
Semantics and Verification of Software
Lecture 7: Denotational Semantics of WHILE III

(Continuous Functions and Fixpoint Theorem)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

© 2011 SAP AG. All rights reserved. 1Confidential

CONFIDENTIAL

Technologie-Beratung @ SAP:

Über ein spannendes Unternehmen,
innovative Technologien und

Ihren möglichen Berufseinstieg
als Trainee im Consulting

SAP Firmenvortrag
Dienstag, 29. November 2011

17:30 bis 18:30
Hörsaal AH1, Ahornstraße

Outline

1 Repetition: Denotational Semantics of WHILE

2 Monotonic and Continuous Functions

3 The Fixpoint Theorem

4 An Example

5 Summary: Denotational Semantics

Semantics and Verification of Software Winter Semester 2011/12 7.4

Semantics of Statements

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ 99K Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

Semantics and Verification of Software Winter Semester 2011/12 7.5

Characterization of fix(Φ) I

Now fix(Φ) can be characterized by:

fix(Φ) is a fixpoint of Φ, i.e.,

Φ(fix(Φ)) = fix(Φ)

fix(Φ) is minimal with respect to v, i.e., for every f0 : Σ 99K Σ such
that Φ(f0) = f0,

fix(Φ) v f0

Example

For while true do skip we obtain for every f : Σ 99K Σ:

Φ(f) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

=⇒ fix(Φ) = f∅ where f∅(σ) := undefined for every σ ∈ Σ
(that is, graph(f∅) = ∅)

Semantics and Verification of Software Winter Semester 2011/12 7.6

Characterization of fix(Φ) II

Goals:

Prove existence of fix(Φ) for Φ(f) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ 99K Σ: chain-complete partial order

on function Φ: continuity

Semantics and Verification of Software Winter Semester 2011/12 7.7

Application to fix(Φ) I

Lemma

(Σ 99K Σ,v) is a partial order.

Proof.

on the board

Semantics and Verification of Software Winter Semester 2011/12 7.8

Application to fix(Φ) II

Lemma

(Σ 99K Σ,v) is a CCPO with least element f∅ where graph(f∅) = ∅.
In particular, for every chain S ⊆ Σ 99K Σ,

graph (
⊔

S) =
⋃

f ∈S graph(f).

Proof.

on the board

Example (cf. Example 6.5(3))

Let x ∈ Var , and let fi : Σ 99K Σ for every i ∈ N be given by

fi (σ) :=

{
σ[x 7→ σ(x) + 1] if σ(x) ≤ i
undefined otherwise

Then S := {f0, f1, f2, . . .} is a chain (Example 6.5(3)) with
⊔

S = f where
f : Σ→ Σ : σ 7→ σ[x 7→ σ(x) + 1]

Semantics and Verification of Software Winter Semester 2011/12 7.9

Outline

1 Repetition: Denotational Semantics of WHILE

2 Monotonic and Continuous Functions

3 The Fixpoint Theorem

4 An Example

5 Summary: Denotational Semantics

Semantics and Verification of Software Winter Semester 2011/12 7.10

Monotonicity I

Definition 7.1 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let F : D → D ′. F is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ F (d1) v′ F (d2).

Interpretation: monotonic functions “preserve information”

Example 7.2

1 Let T := {S ⊆ N | S finite}. Then F1 : T → N : S 7→
∑

n∈S n is
monotonic w.r.t. (2N,⊆) and (N,≤).

2 F2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but F2(∅) = N 6⊆ F2(N) = ∅).

Semantics and Verification of Software Winter Semester 2011/12 7.11

Application to fix(Φ)

Lemma 7.3

Let b ∈ BExp, c ∈ Cmd, and Φ : (Σ 99K Σ)→ (Σ 99K Σ) with
Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ is monotonic w.r.t.
(Σ 99K Σ,v).

Proof.

on the board

Semantics and Verification of Software Winter Semester 2011/12 7.12

Monotonicity II

The following lemma states how chains behave under monotonic functions.

Lemma 7.4

Let (D,v) and (D ′,v′) be CCPOs, F : D → D ′ monotonic, and S ⊆ D a
chain in D. Then:

1 F (S) := {F (d) | d ∈ S} is a chain in D ′.

2
⊔

F (S) v′ F (
⊔

S).

Proof.

on the board

Semantics and Verification of Software Winter Semester 2011/12 7.13

Continuity

A function F is continuous if the order of applying F and taking LUBs can
be reversed:

Definition 7.5 (Continuity)

Let (D,v) and (D ′,v′) be CCPOs and F : D → D ′ monotonic. Then F is
called continuous (w.r.t. (D,v) and (D ′,v′)) if, for every non-empty
chain S ⊆ D,

F
(⊔

S
)

=
⊔

F (S).

Lemma 7.6

Let b ∈ BExp, c ∈ Cmd, and Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ
is continuous w.r.t. (Σ 99K Σ,v).

Proof.

omitted

Semantics and Verification of Software Winter Semester 2011/12 7.14

Outline

1 Repetition: Denotational Semantics of WHILE

2 Monotonic and Continuous Functions

3 The Fixpoint Theorem

4 An Example

5 Summary: Denotational Semantics

Semantics and Verification of Software Winter Semester 2011/12 7.15

The Fixpoint Theorem

Theorem 7.7 (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F) :=
⊔{

F n
(⊔
∅
)
| n ∈ N

}
is the least fixpoint of F where

F 0(d) := d and F n+1(d) := F (F n(d)).

