Semantics and Verification of Software

Lecture 10: Axiomatic Semantics of WHILE IlI
(Completeness & Total Correctness)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-1i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

© Recapitulation: Hoare Logic

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 10.2

Partial Correctness Properties

Validity of property {A} c{B}

For all states o € ¥ which satisfy A:
if the execution of ¢ in o terminates in ¢/ € ¥, then o’ satisfies B.

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 10.3

Goal: syntactic derivation of valid partial correctness
properties. Here A[x — a] denotes the syntactic
replacement of every occurrence of x by a in A.

Tony Hoare (* 1934)

Definition (Hoare Logic)

The Hoare rules are given by

(Shp) Y okip (A} (80 Al = A} x:=2 {A}
(se){A}Cl{c} {Cte{B} . {ANb}a{B} {AA-b}c{B}
{A}c1;0{B} {A}if b then ¢ else ¢ {B}
(while) {A A b} ¢ {A}

{A}while b do c{AA —b}
F(A=A) {A}c{B} E(B'=B)
{A} c{B}
A partial correctness property is provable (notation: - {A} c{B}) if it is
derivable by the Hoare rules. In (while), A is called a (loop) invariant.

(cons)

RWNTH HE Semantics and Verification of Software Summer Semester 2013

10.4

Soundness of Hoare Logic

Soundness: only (semantically) valid partial correctness properties can be
(syntactically) derived

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},

F{Atc{B} = F{Ajc{B}.

Let = {A} c{B}. By induction over the structure of the corresponding
proof tree we show that, for every ¢ € ¥ and / € Int such that o =/ A,
€[c]o ' B (on the board).

(If o = L, then €¢[c]o = L ! B holds trivially.) O

RWNTH HE Semantics and Verification of Software Summer Semester 2013 10.5

@ (In-)Completeness of Hoare Logic

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 10.6

Incompleteness of Hoare Logic |

Soundness: only valid partial correctness properties are provable v
Completeness: all valid partial correctness properties are systematically
derivable 4

Theorem 10.1 (Godel's Incompleteness Theorem)
The set of all valid assertions

{A € Assn | = A}
is not recursively enumerable, i.e., there exists no

proof system for Assn in which all valid assertions
are systematically derivable.

Kurt Godel

(1906-1978)

see [Winskel 1996, p. 110 ff] O \

Incompleteness of Hoare Logic Il

Corollary 10.2

There is no proof system in which all valid partial correctness properties
can be enumerated.

Given A € Assn, |= A is obviously equivalent to {true} skip {A}. Thus the
enumerability of all valid partial correctness properties would imply the
enumerability of all valid assertions. Ol

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff ¢ does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 10.8

© Relative Completeness of Hoare Logic

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 10.9

Relative Completeness of Hoare Logic |

@ We will see: actual reason of incompleteness is rule
F(A=A) {A}c{B} (B = B)
{A}c{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

@ One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be systematically derived

= Relative completeness

nerAACHEN Semantics and Verification of Software Summer Semester 2013 10.10

Relative Completeness of Hoare Logic Il

Theorem 10.3 (Cook’'s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every
partial correctness property {A} c{B}:

={A}c{B} = F{A}c{B}.

Stephen A. Cook
(* 1939)

Thus: if we know that a partial correctness property is valid, then we know
that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., {A} c1; {B}
has to be derived. This requires an intermediate assertion C € Assn such

that {A} c; {C} and {C} c» {B}. How to find it?

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 10.11

Weakest Preconditions |

Definition 10.4 (Weakest precondition)

Given ¢ € Cmd, B € Assn and | € Int, the weakest precondition of B with
respect to ¢ under [is defined by:

wp'[c, B] :={oc € X, | €[c]o &' B}.

Corollary 10.5

For every c € Cmd, A, B € Assn, and | € Int:
O =/ {A}c{B} <= A Cwp'[c, B]
@ If Ay € Assn such that A(’) = wp[c, B] for every | € Int, then
F{Alc{B} <= E(A=A)

Remark: (2) justifies the notion of weakest precondition: it is implied by
every precondition A which makes {A} ¢ {B} valid

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 10.12

Weakest Preconditions Il

Definition 10.6 (Expressivity of assertion languages)
An assertion language Assn is called expressive if, for every ¢ € Cmd and
B € Assn, there exists Ac g € Assn such that

Aqu = wp'[c, B]

for every I € Int.

Theorem 10.7 (Expressivity of Assn)

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])
Given ¢ € Cmd and B € Assn, construct Ac g € Assn with
o= Acg <= €[c]o ! B (for every o € £, I € Int). For example:

Askip,B := B Ag:=aB = B[x— a
c;c,B = AC17AC2,B 500
(for while: “Godelization” of sequences of intermediate states) O

RWNTH Semantics and Verification of Software Summer Semester 2013 10.13

Relative Completeness of Hoare Logic Il

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8
For every c € Cmd and B € Assn:

F{Acg}c{B}

by structural induction over ¢ (omitted)

Proof (Cook's Completeness Theorem 10.3).
We have to show that Hoare Logic is relatively complete, i.e., that
E{A}c{B} = +{A}c{B}.
o Lemma 10.8: - {Ac g} c{B}

e Corollary 10.5: = {A}c{B} = E(A=A.B)
F(A=Acs) {Acp}c{B} = (B= B)

{Alc{B} =)

RWNTH Semantics and Verification of Software Summer Semester 2013 10.14

@ (cons)

@ Total Correctness

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 10.15

Total Correctness

@ Observation: partial correctness properties only speak about
terminating computations of a given program

@ Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

o Consider total correctness properties of the form
{A}c{UB}
where ¢ € Cmd and A, B € Assn

@ Interpretation:

Validity of property {A} c {U B}

For all states o € ¥ which satisfy A:
the execution of ¢ in o terminates and yields a state which satisfies B.

nerAACHEN Semantics and Verification of Software Summer Semester 2013 10.16

Semantics of Total Correctness Properties

Definition 10.9 (Semantics of total correctness properties)

Let A, B € Assn and c € Cmd.

o {A}c{UB} is called valid in 0 € ¥ and | € Int (notation:
o = {A} c{I| B}) if o |=! A implies that €[c]o # L and
Clc]o &' B.

o {A} c{l| B} is called valid in I € Int (notation: =/ {A} c {l} B}) if
o = {A} c{I B} for every o € X.

o {A} c{| B} is called valid (notation: = {A} c{U B}) if
=/ {A} c {| B} for every I € Int.

