

# Semantics and Verification of Software

## Lecture 10: Axiomatic Semantics of WHILE III (Completeness & Total Correctness)

Thomas Noll

Lehrstuhl für Informatik 2  
(Software Modeling and Verification)



[noll@cs.rwth-aachen.de](mailto:noll@cs.rwth-aachen.de)

<http://www-i2.informatik.rwth-aachen.de/i2/svsw13/>

Summer Semester 2013

- 1 Recapitulation: Hoare Logic
- 2 (In-)Completeness of Hoare Logic
- 3 Relative Completeness of Hoare Logic
- 4 Total Correctness
- 5 Soundness and Completeness of Total Correctness

## Validity of property $\{A\} c \{B\}$

For all states  $\sigma \in \Sigma$  which satisfy  $A$ :

if the execution of  $c$  in  $\sigma$  terminates in  $\sigma' \in \Sigma$ , then  $\sigma'$  satisfies  $B$ .

# Hoare Logic

**Goal:** syntactic derivation of valid partial correctness properties. Here  $A[x \mapsto a]$  denotes the syntactic replacement of every occurrence of  $x$  by  $a$  in  $A$ .



Tony Hoare (\* 1934)

## Definition (Hoare Logic)

The **Hoare rules** are given by

$$\begin{array}{c} (\text{skip}) \frac{}{\{A\} \text{ skip } \{A\}} \qquad \qquad (\text{asgn}) \frac{}{\{A[x \mapsto a]\} x := a \{A\}} \\ (\text{seq}) \frac{\{A\} c_1 \{C\} \quad \{C\} c_2 \{B\}}{\{A\} c_1; c_2 \{B\}} \qquad (\text{if}) \frac{\{A \wedge b\} c_1 \{B\} \quad \{A \wedge \neg b\} c_2 \{B\}}{\{A\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{B\}} \\ (\text{while}) \frac{\{A \wedge b\} c \{A\}}{\{A\} \text{ while } b \text{ do } c \{A \wedge \neg b\}} \\ (\text{cons}) \frac{\models (A \Rightarrow A') \quad \{A'\} c \{B'\} \quad \models (B' \Rightarrow B)}{\{A\} c \{B\}} \end{array}$$

A partial correctness property is **provable** (notation:  $\vdash \{A\} c \{B\}$ ) if it is derivable by the Hoare rules. In (while),  $A$  is called a **(loop) invariant**.

**Soundness:** only (semantically) valid partial correctness properties can be (syntactically) derived

## Theorem (Soundness of Hoare Logic)

For every partial correctness property  $\{A\} c \{B\}$ ,

$$\vdash \{A\} c \{B\} \Rightarrow \models \{A\} c \{B\}.$$

## Proof.

Let  $\vdash \{A\} c \{B\}$ . By induction over the structure of the corresponding proof tree we show that, for every  $\sigma \in \Sigma$  and  $I \in \text{Int}$  such that  $\sigma \models^I A$ ,  $\mathfrak{C}[c]\sigma \models^I B$  (on the board).

(If  $\sigma = \perp$ , then  $\mathfrak{C}[c]\sigma = \perp \models^I B$  holds trivially.)

□

- 1 Recapitulation: Hoare Logic
- 2 (In-)Completeness of Hoare Logic
- 3 Relative Completeness of Hoare Logic
- 4 Total Correctness
- 5 Soundness and Completeness of Total Correctness

Soundness: only valid partial correctness properties are provable ✓

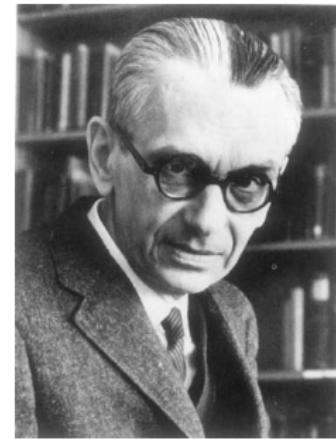
Completeness: all valid partial correctness properties are systematically derivable ↗

## Theorem 10.1 (Gödel's Incompleteness Theorem)

*The set of all valid assertions*

$$\{A \in \text{Assn} \mid \models A\}$$

*is not recursively enumerable, i.e., there exists no proof system for **Assn** in which all valid assertions are systematically derivable.*



Kurt Gödel  
(1906–1978)

## Proof.

see [Winskel 1996, p. 110 ff]



## Corollary 10.2

*There is no proof system in which all valid partial correctness properties can be enumerated.*

## Proof.

Given  $A \in \text{Assn}$ ,  $\models A$  is obviously equivalent to  $\{\text{true}\} \text{ skip } \{A\}$ . Thus the enumerability of all valid partial correctness properties would imply the enumerability of all valid assertions. □

**Remark:** alternative proof (using computability theory):

$\{\text{true}\} c \{\text{false}\}$  is valid iff  $c$  does not terminate on any input state. But the set of all non-terminating WHILE statements is not enumerable.