Proof.

on the board

Semantics and Verification of Software Winter Semester 2011/12 7.16

Application to fix(Φ)

Altogether this completes the definition of CJ.K. In particular, for the
while statement we obtain:

Corollary 7.8

Let b ∈ BExp, c ∈ Cmd, and Φ(f) := cond(BJbK, f ◦ CJcK, idΣ). Then

graph(fix(Φ)) =
⋃
n∈N

graph(Φn(f∅))

Proof.

Using

Lemma 7.4

(Σ 99K Σ,v) CCPO with least element f∅
LUB = union of graphs

Lemma 7.6 (Φ continuous)
Theorem 7.7 (Fixpoint Theorem)

Semantics and Verification of Software Winter Semester 2011/12 7.17

Outline

1 Repetition: Denotational Semantics of WHILE

2 Monotonic and Continuous Functions

3 The Fixpoint Theorem

4 An Example

5 Summary: Denotational Semantics

Semantics and Verification of Software Winter Semester 2011/12 7.18

Denotational Semantics of Factorial Program I

Example 7.9 (Factorial program)

Let c ∈ Cmd be given by
y:=1; while ¬(x=1) do (y:=y*x; x:=x-1)

For every initial state σ0 ∈ Σ, Def. 5.3 yields:
CJcK(σ0) = fix(Φ)(σ1)

where σ1 := σ0[y 7→ 1] and, for every f : Σ 99K Σ and σ ∈ Σ,
Φ(f)(σ) = cond(BJ¬(x=1)K, f ◦ CJy:=y*x; x:=x-1K, idΣ)(σ)

=

{
σ if σ(x) = 1
f (σ′) otherwise

with σ′ := σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x)− 1].

Approximations of least fixpoint of Φ according to Theorem 7.7:
fix(Φ) =

⊔
{Φn(f∅) | n ∈ N}

(where graph(f∅) = ∅)

Semantics and Verification of Software Winter Semester 2011/12 7.19

Denotational Semantics of Factorial Program II

Example 7.9 (Factorial program; continued)

f0(σ) := Φ0(f∅)(σ)
= f∅(σ)
= undefined

f1(σ) := Φ1(f∅)(σ)
= Φ(f0)(σ)

=

{
σ if σ(x) = 1
f0(σ′) otherwise

=

{
σ if σ(x) = 1
undefined otherwise

f2(σ) := Φ2(f∅)(σ)
= Φ(f1)(σ)

=

{
σ if σ(x) = 1
f1(σ′) otherwise

=

{
σ if σ(x) = 1
σ′ if σ(x) 6= 1 and σ′(x) = 1
undefined if σ(x) 6= 1 and σ′(x) 6= 1

=

{
σ if σ(x) = 1
σ′ if σ(x) = 2
undefined if σ(x) 6= 1 and σ(x) 6= 2

=


σ if σ(x) = 1
σ[y 7→ 2 ∗ σ(y),
x 7→ 1]

if σ(x) = 2

undefined if σ(x) 6= 1
and σ(x) 6= 2

Semantics and Verification of Software Winter Semester 2011/12 7.20

Denotational Semantics of Factorial Program III

Example 7.9 (Factorial program; continued)

f3(σ) := Φ3(f∅)(σ)
= Φ(f2)(σ)

=

{
σ if σ(x) = 1
f2(σ′) otherwise

=


σ if σ(x) = 1
σ′ if σ(x) 6= 1 and σ′(x) = 1
σ′[y 7→ 2 ∗ σ′(y), x 7→ 1] if σ(x) 6= 1 and σ′(x) = 2
undefined if σ(x) 6= 1 and σ′(x) 6= 1 and σ′(x) 6= 2

=


σ if σ(x) = 1
σ′ if σ(x) = 2
σ′[y 7→ 2 ∗ σ′(y), x 7→ 1] if σ(x) = 3
undefined if σ(x) /∈ {1, 2, 3}

=


σ if σ(x) = 1
σ[y 7→ 2 ∗ σ(y), x 7→ 1] if σ(x) = 2
σ[y 7→ 3 ∗ 2 ∗ σ(y), x 7→ 1] if σ(x) = 3
undefined if σ(x) /∈ {1, 2, 3}

Semantics and Verification of Software Winter Semester 2011/12 7.21

Denotational Semantics of Factorial Program IV

Example 7.9 (Factorial program; continued)

n-th approximation:

fn(σ)
:= Φn(f∅)(σ)

=

σ[y 7→ σ(x) ∗ (σ(x)− 1) ∗ . . . ∗ 2 ∗ σ(y),
x 7→ 1]

if 1 ≤ σ(x) ≤ n

undefined if σ(x) /∈ {1, . . . , n}

=

{
σ[y 7→ (σ(x))! ∗ σ(y), x 7→ 1] if 1 ≤ σ(x) ≤ n
undefined if σ(x) /∈ {1, . . . , n}

Fixpoint:

CJcK(σ0) = fix(Φ)(σ1) =

{
σ[y 7→ (σ(x))!, x 7→ 1] if σ(x) ≥ 1
undefined otherwise

Semantics and Verification of Software Winter Semester 2011/12 7.22

Outline

1 Repetition: Denotational Semantics of WHILE

2 Monotonic and Continuous Functions

3 The Fixpoint Theorem

4 An Example

5 Summary: Denotational Semantics

Semantics and Verification of Software Winter Semester 2011/12 7.23

Summary: Denotational Semantics

Semantic model: partial state transformations (Σ 99K Σ)

Compositional definition of functional CJ.K : Cmd → (Σ 99K Σ)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Approximation by fixpoint iteration

Semantics and Verification of Software Winter Semester 2011/12 7.24

	Repetition: Denotational Semantics of WHILE
	Monotonic and Continuous Functions
	The Fixpoint Theorem
	An Example
	Summary: Denotational Semantics

