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Partial Correctness Properties

Validity of property {A} c {B}
For all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.
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Hoare Logic

Goal: syntactic derivation of valid partial correctness
properties. Here A[x 7→ a] denotes the syntactic
replacement of every occurrence of x by a in A.

Tony Hoare (* 1934)

Definition (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]} x:=a {A}

(seq)
{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

(if)
{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 {B}

(while)
{A ∧ b} c {A}

{A} while b do c {A ∧ ¬b}

(cons)
|= (A⇒ A′) {A′} c {B ′} |= (B ′ ⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ` {A} c {B}) if it is
derivable by the Hoare rules. In (while), A is called a (loop) invariant.

Semantics and Verification of Software Summer Semester 2013 10.4



Soundness of Hoare Logic

Soundness: only (semantically) valid partial correctness properties can be
(syntactically) derived

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},
` {A} c {B} ⇒ |= {A} c {B}.

Proof.

Let ` {A} c {B}. By induction over the structure of the corresponding
proof tree we show that, for every σ ∈ Σ and I ∈ Int such that σ |=I A,
CJcKσ |=I B (on the board).
(If σ = ⊥, then CJcKσ = ⊥ |=I B holds trivially.)
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Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable X
Completeness: all valid partial correctness properties are systematically

derivable  

Theorem 10.1 (Gödel’s Incompleteness Theorem)

The set of all valid assertions

{A ∈ Assn | |= A}
is not recursively enumerable, i.e., there exists no
proof system for Assn in which all valid assertions
are systematically derivable.

Kurt Gödel
(1906–1978)

Proof.

see [Winskel 1996, p. 110 ff]
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Incompleteness of Hoare Logic II

Corollary 10.2

There is no proof system in which all valid partial correctness properties
can be enumerated.

Proof.

Given A ∈ Assn, |= A is obviously equivalent to {true} skip {A}. Thus the
enumerability of all valid partial correctness properties would imply the
enumerability of all valid assertions.

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff c does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.
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Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

(cons)
|= (A⇒ A′) {A′} c {B ′} |= (B ′ ⇒ B)

{A} c {B}
since it is based on the validity of implications within Assn

The other language constructs are “enumerable”

Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be systematically derived

⇒ Relative completeness
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Relative Completeness of Hoare Logic II

Theorem 10.3 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every
partial correctness property {A} c {B}:

|= {A} c {B} ⇒ ` {A} c {B}.

Stephen A. Cook
(* 1939)

Thus: if we know that a partial correctness property is valid, then we know
that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., {A} c1;c2 {B}
has to be derived. This requires an intermediate assertion C ∈ Assn such
that {A} c1 {C} and {C} c2 {B}. How to find it?
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Weakest Preconditions I

Definition 10.4 (Weakest precondition)

Given c ∈ Cmd , B ∈ Assn and I ∈ Int, the weakest precondition of B with
respect to c under I is defined by:

wpI Jc ,BK := {σ ∈ Σ⊥ | CJcKσ |=I B}.

Corollary 10.5

For every c ∈ Cmd, A,B ∈ Assn, and I ∈ Int:

1 |=I {A} c {B} ⇐⇒ AI ⊆ wpI Jc ,BK
2 If A0 ∈ Assn such that AI

0 = wpI Jc ,BK for every I ∈ Int, then

|= {A} c {B} ⇐⇒ |= (A⇒ A0)

Remark: (2) justifies the notion of weakest precondition: it is implied by
every precondition A which makes {A} c {B} valid
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Weakest Preconditions II

Definition 10.6 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every c ∈ Cmd and
B ∈ Assn, there exists Ac,B ∈ Assn such that

AI
c,B = wpI Jc ,BK

for every I ∈ Int.

Theorem 10.7 (Expressivity of Assn)

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])
Given c ∈ Cmd and B ∈ Assn, construct Ac,B ∈ Assn with
σ |=I Ac,B ⇐⇒ CJcKσ |=I B (for every σ ∈ Σ⊥, I ∈ Int). For example:

Askip,B := B Ax:=a,B := B[x 7→ a]
Ac1;c2,B := Ac1,Ac2,B

. . .

(for while: “Gödelization” of sequences of intermediate states)
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Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8

For every c ∈ Cmd and B ∈ Assn:

` {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that

|= {A} c {B} ⇒ ` {A} c {B}.
Lemma 10.8: ` {Ac,B} c {B}
Corollary 10.5: |= {A} c {B} ⇒ |= (A⇒ Ac,B)

(cons)
|= (A⇒ Ac,B) {Ac,B} c {B} |= (B ⇒ B)

{A} c {B}
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Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

Consider total correctness properties of the form

{A} c {⇓B}
where c ∈ Cmd and A,B ∈ Assn

Interpretation:

Validity of property {A} c {⇓B}
For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.
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Semantics of Total Correctness Properties

Definition 10.9 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

{A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation:
σ |=I {A} c {⇓B}) if σ |=I A implies that CJcKσ 6= ⊥ and
CJcKσ |=I B.

{A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if
σ |=I {A} c {⇓B} for every σ ∈ Σ.

