
Semantics and Verification of Software
Lecture 9: Axiomatic Semantics of WHILE I

(Introduction)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

2. Dezember 2011
Informatik-Zentrum

Ahornstraße 55
Aula 2 / Foyer

Offizielles Programm
ab 13 Uhr

Ausstellung
ab 11 Uhr After-TDI-Party

ab 19:30 Uhr

Tag der
 Informatik 2011

Outline

1 The Axiomatic Approach

2 The Assertion Language

3 Semantics of Assertions

4 Partial Correctness Properties

5 A Valid Partial Correctness Property

Semantics and Verification of Software Winter Semester 2011/12 9.3

The Axiomatic Approach I

Example 9.1

Let c ∈ Cmd be given by
s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c , σ(s) =
∑σ(N)

k=1 k?

“Running” c according to the operational semantics in insufficient:
every change of σ(N) requires a new proof

Wanted: a more abstract, “symbolic” way of reasoning

Semantics and Verification of Software Winter Semester 2011/12 9.4

The Axiomatic Approach I

Example 9.1

Let c ∈ Cmd be given by
s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c , σ(s) =
∑σ(N)

k=1 k?

“Running” c according to the operational semantics in insufficient:
every change of σ(N) requires a new proof

Wanted: a more abstract, “symbolic” way of reasoning

Semantics and Verification of Software Winter Semester 2011/12 9.4

The Axiomatic Approach I

Example 9.1

Let c ∈ Cmd be given by
s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c , σ(s) =
∑σ(N)

k=1 k?

“Running” c according to the operational semantics in insufficient:
every change of σ(N) requires a new proof

Wanted: a more abstract, “symbolic” way of reasoning

Semantics and Verification of Software Winter Semester 2011/12 9.4

The Axiomatic Approach I

Example 9.1

Let c ∈ Cmd be given by
s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c , σ(s) =
∑σ(N)

k=1 k?

“Running” c according to the operational semantics in insufficient:
every change of σ(N) requires a new proof

Wanted: a more abstract, “symbolic” way of reasoning

Semantics and Verification of Software Winter Semester 2011/12 9.4

The Axiomatic Approach II

Example 9.1 (continued)

Obviously c satisfies the following assertions (after execution of the
respective statement):

s:=0;
{s = 0}
n:=1;
{s = 0 ∧ n = 1}
while ¬(n>N) do (s:=s+n; n:=n+1)

{s =
∑N

k=1 k ∧ n > N}

where, e.g., “s = 0” means “σ(s) = 0 in the current state σ ∈ Σ”

Semantics and Verification of Software Winter Semester 2011/12 9.5

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?
Answer: after every loop iteration, the invariant s =

∑n−1
k=1 k is

satisfied
Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd
Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate
In particular,

{true} while true do skip {false}
is a valid property

Semantics and Verification of Software Winter Semester 2011/12 9.6

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?
Answer: after every loop iteration, the invariant s =

∑n−1
k=1 k is

satisfied
Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd
Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate
In particular,

{true} while true do skip {false}
is a valid property

Semantics and Verification of Software Winter Semester 2011/12 9.6

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s =
∑n−1

k=1 k is
satisfied
Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd
Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate
In particular,

{true} while true do skip {false}
is a valid property

Semantics and Verification of Software Winter Semester 2011/12 9.6

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?
Answer: after every loop iteration, the invariant s =

∑n−1
k=1 k is

satisfied

Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd
Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate
In particular,

{true} while true do skip {false}
is a valid property

Semantics and Verification of Software Winter Semester 2011/12 9.6

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?
Answer: after every loop iteration, the invariant s =

∑n−1
k=1 k is

satisfied
Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd

Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate
In particular,

{true} while true do skip {false}
is a valid property

Semantics and Verification of Software Winter Semester 2011/12 9.6

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?
Answer: after every loop iteration, the invariant s =

∑n−1
k=1 k is

satisfied
Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd
Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate
In particular,

{true} while true do skip {false}
is a valid property

Semantics and Verification of Software Winter Semester 2011/12 9.6

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?
Answer: after every loop iteration, the invariant s =

∑n−1
k=1 k is

satisfied
Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd
Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate

In particular,
{true} while true do skip {false}

is a valid property

Semantics and Verification of Software Winter Semester 2011/12 9.6

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)
Also, “n > N” follows directly from the loop’s execution condition
But how to obtain the final value of s?
Answer: after every loop iteration, the invariant s =

∑n−1
k=1 k is

satisfied
Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd
Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate
In particular,

