

Exercise 1 (Assertions):

(1+1 Points)

a) Give an assertion $A \in \text{Assn}$ with logical variables $i, j, k \in LVar$, expressing that k is the greatest common divisor of i and j , i.e. $k = \text{gcd}(i, j)$.

b) Goldbach's conjecture states that every even $n \in \mathbb{N}$ can be expressed as the sum of two primes p_1 and p_2 . Such a pair of primes is called a *Goldbach partition* of n . Give the partial correctness property of a program P that computes the Goldbach partition of any given even natural number.
 Why would the existence of such a program P , i.e. a program that satisfies this partial correctness property, not prove Goldbach's conjecture?

Exercise 2 (Greatest Common Divisor):

(3+4 Points)

a) Show that the *greatest common divisor* of two positive integers $i, j \in \mathbb{Z}$, denoted by $\text{gcd}(i, j)$, has the following properties:

- $i > j \Rightarrow \text{gcd}(i, j) = \text{gcd}(i - j, j)$,
- $\text{gcd}(i, j) = \text{gcd}(j, i)$, and
- $\text{gcd}(i, i) = i$.

b) Using the Hoare rules, prove that the statement $c \in \text{Cmd}$ given by

while $\neg(x = y)$ **do** **if** $x \leq y$ **then** $y := y - x$ **else** $x := x - y$,

satisfies the following partial correctness property:

$$\{x = i \wedge y = j \wedge i \geq 1 \wedge j \geq 1\} \ c \ \{x = \text{gcd}(x, y) = \text{gcd}(i, j)\}.$$

Exercise 3 (Repeat . . . Until):

(1+3 Points)

a) Develop a proof rule for statements of the form **repeat** c **until** b where $c \in \text{Cmd}$ and $b \in \text{BExp}$ (without assuming the presence of a **while** statement in the programming language).

b) Using this rule (and the known proof system), establish the validity of the following partial correctness property:

$$\{y \geq 0\} z := 0; x := 0; \text{repeat } z := z + x; x := x + 1 \text{ until } x > y \left\{ z = \frac{y(y+1)}{2} \right\}$$