Semantics and Verification of Software

Lecture 8: Denotational Semantics of WHILE IV
(Equivalence with Operational Semantics)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svswill/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

@ Repetition: Denotational Semantics of WHILE

“er Semantics and Verification of Software Winter Semester 2011/12

Semantics of Statements

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

C[.]: Cmd — (X --» X),

is given by:
¢[skip] := ids
Clx := aJo := o[x — A[a]o]
Q:[[Cl 5 Cg]] = Q:[[Cz]] (0) Q:[[Cl]]

C[if b then c; else] := cond(B[b], C[c1], €[c2])
¢[while b do c] := fix(P)

where ® : (X --») = (X --» X) : f — cond(B[b], f o €[c],idy)

RWTH Semantics and Verification of Software Winter Semester 2011/12 8.3

Characterization of 1]

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c], idy)

@ Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain X --+» X: chain-complete partial order

on function ®: continuity

“er Semantics and Verification of Software Winter Semester 2011/12

Monotonicity

Definition (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let F : D — D’. F is called
monotonic (w.r.t. (D,C) and (D’,C")) if, for every di,ds € D,

d Cdp = F(di) T’ F(db).

Interpretation: monotonic functions “preserve information”

Let b € BExp, c € Cmd, and ® : (£ --» ¥) — (X --» X) with
®(f) := cond(B[b], f o €[c],ids). Then ® is monotonic w.r.t.
(Z -? za E)

on the board]

“w.rH Semantics and Verification of Software Winter Semester 2011/12 8.5

Continuity

A function F is continuous if the order of applying F and taking LUBs can
be reversed:

Definition (Continuity)
Let (D,C) and (D’,C') be CCPOs and F : D — D’ monotonic. Then F is
called continuous (w.r.t. (D,C) and (D', ")) if, for every non-empty

chain S C D,

F (|_| 5) =||F(S):

Let b € BExp, c € Cmd, and ®(f) := cond(B[b], f o €[c],idy). Then ®
is continuous w.r.t. (X --» X, C).

omitted OJ

RWTH Semantics and Verification of Software Winter Semester 2011/12 8.6

The Fixpoint Theorem

Theorem (Fixpoint Theorem by Tarski and Knaster)
Let (D,C) be a CCPO and F : D — D continuous. Then

fix(F) := | | {F" (| |0) | ne N}

is the least fixpoint of F where

FO(d) := d and F"T1(d) := F(F"(d)).

on the board

RWTH Semantics and Verification of Software Winter Semester 2011/12 8.7

Application to

Altogether this completes the definition of €[.]. In particular, for the
while statement we obtain:

Let b € BExp, c € Cmd, and ®(f) := cond(B[b], f o €[c],idx). Then

graph(fix(®)) = _J graph(®"(f)))
neN

Proof.
Using

o Lemma 7.4
o (X --»X,C) CCPO with least element f
e LUB = union of graphs
@ Lemma 7.6 ($ continuous)
@ Theorem 7.7 (Fixpoint Theorem) O

“w.rH Semantics and Verification of Software Winter Semester 2011/12 8.8

© Another Example

“er Semantics and Verification of Software Winter Semester 2011/12

Another Example
Example 8.1

e Domain: (2, C) (CCPO with | |S = Jycs M — see Ex. 6.7)

RWTH Semantics and Verification of Software Winter Semester 2011/12 8.10

Another Example
Example 8.1

e Domain: (2, C) (CCPO with | |S = Jycs M — see Ex. 6.7)

e Function: 2 — 2N - N N U A for some fixed A C N
e F monotonic: MC N = F(M)=MUACNUA=F(N)
o F continuous: F(||S) =F (UyesN) = Upes NUA =
UNes(NUA) = UNeS F(N) = |_|F(5)

RWTH Semantics and Verification of Software Winter Semester 2011/12 8.10

Another Example
Example 8.1

e Domain: (2, C) (CCPO with | |S = Jycs M — see Ex. 6.7)

e Function: 2 — 2N - N N U A for some fixed A C N
e F monotonic: MC N = F(M)=MUACNUA=F(N)
o F continuous: F(||S) =F (UyesN) = Upes NUA =
UNes(NUA) = U/\/es F(N) = |_|F(5)
e Fixpoint iteration: N, := F"(| |0) where | |0 =0

o No=]0=0

o N =F(Np)=0UA=A

o b =F(Ny)=AUA=A=N, forevery n> 1
= fix(F)=A

RWTH Semantics and Verification of Software Winter Semester 2011/12 8.10

Another Example
Example 8.1

e Domain: (2, C) (CCPO with | |S = Jycs M — see Ex. 6.7)

e Function: 2 — 2N - N N U A for some fixed A C N
e F monotonic: MC N = F(M)=MUACNUA=F(N)
o F continuous: F(||S) =F (UyesN) = Upes NUA =