{A} c {⇓B} is called valid (notation: |= {A} c {⇓B}) if
|=I {A} c {⇓B} for every I ∈ Int.

Obviously, total implies partial correctness (but not vice versa):

Corollary 10.10

For all A,B ∈ Assn and c ∈ Cmd,

|= {A} c {⇓B} ⇒|= {A} c {B}.
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Proving Total Correctness I

Goal: syntactic derivation of valid total correctness properties

Definition 10.11 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

(skip)
{A} skip {⇓A}

(asgn)
{A[x 7→ a]} x := a {⇓A}

(seq)
{A} c1 {⇓C} {C} c2 {⇓B}

{A} c1;c2 {⇓B}
(if)
{A ∧ b} c1 {⇓B} {A ∧ ¬b} c2 {⇓B}
{A} if b then c1 else c2 {⇓B}

(while)
|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i .i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

(cons)
|= (A⇒ A′) {A′} c {⇓B ′} |= (B ′ ⇒ B)

{A} c {⇓B}

where i ∈ LVar .
A total correctness property is provable (notation: ` {A} c {⇓B}) if it is derivable
by the Hoare rules. In case of (while), A(i) is called a (loop) invariant.
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Proving Total Correctness II

In rule

(while)
|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i .i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

the notation A(i) indicates that assertion A parametrically depends
on the value of the logical variable i ∈ LVar .

Idea: i represents the remaining number of loop iterations

Loop to be traversed i + 1 times (i ≥ 0)
⇒ A(i + 1) holds
⇒ execution condition b satisfied

Thus: |= (i ≥ 0 ∧ A(i + 1)⇒ b), and i + 1 decreased to i after
execution of c

Execution terminated
⇒ A(0) holds
⇒ execution condition b violated

Thus: |= (A(0)⇒ ¬b)
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Total Correctness of Factorial Program I

Example 10.12

Proof of {A} y:=1;c {⇓B} where

A := (x > 0 ∧ x = i)
c := while ¬(x=1) do (y:=y*x; x:=x-1)
B := (y = i !)

First we show that the assertion C (j) = (x > 0∧ y ∗ x! = i !∧ x = j + 1) is
an invariant of c. Applying (asgn) twice yields

` {j ≥ 0 ∧ C (j)[x 7→ x-1]} x:=x-1 {⇓ j ≥ 0 ∧ C (j)} and
` {j ≥ 0 ∧ C (j)[x 7→ x-1][y 7→ y*x]} y:=y*x {⇓ j ≥ 0 ∧ C (j)[x 7→ x-1]}

such that (seq) implies

` {j ≥ 0 ∧ C (j)[x 7→ x-1][y 7→ y*x]} y:=y*x; x:=x-1 {⇓ j ≥ 0 ∧ C (j)}.
Now C (j + 1) = (x > 0 ∧ y*x! = i ! ∧ x = j + 2) and
C (j)[x 7→ x-1][y 7→ y*x] = (x−1 > 0∧y∗x∗ (x−1)! = i !∧x−1 = j + 1)
such that
|= ((j ≥ 0 ∧ C (j + 1))⇒ (j ≥ 0 ∧ C (j)[x 7→ x-1][y 7→ y*x])) and
|= ((j ≥ 0 ∧ C (j))⇒ C (j)).
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Total Correctness of Factorial Program II

Example 10.12 (continued)

Hence (cons) implies

` {j ≥ 0 ∧ C (j + 1)} y:=y*x; x:=x-1 {⇓C (j)}.
Moreover we have

|= ((j ≥ 0 ∧ C (j + 1))⇒ ¬(x = 1)) and |= (C (0)⇒ ¬(¬(x = 1)))

such that (while) yields

` {∃j .j ≥ 0 ∧ C (j)} c {⇓C (0)}.
For the initializing assignment, (asgn) implies

` {∃j .j ≥ 0 ∧ C (j)[y 7→ 1]} y:=1 {⇓∃j .j ≥ 0 ∧ C (j)},
such that (seq) allows to conclude

` {∃j .j ≥ 0 ∧ C (j)[y 7→ 1]} y:=1;c {⇓C (0)}.
On the other hand we have (choose j := i − 1):

|= ((x > 0 ∧ x = i)⇒ (∃j .j ≥ 0 ∧ C (j)[y 7→ 1])) and |= (C (0)⇒ y = i !)

such that (cons) yields the desired result:

` {x > 0 ∧ x = i} y:=1;c {⇓y = i !}.
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Soundness

In analogy to Theorem 9.4 we can show that the Hoare Logic for total
correctness properties is also sound:

Theorem 10.13 (Soundness)

For every total correctness property {A} c {⇓B},
` {A} c {⇓B} ⇒ |= {A} c {⇓B}.

Proof.

again by structural induction over the derivation tree of ` {A} c {⇓B}
(only (while) case; on the board)
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Relative Completeness

Also the counterpart to Cook’s Completeness Theorem 10.3 applies:

Theorem 10.14 (Completeness)

The Hoare Logic for total correctness properties is relatively complete, i.e.,
for every {A} c {⇓B}:

|= {A} c {⇓B} ⇒ ` {A} c {⇓B}.

Proof.

omitted
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