
2 Lehrstuhl für Informatik 2

Modellierung und Veri�kation von Software

Semantics and Veri�cation of Software SS2013

Exercise 11 (Hand in on 08.07.2012 before exercise class)

aaapl. Prof. Dr. Thomas Noll Kevin van der Pol, Hao Wu

Exercise 1 (Parallel Composition in ParWHILE): (3 Points)

In the lecture we extend the while language with a parallel composition operator c1 ∥ c2 ∈ Cmd, which expresses

that both c1 and c2 have to be executed in parallel and the execution steps from c1 and c2 are interleaved.

An equivalence relation ≅ w.r.t a language is said to be a congruence relation if it is preserved by the language

constructs, for example for command constructs, that is if ∀c1; c2; c3 ∈ Cmd ; ∀b ∈ BExp such that c1 ≅ c2 then

c1; c3 ≅ c2; c3

if b then c1 else c3 ≅ if b then c2 else c3

while b do c1 ≅ while b do c2

c1 ∥ c3 ≅ c2 ∥ c3
⋯

and analogously for the boolean and axiomatic expressions. Let the binary relation ≈ be de�ned as

c ≈ c ′ if only if ∀�; �′ ∈ �: ⟨c; �⟩ →∗ �′ ⇐⇒ ⟨c ′; �⟩ →∗ �′

Show that ≈ w.r.t the extended while language is not a congruence relation.

Exercise 2 (CSP Semantics): (2+2 Points)

a) Consider the following CSP program c :

c ∶=
y ∶= 4; if (y > 0) → ((x ∶= y) ∣∣ (x ∶= 3))�
do (x == 3 ∧ �?x → �!x) ◻ (x == 3 → �!y) od

Provide all �meanings� of c using the formal semantics of CSP as given in the lecture.

b) Consider following system (illustrated in following �gure) which the USER can give an input (two integers)

over the channel input to a GCD and the GCD will compute the greatest common divisor based on the

USER's input and feedback the result over the channel output. Please model this system by using CSP

language.

USER GCD

input

output

Exercise 3 (Fairness in CSP): (3 Points)

a) Does strong unfairness implies weak unfairness?

b) Now we relax the requirement of CSP in the lecture and assume we can have common variables in parallel

composition of commands. Consider following mutual exclusion algorithm in CSP. Is the fairness requirement

for two processes P1 and P2: �each process enters its critical section in�nitely often� satis�ed?

1



2 Lehrstuhl für Informatik 2

Modellierung und Veri�kation von Software

Semantics and Veri�cation of Software SS2013

Exercise 11 (Hand in on 08.07.2012 before exercise class)

b1 := false; b2 := false; P1 ∥ P2;
where

P1 ∶
do true →

... noncritical section ...

b1 := true;

x ∶= 2;
if (x = 1) ∨ (¬b2) →
... critical section ...

fi

b1 := false;

od

P2 ∶
do true →

... noncritical section ...

b2 := true;

x ∶= 1;
if (x = 2) ∨ (¬b1) →
... critical section ...

fi

b2 := false;

od

2