{true} while true do skip {false}
is a valid property

Semantics and Verification of Software Winter Semester 2011/12 9.6

Outline

1 The Axiomatic Approach

2 The Assertion Language

3 Semantics of Assertions

4 Partial Correctness Properties

5 A Valid Partial Correctness Property

Semantics and Verification of Software Winter Semester 2011/12 9.7

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable(s)
Logical variables LVar i

Arithmetic expressions
with log. var. LExp a

Assertions Assn A,B,C

Semantics and Verification of Software Winter Semester 2011/12 9.8

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable(s)
Logical variables LVar i

Arithmetic expressions
with log. var. LExp a

Assertions Assn A,B,C

Semantics and Verification of Software Winter Semester 2011/12 9.8

Syntax of Assertion Language II

Definition 9.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i .A ∈ Assn

Abbreviations:
A1 =⇒ A2 := ¬A1 ∨ A2

∃i .A := ¬(∀i .¬A)
a1 ≥ a2 := a1>a2 ∨ a1=a2

...

Semantics and Verification of Software Winter Semester 2011/12 9.9

Syntax of Assertion Language II

Definition 9.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i .A ∈ Assn

Abbreviations:
A1 =⇒ A2 := ¬A1 ∨ A2

∃i .A := ¬(∀i .¬A)
a1 ≥ a2 := a1>a2 ∨ a1=a2

...

Semantics and Verification of Software Winter Semester 2011/12 9.9

Outline

1 The Axiomatic Approach

2 The Assertion Language

3 Semantics of Assertions

4 Partial Correctness Properties

5 A Valid Partial Correctness Property

Semantics and Verification of Software Winter Semester 2011/12 9.10

Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition 9.3 (Semantics of LExp)

An interpretation is an element of the set
Int := {I | I : LVar → Z}.

The value of an arithmetic expressions with logical variables is given by the
functional

LJ.K : LExp → (Int → (Σ→ Z))
where

LJzKIσ := z LJa1+a2KIσ := LJa1KIσ + LJa2KIσ
LJxKIσ := σ(x) LJa1-a2KIσ := LJa1KIσ − LJa2KIσ
LJiKIσ := I (i) LJa1*a2KIσ := LJa1KIσ ∗ LJa2KIσ

Def. 5.1 (denotational semantics of arithmetic expressions) implies:

Corollary 9.4

For every a ∈ AExp (without logical variables), I ∈ Int, and σ ∈ Σ:
LJaKIσ = AJaKσ.

Semantics and Verification of Software Winter Semester 2011/12 9.11

Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition 9.3 (Semantics of LExp)

An interpretation is an element of the set
Int := {I | I : LVar → Z}.

The value of an arithmetic expressions with logical variables is given by the
functional

LJ.K : LExp → (Int → (Σ→ Z))
where

LJzKIσ := z LJa1+a2KIσ := LJa1KIσ + LJa2KIσ
LJxKIσ := σ(x) LJa1-a2KIσ := LJa1KIσ − LJa2KIσ
LJiKIσ := I (i) LJa1*a2KIσ := LJa1KIσ ∗ LJa2KIσ

Def. 5.1 (denotational semantics of arithmetic expressions) implies:

Corollary 9.4

For every a ∈ AExp (without logical variables), I ∈ Int, and σ ∈ Σ:
LJaKIσ = AJaKσ.

Semantics and Verification of Software Winter Semester 2011/12 9.11

Semantics of Assertions I

Formalized by a satisfaction relation of the form

σ |= A

(where σ ∈ Σ and A ∈ Assn)

Non-terminating computations captured by undefined state ⊥:

Σ⊥ := Σ ∪ {⊥}

Modification of interpretations (in analogy to program states):

I [i 7→ z](j) :=

{
z if j = i
I (j) otherwise

Semantics and Verification of Software Winter Semester 2011/12 9.12

Semantics of Assertions I

Formalized by a satisfaction relation of the form

σ |= A

(where σ ∈ Σ and A ∈ Assn)

Non-terminating computations captured by undefined state ⊥:

Σ⊥ := Σ ∪ {⊥}

Modification of interpretations (in analogy to program states):

I [i 7→ z](j) :=

{
z if j = i
I (j) otherwise

Semantics and Verification of Software Winter Semester 2011/12 9.12

Semantics of Assertions I

Formalized by a satisfaction relation of the form

σ |= A

(where σ ∈ Σ and A ∈ Assn)

Non-terminating computations captured by undefined state ⊥:

Σ⊥ := Σ ∪ {⊥}

Modification of interpretations (in analogy to program states):

