Semantics and Verification of Software

Lecture 9: Axiomatic Semantics of WHILE |
(Introduction)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svswill/

Winter Semester 2011/12

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw11/

2. Dezember 2011
Informatik-Zentrum
Ahornstralle 55
Aula 2 / Foyer

Tag der

2011

./ Offizielles Programm \

ab 13 Uhr .
:ll)j Sﬁeg;:g After-TDI-Party
ab 19:30 Uhr

@ The Axiomatic Approach

“er Semantics and Verification of Software Winter Semester 2011/12

The Axiomatic Approach |

Example 9.1

o Let c € Cmd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

“er Semantics and Verification of Software Winter Semester 2011/12 9.4

The Axiomatic Approach |

Example 9.1

o Let c € Cmd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

@ How to show that, after termination of ¢, o(s) = ZZ(ZNI) k?

“er Semantics and Verification of Software Winter Semester 2011/12 9.4

The Axiomatic Approach |

Example 9.1

o Let c € Cmd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

@ How to show that, after termination of ¢, o(s) = ZZ(ZNI) k?

@ “Running” ¢ according to the operational semantics in insufficient:
every change of o(N) requires a new proof

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.4

The Axiomatic Approach |

Example 9.1

o Let c € Cmd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

@ How to show that, after termination of ¢, o(s) = ZZ(ZNI) k?

@ “Running” ¢ according to the operational semantics in insufficient:
every change of o(N) requires a new proof

@ Wanted: a more abstract, “symbolic” way of reasoning

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.4

The Axiomatic Approach Il

Example 9.1 (continued)

Obviously ¢ satisfies the following assertions (after execution of the
respective statement):

s:=0;

{s=0}

n:=1;

{s=0An=1}

while —(n>N) do (s:=s+n; n:=n+1)

{s=3" kAn>N}

where, e.g., “s = 0" means “o(s) = 0 in the current state o0 € ¥"

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.5

The Axiomatic Approach Il

How to prove the validity of assertions?
@ Assertions following assignments are evident (“s = 0")

“er Semantics and Verification of Software Winter Semester 2011/12

The Axiomatic Approach Il

How to prove the validity of assertions?
@ Assertions following assignments are evident (“s = 0")
@ Also, “n > N" follows directly from the loop’s execution condition

“er Semantics and Verification of Software Winter Semester 2011/12

The Axiomatic Approach Il

How to prove the validity of assertions?
@ Assertions following assignments are evident (“s = 0")
@ Also, “n > N" follows directly from the loop’s execution condition
@ But how to obtain the final value of s?

“er Semantics and Verification of Software Winter Semester 2011/12

The Axiomatic Approach Il

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0")

Also, “n > N" follows directly from the loop's execution condition
But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = 22;11 k is
satisfied

“er Semantics and Verification of Software Winter Semester 2011/12

The Axiomatic Approach Il

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0")

Also, “n > N" follows directly from the loop's execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s = 22;11 k is

satisfied

@ Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A, B and ¢ € Cmd

“er Semantics and Verification of Software Winter Semester 2011/12

The Axiomatic Approach Il

How to prove the validity of assertions?

@ Assertions following assignments are evident (“s = 0")

@ Also, “n > N" follows directly from the loop’s execution condition

@ But how to obtain the final value of s?

@ Answer: after every loop iteration, the invariant s = 22;11 k is
satisfied

@ Corresponding proof system employs partial correctness properties of

the form {A} c {B} with assertions A, B and ¢ € Cmd
@ Interpretation:

Validity of partial correctness property

{A} c{B} is valid iff for all states o € ¥ which satisfy A:
if the execution of ¢ in o terminates in o’ € ¥, then o’ satisfies B.

“er Semantics and Verification of Software Winter Semester 2011/12 9.6

The Axiomatic Approach Il

How to prove the validity of assertions?

@ Assertions following assignments are evident (“s = 0")

@ Also, “n > N" follows directly from the loop’s execution condition

@ But how to obtain the final value of s?

