

Exercise 1 (Axiomatic Equivalence):

(4 Points)

Establish the following axiomatic equivalence without using the equivalence of axiomatic and operational/denotational semantics:

$$\mathbf{repeat} \ c \ \mathbf{until} \ b \quad \equiv \quad c; \mathbf{while} \ \neg b \ \mathbf{do} \ c$$

where the axiomatic rule of the repeat-until-statement is the same as in Exercise 4.4.

Exercise 2 (Weakest precondition):

(3 Points)

- (a) The weakest precondition $wp(P, R)$ is the weakest assertion Q such that $\{Q\}P\{R\}$ holds (note that termination is not required). Give a definition for the weakest precondition of a given program P and assertion R by induction over the structure of program P .
- (b) Use structural induction to prove the soundness of the rules you defined in (a).

Exercise 3 (Total correctness):

(5 Points)

Consider the problem of defining an algorithm to compute the exponentiation x^y .

- (a) Give the total correctness property that expresses that a program P calculates $r = X^Y$, where X and Y are the initial values of the variables x and y .

A naïve program to calculate the exponentiation could be as follows:

```

 $r := 1;$ 
while  $y > 0$  do
   $r := r * x;$ 
   $y := y - 1$ 

```

- (b) What is the invariant of this repetition?

- (c) Use the identity $x^{2*y} = (x * x)^y$ to give a faster program to calculate the exponentiation. Assume the existence of the boolean expression $even(n)$ to test if a number n is even. What is the invariant of this repetition?

- (d) Prove the total correctness of the program you defined in (c). Use the naïve program if you could not find a program in question (c).