I [i 7→ z](j) :=

{
z if j = i
I (j) otherwise

Semantics and Verification of Software Winter Semester 2011/12 9.12

Semantics of Assertions II

Reminder: A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i .A ∈ Assn

Definition 9.5 (Semantics of assertions)

Let A ∈ Assn, σ ∈ Σ⊥, and I ∈ Int. The relation “σ satisfies A in I”
(notation: σ |=I A) is inductively defined by:

σ |=I true
σ |=I a1=a2 if LJa1KIσ = LJa2KIσ
σ |=I a1>a2 if LJa1KIσ > LJa2KIσ
σ |=I ¬A if not σ |=I A
σ |=I A1 ∧ A2 if σ |=I A1 and σ |=I A2

σ |=I A1 ∨ A2 if σ |=I A1 or σ |=I A2

σ |=I ∀i .A if σ |=I [i 7→z] A for every z ∈ Z
⊥ |=I A

Furthermore σ satisfies A (σ |= A) if σ |=I A for every interpretation
I ∈ Int, and A is called valid (|= A) if σ |= A for every state σ ∈ Σ.

Semantics and Verification of Software Winter Semester 2011/12 9.13

Semantics of Assertions III

Example 9.6

The following assertion expresses that, in the current state σ ∈ Σ, σ(y) is
the greatest divisor of σ(x):

(∃i .i > 1 ∧ i*y = x) ∧ ∀j .∀k .(j > 1 ∧ j*k = x =⇒ k ≤ y)

In analogy to Corollary 9.4, Def. 5.2 (denotational semantics of Boolean
expressions) yields:

Corollary 9.7

For every b ∈ BExp (without logical variables), I ∈ Int, and σ ∈ Σ:

σ |=I b ⇐⇒ BJbKσ = true.

Semantics and Verification of Software Winter Semester 2011/12 9.14

Semantics of Assertions III

Example 9.6

The following assertion expresses that, in the current state σ ∈ Σ, σ(y) is
the greatest divisor of σ(x):

(∃i .i > 1 ∧ i*y = x) ∧ ∀j .∀k .(j > 1 ∧ j*k = x =⇒ k ≤ y)

In analogy to Corollary 9.4, Def. 5.2 (denotational semantics of Boolean
expressions) yields:

Corollary 9.7

For every b ∈ BExp (without logical variables), I ∈ Int, and σ ∈ Σ:

σ |=I b ⇐⇒ BJbKσ = true.

Semantics and Verification of Software Winter Semester 2011/12 9.14

Semantics of Assertions IV

Definition 9.8 (Extension)

Let A ∈ Assn and I ∈ Int. The extension of A with respect to I is given by

AI := {σ ∈ Σ⊥ | σ |=I A}.

Note that, for every A ∈ Assn and I ∈ Int, ⊥ ∈ AI .

Example 9.9

For A := (∃i .i*i = x) and every I ∈ Int,

AI = {⊥} ∪ {σ ∈ Σ | σ(x) ∈ {0, 1, 4, 9, . . .}}

Semantics and Verification of Software Winter Semester 2011/12 9.15

Semantics of Assertions IV

Definition 9.8 (Extension)

Let A ∈ Assn and I ∈ Int. The extension of A with respect to I is given by

AI := {σ ∈ Σ⊥ | σ |=I A}.

Note that, for every A ∈ Assn and I ∈ Int, ⊥ ∈ AI .

Example 9.9

For A := (∃i .i*i = x) and every I ∈ Int,

AI = {⊥} ∪ {σ ∈ Σ | σ(x) ∈ {0, 1, 4, 9, . . .}}

Semantics and Verification of Software Winter Semester 2011/12 9.15

Outline

1 The Axiomatic Approach

2 The Assertion Language

3 Semantics of Assertions

4 Partial Correctness Properties

5 A Valid Partial Correctness Property

Semantics and Verification of Software Winter Semester 2011/12 9.16

Partial Correctness Properties

Definition 9.10 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int, we let

σ |=I {A} c {B}

if σ |=I A implies CJcKσ |=I B
(or equivalently: σ ∈ AI =⇒ CJcKσ ∈ B I).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ B I).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int.

Semantics and Verification of Software Winter Semester 2011/12 9.17

Partial Correctness Properties

Definition 9.10 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int, we let

σ |=I {A} c {B}

if σ |=I A implies CJcKσ |=I B
(or equivalently: σ ∈ AI =⇒ CJcKσ ∈ B I).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ B I).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int.

Semantics and Verification of Software Winter Semester 2011/12 9.17

Partial Correctness Properties

Definition 9.10 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int, we let

σ |=I {A} c {B}

if σ |=I A implies CJcKσ |=I B
(or equivalently: σ ∈ AI =⇒ CJcKσ ∈ B I).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ B I).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int.