@ Answer: after every loop iteration, the invariant s = 22;11 k is
satisfied

@ Corresponding proof system employs partial correctness properties of

the form {A} c {B} with assertions A, B and ¢ € Cmd
@ Interpretation:

Validity of partial correctness property

{A} c{B} is valid iff for all states o € ¥ which satisfy A:
if the execution of ¢ in o terminates in o’ € ¥, then o’ satisfies B.

@ “Partial” means that nothing is said about c if it fails to terminate

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.6

The Axiomatic Approach Il

How to prove the validity of assertions?

@ Assertions following assignments are evident (“s = 0")

@ Also, “n > N" follows directly from the loop’s execution condition

@ But how to obtain the final value of s?

@ Answer: after every loop iteration, the invariant s = 22;11 k is
satisfied

@ Corresponding proof system employs partial correctness properties of

the form {A} c {B} with assertions A, B and ¢ € Cmd
@ Interpretation:

Validity of partial correctness property

{A} c{B} is valid iff for all states o € ¥ which satisfy A:
if the execution of ¢ in o terminates in o’ € ¥, then o’ satisfies B.

@ “Partial” means that nothing is said about c if it fails to terminate
@ In particular,
{true} while true do skip {false}
is a valid property
R\NTH Semantics and Verification of Software Winter Semester 2011/12 9.6

© The Assertion Language

“er Semantics and Verification of Software Winter Semester 2011/12

Syntax of Assertion Language |

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

“er Semantics and Verification of Software Winter Semester 2011/12

Syntax of Assertion Language |

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable(s)
Logical variables LVar i
Arithmetic expressions
with log. var. LExp a
Assertions Assn A B, C

“er Semantics and Verification of Software Winter Semester 2011/12

Syntax of Assertion Language ||

Definition 9.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

an=2z|x|i|ai+ax|ai-ax | aixax € LExp
A=t | ai=ap ‘ ai>as | —A | A1 A As | A1V As |Vi.A € Assn

“er Semantics and Verification of Software Winter Semester 2011/12 9.9

Syntax of Assertion Language ||

Definition 9.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

an=2z|x|i|ai+ax|ai-ax | aixax € LExp
A=t | ai=ap ‘ ai>as | —A | A1 A As | A1V As |Vi.A € Assn

Abbreviations:
Al — A=A VA
3i.A = —(VinA)
a; > ap = ar>ax V ai;=ar

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.9

© Semantics of Assertions

“er Semantics and Verification of Software Winter Semester 2011/12

The semantics now additionally depends on values of logical variables:

Definition 9.3 (Semantics of)

An interpretation is an element of the set
Int :={l|1:LVar — Z}.
The value of an arithmetic expressions with logical variables is given by the

functional
L[.]: LExp — (Int — (X — Z))

R Slar+ar]lo = L[an]lo + L[as]lo
£[[X]]/J = J(X) 2[[31—32]]/0 = 2[[31]]/0 — 2[[32]]/0
Llille = 1(i) Llai*az]lo = Llai]lo = L[az]lo

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.11

The semantics now additionally depends on values of logical variables:

Definition 9.3 (Semantics of)
An interpretation is an element of the set

Int :={l|I: LVar — Z}.
The value of an arithmetic expressions with logical variables is given by the
functional

L[] : LExp — (Int — (X — Z))

R Slar+ar]lo = L[an]lo + L[as]lo
s[[X]]/J = J(X) 2[[31—32]]/0 = Sl[[al]]la — 2[[32]]/0’
Llille = 1(i) Llai*az]lo = Llai]lo = L[az]lo

Def. 5.1 (denotational semantics of arithmetic expressions) implies:

Corollary 9.4

For every a € AExp (without logical variables), | € Int, and o € ¥.:
Lla]lo = Afa]o.

