
Semantics and Verification of Software
Lecture 8: Denotational Semantics of WHILE IV

(Equivalence with Operational Semantics)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/


Outline

1 Repetition: Denotational Semantics of WHILE

2 Another Example

3 Summary: Denotational Semantics

4 Equivalence of Operational and Denotational Semantics

Semantics and Verification of Software Winter Semester 2011/12 8.2



Semantics of Statements

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ 99K Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

Semantics and Verification of Software Winter Semester 2011/12 8.3



Characterization of fix(Φ) II

Goals:

Prove existence of fix(Φ) for Φ(f ) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ 99K Σ: chain-complete partial order

on function Φ: continuity

Semantics and Verification of Software Winter Semester 2011/12 8.4



Monotonicity

Definition (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let F : D → D ′. F is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 =⇒ F (d1) v′ F (d2).

Interpretation: monotonic functions “preserve information”

Lemma

Let b ∈ BExp, c ∈ Cmd, and Φ : (Σ 99K Σ)→ (Σ 99K Σ) with
Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ is monotonic w.r.t.
(Σ 99K Σ,v).

Proof.

on the board
Semantics and Verification of Software Winter Semester 2011/12 8.5



Continuity

A function F is continuous if the order of applying F and taking LUBs can
be reversed:

Definition (Continuity)

Let (D,v) and (D ′,v′) be CCPOs and F : D → D ′ monotonic. Then F is
called continuous (w.r.t. (D,v) and (D ′,v′)) if, for every non-empty
chain S ⊆ D,

F
(⊔

S
)

=
⊔

F (S).

Lemma

Let b ∈ BExp, c ∈ Cmd, and Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ
is continuous w.r.t. (Σ 99K Σ,v).

Proof.

omitted

Semantics and Verification of Software Winter Semester 2011/12 8.6



The Fixpoint Theorem

Theorem (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔{

F n
(⊔
∅
)
| n ∈ N

}
is the least fixpoint of F where

F 0(d) := d and F n+1(d) := F (F n(d)).

Proof.

on the board

Semantics and Verification of Software Winter Semester 2011/12 8.7



Application to fix(Φ)

Altogether this completes the definition of CJ.K. In particular, for the
while statement we obtain:

Corollary

Let b ∈ BExp, c ∈ Cmd, and Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then

graph(fix(Φ)) =
⋃
n∈N

graph(Φn(f∅))

Proof.

Using

Lemma 7.4

(Σ 99K Σ,v) CCPO with least element f∅
LUB = union of graphs

Lemma 7.6 (Φ continuous)
Theorem 7.7 (Fixpoint Theorem)

Semantics and Verification of Software Winter Semester 2011/12 8.8



Outline

1 Repetition: Denotational Semantics of WHILE

2 Another Example

3 Summary: Denotational Semantics

4 Equivalence of Operational and Denotational Semantics

Semantics and Verification of Software Winter Semester 2011/12 8.9



Another Example

Example 8.1

Domain: (2N,⊆) (CCPO with
⊔

S =
⋃

M∈S M – see Ex. 6.7)

Function: 2N → 2N : N 7→ N ∪ A for some fixed A ⊆ N
F monotonic: M ⊆ N =⇒ F (M) = M ∪ A ⊆ N ∪ A = F (N)
F continuous: F (

⊔
S) = F

(⋃
N∈S N

)
=
⋃

N∈S N ∪ A =⋃
N∈S (N ∪ A) =

⋃
N∈S F (N) =

⊔
F (S)

Fixpoint iteration: Nn := F n(
⊔
∅) where

⊔
∅ = ∅

N0 =
⊔
∅ = ∅

N1 = F (N0) = ∅ ∪ A = A
N2 = F (N1) = A ∪ A = A = Nn for every n ≥ 1

⇒ fix(F ) = A

Alternatively: F (N) := N ∩ A
⇒ fix(F ) = ∅

Semantics and Verification of Software Winter Semester 2011/12 8.10



Another Example

Example 8.1

Domain: (2N,⊆) (CCPO with
⊔

S =
⋃

M∈S M – see Ex. 6.7)

Function: 2N → 2N : N 7→ N ∪ A for some fixed A ⊆ N
F monotonic: M ⊆ N =⇒ F (M) = M ∪ A ⊆ N ∪ A = F (N)
F continuous: F (

⊔
S) = F

(⋃
N∈S N

)
=
⋃

N∈S N ∪ A =⋃
N∈S (N ∪ A) =

⋃
N∈S F (N) =

⊔
F (S)

Fixpoint iteration: Nn := F n(
⊔
∅) where

⊔
∅ = ∅

N0 =
⊔
∅ = ∅

N1 = F (N0) = ∅ ∪ A = A
N2 = F (N1) = A ∪ A = A = Nn for every n ≥ 1

⇒ fix(F ) = A

Alternatively: F (N) := N ∩ A
⇒ fix(F ) = ∅

Semantics and Verification of Software Winter Semester 2011/12 8.10



Another Example

Example 8.1

Domain: (2N,⊆) (CCPO with
⊔

S =
⋃

M∈S M – see Ex. 6.7)

Function: 2N → 2N : N 7→ N ∪ A for some fixed A ⊆ N
F monotonic: M ⊆ N =⇒ F (M) = M ∪ A ⊆ N ∪ A = F (N)
F continuous: F (

⊔
S) = F

(⋃
N∈S N

)
=
⋃

N∈S N ∪ A =⋃
N∈S (N ∪ A) =

⋃
N∈S F (N) =

⊔
F (S)

