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Partial Correctness Properties

Validity of property {A} c{B}

For all states o € ¥ which satisfy A:
if the execution of ¢ in o terminates in ¢/ € ¥, then o’ satisfies B.
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Goal: syntactic derivation of valid partial correctness
properties. Here A[x — a] denotes the syntactic
replacement of every occurrence of x by a in A.

Tony Hoare (* 1934)

Definition (Hoare Logic)

The Hoare rules are given by

(Shp) Y okip (A} (80 Al = A} x:=2 {A}
(se ){A}Cl{c} {Cte{B} . {ANb}a{B} {AA-b}c{B}
{A}c1;0{B} {A}if b then ¢ else ¢ {B}
(while) {A A b} ¢ {A}

{A}while b do c{AA —b}
F(A=A) {A}c{B} E(B'=B)
{A} c{B}
A partial correctness property is provable (notation: - {A} c{B}) if it is
derivable by the Hoare rules. In (while), A is called a (loop) invariant.

(cons)
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Soundness of Hoare Logic

Soundness: only (semantically) valid partial correctness properties can be
(syntactically) derived

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},

F{Atc{B} = F{Ajc{B}.

Let = {A} c{B}. By induction over the structure of the corresponding
proof tree we show that, for every ¢ € ¥ and / € Int such that o =/ A,
€[c]o ' B (on the board).

(If o = L, then €¢[c]o = L ! B holds trivially.) O
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@ (In-)Completeness of Hoare Logic
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Incompleteness of Hoare Logic |

Soundness: only valid partial correctness properties are provable v
Completeness: all valid partial correctness properties are systematically
derivable 4

Theorem 10.1 (Godel's Incompleteness Theorem)
The set of all valid assertions

{A € Assn | = A}
is not recursively enumerable, i.e., there exists no

proof system for Assn in which all valid assertions
are systematically derivable.

Kurt Godel

(1906-1978)

see [Winskel 1996, p. 110 ff] O \




Incompleteness of Hoare Logic Il

Corollary 10.2

There is no proof system in which all valid partial correctness properties
can be enumerated.

Given A € Assn, |= A is obviously equivalent to {true} skip {A}. Thus the
enumerability of all valid partial correctness properties would imply the
enumerability of all valid assertions. Ol

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff ¢ does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.
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© Relative Completeness of Hoare Logic
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Relative Completeness of Hoare Logic |

@ We will see: actual reason of incompleteness is rule
F(A=A) {A}c{B} (B = B)
{A}c{B}

since it is based on the validity of implications within Assn

(cons)

@ The other language constructs are “enumerable”

@ Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

@ One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be systematically derived

= Relative completeness
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Relative Completeness of Hoare Logic Il

Theorem 10.3 (Cook’'s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every
partial correctness property {A} c{B}:

={A}c{B} = F{A}c{B}.

Stephen A. Cook
(* 1939)

Thus: if we know that a partial correctness property is valid, then we know
that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., {A} c1; {B}
has to be derived. This requires an intermediate assertion C € Assn such

that {A} c; {C} and {C} c» {B}. How to find it?
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Weakest Preconditions |

Definition 10.4 (Weakest precondition)

Given ¢ € Cmd, B € Assn and | € Int, the weakest precondition of B with
respect to ¢ under [ is defined by:

wp'[c, B] :={oc € X, | €[c]o &' B}.

Corollary 10.5

For every c € Cmd, A, B € Assn, and | € Int:
O =/ {A}c{B} <= A Cwp'[c, B]
@ If Ay € Assn such that A(’) = wp[c, B] for every | € Int, then
F{Alc{B} <= E(A=A)

Remark: (2) justifies the notion of weakest precondition: it is implied by
every precondition A which makes {A} ¢ {B} valid
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Weakest Preconditions Il

Definition 10.6 (Expressivity of assertion languages)
An assertion language Assn is called expressive if, for every ¢ € Cmd and
B € Assn, there exists Ac g € Assn such that

Aqu = wp'[c, B]

for every I € Int.

Theorem 10.7 (Expressivity of Assn)

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])
Given ¢ € Cmd and B € Assn, construct Ac g € Assn with
o= Acg <= €[c]o ! B (for every o € £, I € Int). For example:

Askip,B := B Ag:=aB = B[x— a
c;c,B = AC17AC2,B 500
(for while: “Godelization” of sequences of intermediate states) O

RWNTH Semantics and Verification of Software Summer Semester 2013 10.13



Relative Completeness of Hoare Logic Il

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8
For every c € Cmd and B € Assn:

F{Acg}c{B}

by structural induction over ¢ (omitted)

Proof (Cook's Completeness Theorem 10.3).
We have to show that Hoare Logic is relatively complete, i.e., that
E{A}c{B} = +{A}c{B}.
o Lemma 10.8: - {Ac g} c{B}

e Corollary 10.5: = {A}c{B} = E(A=A.B)
F(A=Acs) {Acp}c{B} = (B= B)

{Alc{B} =)
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@ Total Correctness
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Total Correctness

@ Observation: partial correctness properties only speak about
terminating computations of a given program

@ Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

o Consider total correctness properties of the form
{A}c{UB}
where ¢ € Cmd and A, B € Assn

@ Interpretation:

Validity of property {A} c {U B}

For all states o € ¥ which satisfy A:
the execution of ¢ in o terminates and yields a state which satisfies B.
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Semantics of Total Correctness Properties

Definition 10.9 (Semantics of total correctness properties)

Let A, B € Assn and c € Cmd.

o {A}c{UB} is called valid in 0 € ¥ and | € Int (notation:
o = {A} c{I| B}) if o |=! A implies that €[c]o # L and
Clc]o &' B.

o {A} c{l| B} is called valid in I € Int (notation: =/ {A} c {l} B}) if
o = {A} c{I B} for every o € X.

o {A} c{| B} is called valid (notation: = {A} c{U B}) if
=/ {A} c {| B} for every I € Int.

Obviously, total implies partial correctness (but not vice versa):

Corollary 10.10

For all A, B € Assn and c € Cmd,
F{A} c{U B} == {A} c{B}.
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Proving Total Correctness |

Goal: syntactic derivation of valid total correctness properties

Definition 10.11 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

" {ayoip (1A} S il al)x = 2 (UA)
(sea) {Ata i ¢} {CH e {iB} (i) {Anb}a{iB} {AN—b}e{lB}
{A}ta ;e {IB} {A} if b then ¢ else ¢ {{| B}
(while) E(>0NA(i+1)=b) {iZ0ANA(i+1)}c{VA(i)} E (A0)= —b)

{3i.i > 0A A(i)}while b do c {| A(0)}
FA=A) {A}c{{B} E(B'=B)
{A}c{UB}

(cons)

where j € LVar.
A total correctness property is provable (notation: - {A} ¢ {{ B}) if it is derivable
by the Hoare rules. In case of (while), A(f) is called a (loop) invariant.

v
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Proving Total Correctness |l

@ In rule
E({>0NA(i+1)=b) {iZ0ANA(+1)}c{IA()} E (A(0) = —b)
{3i.i > 0N A(i)} while b do c {{L A(0)}

(while)

the notation A(/) indicates that assertion A parametrically depends
on the value of the logical variable / € LVar.

@ ldea: i represents the remaining number of loop iterations
@ Loop to be traversed i + 1 times (i > 0)
= A(i + 1) holds
= execution condition b satisfied
Thus: = (i > 0AA(i+1) = b), and i + 1 decreased to i after
execution of ¢

@ Execution terminated
= A(0) holds
= execution condition b violated

Thus: = (A(0) = —b)
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Total Correctness of Factorial Program |
Example 10.12

Proof of {A}y:=1;c{{ B} where

A=(x>0Ax=1)
c := while —(x=1) do (y:=y*x; x:=x-1)
Bi=(y=1)

First we show that the assertion C(j) = (x > 0Ay*x! =ilAx=j+1)is
an invariant of c. Applying (asgn) twice yields

F{>0AC()xr x-1]}x:=x-1{Jj >0A C(j)} and

{2 0ACU)x = x=tly = y*x]}y:=y*x {Ij = 0 A C(j)[x — x-1]}
such that (seq) implies

F{>0AC()[x x-1][y — y*x]}y:=y*x; x:=x-1{{j > 0A C(j)}.
Now C(j+1)=(x>0Ay*x! =il A\x =j+2) and

CU)xr x-1]y— y*x] = (x—1 > 0Ay*xx(x—1) = ilAx—1=j+1)
such that
/ (+1)) = (= 0A C()x = x-1][y = y*x])) and

V,
RWNTH Semantics and Verification of Software Summer Semester 2013 10.20




Total Correctness of Factorial Program Il

Example 10.12 (continued)

Hence (cons) implies
F{>0ACH+ 1)} y:=y*x; x:=x-1{{ C(j)}.
Moreover we have
S (2 0AC(H+1) = ~(x=1)) and | (C(0) = ~(~(x = 1))
such that (while) yields
{342 0AC()} {4 C(0)}
For the initializing assignment, (asgn) implies
F{3jJ 2 0ACU)ly = 1} y:=1{U3jj 2 0A C()},
such that (seq) allows to conclude
{32 0A CO)ly = b yi=t;¢ (L CO)}.
On the other hand we have (choose j := i — 1):
E((x>0Ax=1i)=(3jj>0AC()y—1]) and = (C(0)=y=1)
such that (cons) yields the desired result:
F{x>0Ax=i}y:=1;c{{y=i}.
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© Soundness and Completeness of Total Correctness
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In analogy to Theorem 9.4 we can show that the Hoare Logic for total
correctness properties is also sound:

Theorem 10.13 (Soundness)

For every total correctness property {A} c {| B},
F{AlcllB} = E{Alc{IB].

again by structural induction over the derivation tree of - {A} ¢ {{ B}
(only (while) case; on the board)

Ol
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Relative Completeness

Also the counterpart to Cook’'s Completeness Theorem 10.3 applies:

Theorem 10.14 (Completeness)

The Hoare Logic for total correctness properties is relatively complete, i.e.,
for every {A} c {|} B}:

F{Atc{4B} = F{Atc{UB}.
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