“w.rH Semantics and Verification of Software Winter Semester 2011/12 9.11

Semantics of Assertions |

o Formalized by a satisfaction relation of the form

oA

(where 0 € ¥ and A € Assn)

“er Semantics and Verification of Software Winter Semester 2011/12

Semantics of Assertions |

o Formalized by a satisfaction relation of the form

oA

(where 0 € ¥ and A € Assn)

@ Non-terminating computations captured by undefined state 1:

> :ZZU{J_}

“er Semantics and Verification of Software Winter Semester 2011/12

Semantics of Assertions |

o Formalized by a satisfaction relation of the form

oA

(where 0 € ¥ and A € Assn)

@ Non-terminating computations captured by undefined state 1:

> :ZZU{J_}

e Modification of interpretations (in analogy to program states):

Ii = 2](j) == {/(j) ot{'nerwise

“er Semantics and Verification of Software Winter Semester 2011/12

Semantics of Assertions |l

Reminder: A ::=t|aj=ay | a1>ax | "A| AL AN Ay | ALV Ay | Vi.A € Assn

Definition 9.5 (Semantics of assertions)

Let A€ Assn, 0 € ¥ |, and | € Int. The relation “o satisfies A in ["
(notation: o =/ A) is inductively defined by:

o =/ true

o):I di=az if 2[[31]]/0‘ = S[[az]]la

o =l ap>ap if £[a1]lo > Llao]lo

o= -A ifnot o =/ A

o }:I AiLNAy ifo }:I A1 and o):I A>

o= AIVA, ifolE Aloro = A

o E'Vi.A if o =12 A for every z € Z

LEA
Furthermore o satisfies A (o |= A) if o |=! A for every interpretation
| € Int, and A is called valid (= A) if o |= A for every state o € ¥.

v

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.13

Semantics of Assertions |1l
Example 9.6

The following assertion expresses that, in the current state o € ¥, o(y) is
the greatest divisor of o(x):

(Fiii > 1ANixy =x)AVjVk.(j>1Njxk=x = k<y)

“er Semantics and Verification of Software Winter Semester 2011/12 9.14

Semantics of Assertions |1l
Example 9.6

The following assertion expresses that, in the current state o € ¥, o(y) is
the greatest divisor of o(x):

(Fiii > 1ANixy =x)AVjVk.(j>1Njxk=x = k<y)

In analogy to Corollary 9.4, Def. 5.2 (denotational semantics of Boolean
expressions) yields:

Corollary 9.7

For every b € BExp (without logical variables), | € Int, and o € ¥.:

o ='b = B[bJo = true.

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.14

Semantics of Assertions IV

Definition 9.8 (Extension)
Let A € Assn and | € Int. The extension of A with respect to / is given by

Al.={ocex, |0k A}

Note that, for every A € Assn and | € Int, L € A’

“er Semantics and Verification of Software Winter Semester 2011/12

Semantics of Assertions IV

Definition 9.8 (Extension)
Let A € Assn and | € Int. The extension of A with respect to / is given by

Al.={ocex, |0k A}

Note that, for every A € Assn and | € Int, L € A’

Example 9.9

For A := (3i.i*i = x) and every | € Int,

Al={1}U{oeX|0o(x)€{0,1,4,9,...}}

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.15

@ Partial Correctness Properties

“er Semantics and Verification of Software Winter Semester 2011/12

Partial Correctness Properties

Definition 9.10 (Partial correctness properties)
Let A, B € Assn and c € Cmd.

@ An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.17

Partial Correctness Properties

Definition 9.10 (Partial correctness properties)
Let A, B € Assn and c € Cmd.

@ An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

@ Given o € ¥ | and | € Int, we let

o ' {A}c{B}

if o = A implies ¢[c]o ! B
(or equivalently: o € A/ = ¢[c]o € B).

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.17

Partial Correctness Properties

Definition 9.10 (Partial correctness properties)
Let A, B € Assn and c € Cmd.

@ An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

@ Given o € ¥ | and | € Int, we let

o ' {A}c{B}

if o = A implies ¢[c]o ! B
(or equivalently: o € A/ = ¢[c]o € B).
o {A} c{B} is called valid in | (notation: =/ {A} c{B}) if
o = {A} c{B} for every 0 € ¥ (or equivalently: €[c]A’ C B').

“w.rH Semantics and Verification of Software Winter Semester 2011/12 9.17

Partial Correctness Properties

Definition 9.10 (Partial correctness properties)
Let A, B € Assn and c € Cmd.