Obviously, total implies partial correctness (but not vice versa):

Corollary 10.10

For all A, B € Assn and c € Cmd,
F{A} c{U B} == {A} c{B}.

RWNTH Semantics and Verification of Software Summer Semester 2013 10.17

Proving Total Correctness |

Goal: syntactic derivation of valid total correctness properties

Definition 10.11 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

" {ayoip (1A} S il al)x = 2 (UA)
(sea) {Ata i ¢} {CH e {iB} (i) {Anb}a{iB} {AN—b}e{lB}
{A}ta ;e {IB} {A} if b then ¢ else ¢ {{| B}
(while) E(>0NA(i+1)=b) {iZ0ANA(i+1)}c{VA(i)} E (A0)= —b)

{3i.i > 0A A(i)}while b do c {| A(0)}
FA=A) {A}c{{B} E(B'=B)
{A}c{UB}

(cons)

where j € LVar.
A total correctness property is provable (notation: - {A} ¢ {{ B}) if it is derivable
by the Hoare rules. In case of (while), A(f) is called a (loop) invariant.

v

RWNTH Semantics and Verification of Software Summer Semester 2013 10.18

Proving Total Correctness |l

@ In rule
E({>0NA(i+1)=b) {iZ0ANA(+1)}c{IA()} E (A(0) = —b)
{3i.i > 0N A(i)} while b do c {{L A(0)}

(while)

the notation A(/) indicates that assertion A parametrically depends
on the value of the logical variable / € LVar.

@ ldea: i represents the remaining number of loop iterations
@ Loop to be traversed i + 1 times (i > 0)
= A(i + 1) holds
= execution condition b satisfied
Thus: = (i > 0AA(i+1) = b), and i + 1 decreased to i after
execution of ¢

@ Execution terminated
= A(0) holds
= execution condition b violated

Thus: = (A(0) = —b)
RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Total Correctness of Factorial Program |
Example 10.12

Proof of {A}y:=1;c{{ B} where

A=(x>0Ax=1)
c := while —(x=1) do (y:=y*x; x:=x-1)
Bi=(y=1)

First we show that the assertion C(j) = (x > 0Ay*x! =ilAx=j+1)is
an invariant of c. Applying (asgn) twice yields

F{>0AC()xr x-1]}x:=x-1{Jj >0A C(j)} and

{2 0ACU)x = x=tly = y*x]}y:=y*x {Ij = 0 A C(j)[x — x-1]}
such that (seq) implies

F{>0AC()[x x-1][y — y*x]}y:=y*x; x:=x-1{{j > 0A C(j)}.
Now C(j+1)=(x>0Ay*x! =il A\x =j+2) and

CU)xr x-1]y— y*x] = (x—1 > 0Ay*xx(x—1) = ilAx—1=j+1)
such that
/ (+1)) = (= 0A C()x = x-1][y = y*x])) and

V,
RWNTH Semantics and Verification of Software Summer Semester 2013 10.20

Total Correctness of Factorial Program Il

Example 10.12 (continued)

Hence (cons) implies
F{>0ACH+ 1)} y:=y*x; x:=x-1{{ C(j)}.
Moreover we have
S (2 0AC(H+1) = ~(x=1)) and | (C(0) = ~(~(x = 1))
such that (while) yields
{342 0AC()} {4 C(0)}
For the initializing assignment, (asgn) implies
F{3jJ 2 0ACU)ly = 1} y:=1{U3jj 2 0A C()},
such that (seq) allows to conclude
{32 0A CO)ly = b yi=t;¢ (L CO)}.
On the other hand we have (choose j := i — 1):
E((x>0Ax=1i)=(3jj>0AC()y—1]) and = (C(0)=y=1)
such that (cons) yields the desired result:
F{x>0Ax=i}y:=1;c{{y=i}.

RWNTH Semantics and Verification of Software Summer Semester 2013 10.21

© Soundness and Completeness of Total Correctness

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 10.22

In analogy to Theorem 9.4 we can show that the Hoare Logic for total
correctness properties is also sound:

Theorem 10.13 (Soundness)

For every total correctness property {A} c {| B},
F{AlcllB} = E{Alc{IB].

again by structural induction over the derivation tree of - {A} ¢ {{ B}
(only (while) case; on the board)

Ol

Semantics and Verification of Software Summer Semester 2013 10.23

Relative Completeness

Also the counterpart to Cook’'s Completeness Theorem 10.3 applies:

Theorem 10.14 (Completeness)

The Hoare Logic for total correctness properties is relatively complete, i.e.,
for every {A} c {|} B}:

F{Atc{4B} = F{Atc{UB}.

Semantics and Verification of Software Summer Semester 2013 10.24

	Recapitulation: Hoare Logic
	(In-)Completeness of Hoare Logic
	Relative Completeness of Hoare Logic
	Total Correctness
	Soundness and Completeness of Total Correctness

