

Please hand in your solutions in groups of two or three students. Your solutions will not be corrected otherwise.

Exercise 1 (CCPOs and Continuity): **(1+1+1 Points)**

Show that the following propositions hold:

1. If (D_1, \leq) and (D_2, \leq) are ccpos, then the cartesian product $(D_1 \times D_2, \dot{\leq})$ is a ccpo, where $(x, y) \dot{\leq} (x', y')$ iff. $x \leq x'$ and $y \leq y'$.
2. The identity function id_D on a cpo D is continuous.
3. Let $f : D \rightarrow E$ and $g : E \rightarrow F$ be continuous functions on cpos D, E, F . Then their composition $g \circ f : D \rightarrow F$ is continuous.

Exercise 2 (Operational and denotational equivalence): **(3 Points)**

We want to prove that the operational semantics and denotational semantics of the *WHILE* language are equivalent. Assume that we have already shown that the operational and the denotational semantics of boolean expressions and arithmetic expressions in the *WHILE* language coincide. Show that the operational and the denotational semantics of commands coincide, i.e. for every $c \in Cmd$:

$$\mathfrak{O}[c] = \mathfrak{C}[c].$$

Exercise 3 (Three-Valued Denotation Semantics): **(1+1+2 Points)**

Define a three-valued denotational semantics for the *WHILE* language as follows:

1. Assume that at the beginning of a program evaluation, all variables have unknown values. To model this, extend the variable domain by \perp , and let σ_\perp with $\sigma(x) = \perp$ for all $x \in \mathbf{Var}$ be the initial state of all programs. Define $\mathfrak{A}[\cdot]$ in analogy to Definition 5.1 and evaluate $x - x$ and $0 * x$ for σ_\perp .
2. In addition to true and false, a third truth-value ? is needed to express uncertainty about the result of a boolean expression, i.e. $x > 0$ may hold or not, depending on how x is initialized, and thus it should evaluate to ? . Define $\mathfrak{B}[\cdot]$ in analogy to Definition 5.2 and evaluate $x < y \vee \text{true}$ for σ_\perp .
3. Define **cond** such that common evaluation results are preserved in case of an indefinite evaluation of the boolean expression. Evaluate $\mathfrak{cond}(\text{?, } \mathfrak{C}[x := 2; y := 6; z := x * y], \mathfrak{C}[x := 4; y := 3; z := x * y])$ for σ_\perp .