@ An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

@ Given o € ¥ | and | € Int, we let

o ' {A}c{B}

if o = A implies ¢[c]o ! B
(or equivalently: o € A/ = ¢[c]o € B).
o {A} c{B} is called valid in | (notation: =/ {A} c{B}) if
o = {A} c{B} for every 0 € ¥ (or equivalently: €[c]A’ C B').
o {A} c{B} is called valid (notation: |= {A} c{B}) if £/ {A} c{B}
for every | € Int.

“w.rH Semantics and Verification of Software Winter Semester 2011/12 9.17

© A Valid Partial Correctness Property

“er Semantics and Verification of Software Winter Semester 2011/12

A Valid Partial Correctness Property

@ Let x € Var and i € LVar. We have to show:
E{i<x}x := x+1{i <x}

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.19

A Valid Partial Correctness Property

@ Let x € Var and i € LVar. We have to show:
E{i<x}x := x+1{i <x}
@ According to Def. 9.10, this is equivalent to
o' {i<x}x := x+1{i <x}
for every 0 € ¥ and I € Int

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.19

A Valid Partial Correctness Property

@ Let x € Var and j € LVar. We have to show:
E{i<x}x := x+1{i <x}
@ According to Def. 9.10, this is equivalent to
o' {i<x}x := x+1{i <x}
for every 0 € ¥ and I € Int
@ For 0 = | this is trivial. So let o € X:

o E (i <)

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.19

A Valid Partial Correctness Property

@ Let x € Var and j € LVar. We have to show:
E{i<x}x := x+1{i <x}
@ According to Def. 9.10, this is equivalent to
o' {i<x}x := x+1{i <x}
for every 0 € ¥ and I € Int
@ For 0 = | this is trivial. So let o € X:

o).:l (i <x)
= L[i]lo < L£[x]loc (Def. 9.5)

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.19

A Valid Partial Correctness Property

@ Let x € Var and j € LVar. We have to show:
E{i<x}x := x+1{i <x}
@ According to Def. 9.10, this is equivalent to
o' {i<x}x := x+1{i <x}
for every 0 € ¥ and I € Int
@ For 0 = | this is trivial. So let o € X:

o).:l (i <x)
= L[i]lo < L£[x]loc (Def. 9.5)
= (i) < o(x) (Def.9.3)

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.19

A Valid Partial Correctness Property

@ Let x € Var and j € LVar. We have to show:
E{i<x}x := x+1{i <x}
@ According to Def. 9.10, this is equivalent to
o' {i<x}x := x+1{i <x}
for every 0 € ¥ and I € Int
@ For 0 = | this is trivial. So let o € X:

o= (i <x)
= L[i]lo < L£[x]loc (Def. 9.5)
= (i) < o(x) (Def.9.3)
= I(i) <o(x)+1
= (Cfx := x+1]o)(x)

-
—~

~—

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.19

A Valid Partial Correctness Property

Example 9.11

@ Let x € Var and i € LVar. We have to show:
E{i<x}x := x+1{i <x}
@ According to Def. 9.10, this is equivalent to
o' {i<x}x := x+1{i <x}
for every 0 € ¥ and I € Int

@ For 0 = L this is trivial. So let o € ¥:

o=l (i <x)
Llille < L[x]lo (Def. 9.5)
1(i) < o(x) (Def.9.3)
(i) < o(x)+1
Clx := x+1]o)(x)
Clx := x+1]o =/ (i < %)

—~

—

A

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.19

A Valid Partial Correctness Property

@ Let x € Var and j € LVar. We have to show:
E{i<x}x := x+1{i <x}
@ According to Def. 9.10, this is equivalent to
o' {i<x}x := x+1{i <x}
for every 0 € ¥ and I € Int
@ For o = L this is trivial. So Ie;c oEY:

o= (i <x)

Llille < L[x]lo (Def. 9.5)
1(i) < o(x) (Def.9.3)

1(i) < o(x)+1

Clx := x+1]o)(x)
Cx := x+i]o E (i <x)
claim

—~

—

e

RWTH Semantics and Verification of Software Winter Semester 2011/12 9.19

	The Axiomatic Approach
	The Assertion Language
	Semantics of Assertions
	Partial Correctness Properties
	A Valid Partial Correctness Property