Unes (NUA) = Unes FIN) = LIF(S5)

e Fixpoint iteration: N, := F"(| |0) where | |0 =0
o No=[|0=0
o Ny =F(No)=0UA=A
o b =F(Ny)=AUA=A=N, forevery n> 1

= fix(F) = A
o Alternatively: F(N):=NNA
= fix(F) =10

RWTH Semantics and Verification of Software Winter Semester 2011/12 8.10

© Summary: Denotational Semantics

“er Semantics and Verification of Software Winter Semester 2011/12

Summary: Denotational Semantics

o Semantic model: partial state transformations (X --» X)

“w.rH Semantics and Verification of Software Winter Semester 2011/12

Summary: Denotational Semantics

o Semantic model: partial state transformations (X --» X)
e Compositional definition of functional €[.] : Cmd — (X --» X)

“w.rH Semantics and Verification of Software Winter Semester 2011/12

Summary: Denotational Semantics

o Semantic model: partial state transformations (X --» X)
e Compositional definition of functional €[.] : Cmd — (X --» X)

@ Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

“er Semantics and Verification of Software Winter Semester 2011/12

Summary: Denotational Semantics

Semantic model: partial state transformations (X --» ¥)
Compositional definition of functional €[.] : Cmd — (X --» X)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

@ Approximation by fixpoint iteration

“er Semantics and Verification of Software Winter Semester 2011/12

@ Equivalence of Operational and Denotational Semantics

“er Semantics and Verification of Software Winter Semester 2011/12

Equivalence of Semantics |

Remember: in Def. 4.1, O[.] : Cmd — (X --» X) was given by

Olc](c) =0’ = (c,0) = o

“er Semantics and Verification of Software Winter Semester 2011/12

Equivalence of Semantics |

Remember: in Def. 4.1, O[.] : Cmd — (X --» X) was given by

Olc](c) =0’ = (c,0) = o

Theorem 8.2 (Coincidence Theorem)

For every c € Cmd,
O] = €[],

ie., (c,o) = o iff €c = o', and thus O[.] = €[.].

“er Semantics and Verification of Software Winter Semester 2011/12 8.14

Equivalence of Semantics Il

The proof of Theorem 8.2 employs the following auxiliary propositions:

Lemma 8.3
©Q Foreveryac AExp, 0 € ¥, and z € 7:

(a,0) = z <= Afa]|(0) = z.

Semantics and Verification of Software Winter Semester 2011/12

Equivalence of Semantics Il

The proof of Theorem 8.2 employs the following auxiliary propositions:

Lemma 8.3
©Q Foreveryac AExp, 0 € ¥, and z € 7:

(a,0) » z < A[a](0) = z.

©Q Foreverybe BExp, 0 € 2, and t € B:

(b,o) =t <= Bb](c) = t.

Semantics and Verification of Software Winter Semester 2011/12

Equivalence of Semantics Il

The proof of Theorem 8.2 employs the following auxiliary propositions:

Lemma 8.3
© Foreveryac AExp, o € X, and z € Z:

(a,0) = z <= Afa]|(0) = z.

©Q Foreverybe BExp, 0 € 2, and t € B:

(b,o) =t <= Bb](c) = t.

@ structural induction on a

@ see Exercise 4.2 (structural induction on b)

RWTH Semantics and Verification of Software Winter Semester 2011/12 8.15

Equivalence of Semantics Il

Proof (Theorem 8.2).
We have to show that

(c,0) = o = €c =0

= by structural induction over the derivation tree of (c,c) — o’

< by structural induction over ¢ (with a nested complete
induction over fixpoint index n)

(on the board) O

RWTH Semantics and Verification of Software Winter Semester 2011/12 8.16

Overview: Operational/Denotational Semantics

Definition (3.2; Execution relation for statements)

. (a,0) = z
(Sklp)m (asgn) (x := a,0) = o[x — Z]
(seq) (c1,0) = o’ (c,0") — " (i) (b, o) — true {ci1,0) — o’

(if b then ¢ else ¢,0) — o’

(wh-f)

(c150,0) = o
(b,o) — false (c2,0) — o’ (b,o) — false

(while bdo c,0) = o

(if-f)

(if b then ¢ else ©,0) — o’
(b,a) — true (c,0) — o’ (while b do c,o’) — o”

(wh-t) =
(while b do c,0) = o

Definition (5.3; Denotational semantics of statements)

¢[skip] := ids
Clx := ao := o[x — Aa]o]
Clase] = Ce] o €[a]
C[if b then ¢ else] := cond(B[b], €[ci], €[c])
C[while b do c] := fix(P) where ®(f) := cond(B[b], f o €[c],idx)

RWTH Semantics and Verification of Software Winter Semester 2011/12 8.17

	Repetition: Denotational Semantics of WHILE
	Another Example
	Summary: Denotational Semantics
	Equivalence of Operational and Denotational Semantics