Semantics and Verification of Software Winter Semester 2011/12 9.17

Partial Correctness Properties

Definition 9.10 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int, we let

σ |=I {A} c {B}

if σ |=I A implies CJcKσ |=I B
(or equivalently: σ ∈ AI =⇒ CJcKσ ∈ B I).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ B I).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int.

Semantics and Verification of Software Winter Semester 2011/12 9.17

Outline

1 The Axiomatic Approach

2 The Assertion Language

3 Semantics of Assertions

4 Partial Correctness Properties

5 A Valid Partial Correctness Property

Semantics and Verification of Software Winter Semester 2011/12 9.18

A Valid Partial Correctness Property

Example 9.11

Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

According to Def. 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:
σ |=I (i ≤ x)

=⇒ LJiKIσ ≤ LJxKIσ (Def. 9.5)
=⇒ I (i) ≤ σ(x) (Def. 9.3)
=⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
=⇒ CJx := x+1Kσ |=I (i < x)
=⇒ claim

Semantics and Verification of Software Winter Semester 2011/12 9.19

A Valid Partial Correctness Property

Example 9.11

Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

According to Def. 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:
σ |=I (i ≤ x)

=⇒ LJiKIσ ≤ LJxKIσ (Def. 9.5)
=⇒ I (i) ≤ σ(x) (Def. 9.3)
=⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
=⇒ CJx := x+1Kσ |=I (i < x)
=⇒ claim

Semantics and Verification of Software Winter Semester 2011/12 9.19

A Valid Partial Correctness Property

Example 9.11

Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

According to Def. 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:
σ |=I (i ≤ x)

=⇒ LJiKIσ ≤ LJxKIσ (Def. 9.5)
=⇒ I (i) ≤ σ(x) (Def. 9.3)
=⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
=⇒ CJx := x+1Kσ |=I (i < x)
=⇒ claim

Semantics and Verification of Software Winter Semester 2011/12 9.19

A Valid Partial Correctness Property

Example 9.11

Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

According to Def. 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:
σ |=I (i ≤ x)

=⇒ LJiKIσ ≤ LJxKIσ (Def. 9.5)

=⇒ I (i) ≤ σ(x) (Def. 9.3)
=⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
=⇒ CJx := x+1Kσ |=I (i < x)
=⇒ claim

Semantics and Verification of Software Winter Semester 2011/12 9.19

A Valid Partial Correctness Property

Example 9.11

Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

According to Def. 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:
σ |=I (i ≤ x)

=⇒ LJiKIσ ≤ LJxKIσ (Def. 9.5)
=⇒ I (i) ≤ σ(x) (Def. 9.3)

=⇒ I (i) < σ(x) + 1
= (CJx := x+1Kσ)(x)

=⇒ CJx := x+1Kσ |=I (i < x)
=⇒ claim

Semantics and Verification of Software Winter Semester 2011/12 9.19

A Valid Partial Correctness Property

Example 9.11

Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

According to Def. 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:
σ |=I (i ≤ x)

=⇒ LJiKIσ ≤ LJxKIσ (Def. 9.5)
=⇒ I (i) ≤ σ(x) (Def. 9.3)
=⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)

=⇒ CJx := x+1Kσ |=I (i < x)
=⇒ claim

Semantics and Verification of Software Winter Semester 2011/12 9.19

A Valid Partial Correctness Property

Example 9.11

Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

According to Def. 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:
σ |=I (i ≤ x)

=⇒ LJiKIσ ≤ LJxKIσ (Def. 9.5)
=⇒ I (i) ≤ σ(x) (Def. 9.3)
=⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
=⇒ CJx := x+1Kσ |=I (i < x)

=⇒ claim

Semantics and Verification of Software Winter Semester 2011/12 9.19

A Valid Partial Correctness Property

Example 9.11

Let x ∈ Var and i ∈ LVar . We have to show:
|= {i ≤ x} x := x+1 {i < x}

According to Def. 9.10, this is equivalent to
σ |=I {i ≤ x} x := x+1 {i < x}

for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:
σ |=I (i ≤ x)

=⇒ LJiKIσ ≤ LJxKIσ (Def. 9.5)
=⇒ I (i) ≤ σ(x) (Def. 9.3)
=⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
=⇒ CJx := x+1Kσ |=I (i < x)
=⇒ claim

Semantics and Verification of Software Winter Semester 2011/12 9.19

	The Axiomatic Approach
	The Assertion Language
	Semantics of Assertions
	Partial Correctness Properties
	A Valid Partial Correctness Property