Fixpoint iteration: Nn := F n(
⊔
∅) where

⊔
∅ = ∅

N0 =
⊔
∅ = ∅

N1 = F (N0) = ∅ ∪ A = A
N2 = F (N1) = A ∪ A = A = Nn for every n ≥ 1

⇒ fix(F ) = A

Alternatively: F (N) := N ∩ A
⇒ fix(F ) = ∅

Semantics and Verification of Software Winter Semester 2011/12 8.10



Another Example

Example 8.1

Domain: (2N,⊆) (CCPO with
⊔

S =
⋃

M∈S M – see Ex. 6.7)

Function: 2N → 2N : N 7→ N ∪ A for some fixed A ⊆ N
F monotonic: M ⊆ N =⇒ F (M) = M ∪ A ⊆ N ∪ A = F (N)
F continuous: F (

⊔
S) = F

(⋃
N∈S N

)
=
⋃

N∈S N ∪ A =⋃
N∈S (N ∪ A) =

⋃
N∈S F (N) =

⊔
F (S)

Fixpoint iteration: Nn := F n(
⊔
∅) where

⊔
∅ = ∅

N0 =
⊔
∅ = ∅

N1 = F (N0) = ∅ ∪ A = A
N2 = F (N1) = A ∪ A = A = Nn for every n ≥ 1

⇒ fix(F ) = A

Alternatively: F (N) := N ∩ A
⇒ fix(F ) = ∅

Semantics and Verification of Software Winter Semester 2011/12 8.10



Outline

1 Repetition: Denotational Semantics of WHILE

2 Another Example

3 Summary: Denotational Semantics

4 Equivalence of Operational and Denotational Semantics

Semantics and Verification of Software Winter Semester 2011/12 8.11



Summary: Denotational Semantics

Semantic model: partial state transformations (Σ 99K Σ)

Compositional definition of functional CJ.K : Cmd → (Σ 99K Σ)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Approximation by fixpoint iteration

Semantics and Verification of Software Winter Semester 2011/12 8.12



Summary: Denotational Semantics

Semantic model: partial state transformations (Σ 99K Σ)

Compositional definition of functional CJ.K : Cmd → (Σ 99K Σ)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Approximation by fixpoint iteration

Semantics and Verification of Software Winter Semester 2011/12 8.12



Summary: Denotational Semantics

Semantic model: partial state transformations (Σ 99K Σ)

Compositional definition of functional CJ.K : Cmd → (Σ 99K Σ)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Approximation by fixpoint iteration

Semantics and Verification of Software Winter Semester 2011/12 8.12



Summary: Denotational Semantics

Semantic model: partial state transformations (Σ 99K Σ)

Compositional definition of functional CJ.K : Cmd → (Σ 99K Σ)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Approximation by fixpoint iteration

Semantics and Verification of Software Winter Semester 2011/12 8.12



Outline

1 Repetition: Denotational Semantics of WHILE

2 Another Example

3 Summary: Denotational Semantics

4 Equivalence of Operational and Denotational Semantics

Semantics and Verification of Software Winter Semester 2011/12 8.13



Equivalence of Semantics I

Remember: in Def. 4.1, OJ.K : Cmd → (Σ 99K Σ) was given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Theorem 8.2 (Coincidence Theorem)

For every c ∈ Cmd,
OJcK = CJcK,

i.e., 〈c , σ〉 → σ′ iff CJcK(σ) = σ′, and thus OJ.K = CJ.K.

Semantics and Verification of Software Winter Semester 2011/12 8.14



Equivalence of Semantics I

Remember: in Def. 4.1, OJ.K : Cmd → (Σ 99K Σ) was given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Theorem 8.2 (Coincidence Theorem)

For every c ∈ Cmd,
OJcK = CJcK,

i.e., 〈c , σ〉 → σ′ iff CJcK(σ) = σ′, and thus OJ.K = CJ.K.

Semantics and Verification of Software Winter Semester 2011/12 8.14



Equivalence of Semantics II

The proof of Theorem 8.2 employs the following auxiliary propositions:

Lemma 8.3
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z .

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Proof.
1 structural induction on a

2 see Exercise 4.2 (structural induction on b)

Semantics and Verification of Software Winter Semester 2011/12 8.15



Equivalence of Semantics II

The proof of Theorem 8.2 employs the following auxiliary propositions:

Lemma 8.3
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z .

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Proof.
1 structural induction on a

2 see Exercise 4.2 (structural induction on b)

Semantics and Verification of Software Winter Semester 2011/12 8.15



Equivalence of Semantics II

The proof of Theorem 8.2 employs the following auxiliary propositions:

Lemma 8.3
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z .

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Proof.
1 structural induction on a

2 see Exercise 4.2 (structural induction on b)

Semantics and Verification of Software Winter Semester 2011/12 8.15



Equivalence of Semantics III

Proof (Theorem 8.2).

We have to show that

〈c, σ〉 → σ′ ⇐⇒ CJcK(σ) = σ′

⇒ by structural induction over the derivation tree of 〈c , σ〉 → σ′

⇐ by structural induction over c (with a nested complete
induction over fixpoint index n)

(on the board)

Semantics and Verification of Software Winter Semester 2011/12 8.16



Overview: Operational/Denotational Semantics

Definition (3.2; Execution relation for statements)

(skip)
〈skip, σ〉 → σ

(asgn)
〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]

(seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′ (if-t)
〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′ (wh-f)
〈b, σ〉 → false

〈while b do c, σ〉 → σ

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

Definition (5.3; Denotational semantics of statements)

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ) where Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ)

Semantics and Verification of Software Winter Semester 2011/12 8.17


	Repetition: Denotational Semantics of WHILE
	Another Example
	Summary: Denotational Semantics
	Equivalence of Operational and Denotational Semantics

