7:é ! and o'(x) #
= o()(0) _ { f ote) = 2
_Jeo ifo(x) =1 undefined if o(x) # 1 and o(x) # 2
fo(c’) otherwise & if o(x) =1
o if o(x)=1 oly—2x0(y), ifo(x)=2
undefined otherwise = x 1]
undefined if o(x) £ 1
and o(x) # 2

RWTH Semantics and Verification of Software Winter Semester 2011/12 7.20

Denotational Semantics of Factorial Program Il

Example 7.9 (Factorial program; continued)

fi(0) == 3(fy)(0)

= o(f)(0)

_ {0’ if o(x) =1

~ | (c") otherwise
o if o(x) =1

_Ja if o(x) #1and o/(x) =1
o'ly = 2x0'(y),x = 1] ifo(x) # 1 and o'(x) =2
undefined if o(x) # 1 and o’/(x) # 1 and o'(x) # 2
o if o(x) =1

) if o(x) =2

- {a'[ynl—>2*a’(y),x*—>1] if o(x) =3
undefined if o(x) ¢ {1,2,3}
o ifo(x)=1

_ Joly—2xa(y).x— 1] if o(x) =2
oly—=3%2x0(y),x—1] ifo(x)=3
undefined if o(x) ¢ {1,2,3}

RWTH Semantics and Verification of Software Winter Semester 2011/12 7.21

Denotational Semantics of Factorial Program IV

Example 7.9 (Factorial program; continued)

@ n-th approximation:
fa(0)
= ®"(fy)(0)
oly—o(x)*(o(x) —1)*...%2x0(y), ifl<o(x)<n
= x — 1]
undefined if o(x) ¢ {1,...,n}
_ {U[y - (c(x)) *o(y),x — 1] if1< o(x) <n
undefined if o(x) ¢ {1,...,n}
e Fixpoint:
elel(on) = ix(®)(on) = {70 L= 1 T2

v

RWTH Semantics and Verification of Software Winter Semester 2011/12 7.22

© Summary: Denotational Semantics

“er Semantics and Verification of Software Winter Semester 2011/12

Summary: Denotational Semantics

Semantic model: partial state transformations (X --» ¥)
Compositional definition of functional €[.] : Cmd — (X --» X)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

@ Approximation by fixpoint iteration

“er Semantics and Verification of Software Winter Semester 2011/12

	Repetition: Denotational Semantics of WHILE
	Monotonic and Continuous Functions
	The Fixpoint Theorem
	An Example
	Summary: Denotational Semantics