- 1 Recapitulation: Hoare Logic
- 2 (In-)Completeness of Hoare Logic
- 3 Relative Completeness of Hoare Logic
- 4 Total Correctness
- 5 Soundness and Completeness of Total Correctness

- We will see: actual reason of incompleteness is rule

$$\text{(cons)} \frac{\models (A \Rightarrow A') \quad \{A'\} c \{B'\} \quad \models (B' \Rightarrow B)}{\{A\} c \{B\}}$$

since it is based on the **validity of implications** within *Assn*

- The other language constructs are “enumerable”
- Therefore: **separation** of proof system (Hoare Logic) and assertion language (*Assn*)
- One can show: if an “oracle” is available which decides whether a given assertion is valid, then all valid partial correctness properties can be systematically derived

⇒ **Relative completeness**



## Theorem 10.3 (Cook's Completeness Theorem)

Hoare Logic is *relatively complete*, i.e., for every partial correctness property  $\{A\} c \{B\}$ :

$$\models \{A\} c \{B\} \Rightarrow \vdash \{A\} c \{B\}.$$

Stephen A. Cook  
(\* 1939)

Thus: if we know that a partial correctness property is valid, then we know that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g.,  $\{A\} c_1 ; c_2 \{B\}$  has to be derived. This requires an *intermediate assertion*  $C \in \text{Assn}$  such that  $\{A\} c_1 \{C\}$  and  $\{C\} c_2 \{B\}$ . How to find it?

## Definition 10.4 (Weakest precondition)

Given  $c \in \text{Cmd}$ ,  $B \in \text{Assn}$  and  $I \in \text{Int}$ , the **weakest precondition** of  $B$  with respect to  $c$  under  $I$  is defined by:

$$\text{wp}^I[c, B] := \{\sigma \in \Sigma_{\perp} \mid \mathfrak{C}[c]\sigma \models^I B\}.$$

## Corollary 10.5

For every  $c \in \text{Cmd}$ ,  $A, B \in \text{Assn}$ , and  $I \in \text{Int}$ :

- ①  $\models^I \{A\} c \{B\} \iff A^I \subseteq \text{wp}^I[c, B]$
- ② If  $A_0 \in \text{Assn}$  such that  $A_0^I = \text{wp}^I[c, B]$  for every  $I \in \text{Int}$ , then  
 $\models \{A\} c \{B\} \iff \models (A \Rightarrow A_0)$

**Remark:** (2) justifies the notion of **weakest** precondition: it is implied by every precondition  $A$  which makes  $\{A\} c \{B\}$  valid

## Definition 10.6 (Expressivity of assertion languages)

An assertion language  $\text{Assn}$  is called **expressive** if, for every  $c \in \text{Cmd}$  and  $B \in \text{Assn}$ , there exists  $A_{c,B} \in \text{Assn}$  such that

$$A_{c,B}^I = \text{wp}^I \llbracket c, B \rrbracket$$

for every  $I \in \text{Int}$ .

## Theorem 10.7 (Expressivity of $\text{Assn}$ )

$\text{Assn}$  is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])

Given  $c \in \text{Cmd}$  and  $B \in \text{Assn}$ , construct  $A_{c,B} \in \text{Assn}$  with  $\sigma \models^I A_{c,B} \iff \mathfrak{C} \llbracket c \rrbracket \sigma \models^I B$  (for every  $\sigma \in \Sigma_\perp$ ,  $I \in \text{Int}$ ). For example:

$$A_{\text{skip},B} := B \qquad A_{x:=a,B} := B[x \mapsto a]$$

$$A_{c_1;c_2,B} := A_{c_1,A_{c_2,B}} \qquad \dots$$

(for **while**: “Gödelization” of sequences of intermediate states) □

# Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

## Lemma 10.8

For every  $c \in \text{Cmd}$  and  $B \in \text{Assn}$ :

$$\vdash \{A_{c,B}\} c \{B\}$$

## Proof.

by structural induction over  $c$  (omitted) □

Proof (Cook's Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that

$$\models \{A\} c \{B\} \Rightarrow \vdash \{A\} c \{B\}.$$

- Lemma 10.8:  $\vdash \{A_{c,B}\} c \{B\}$
- Corollary 10.5:  $\models \{A\} c \{B\} \Rightarrow \models (A \Rightarrow A_{c,B})$
- $$\frac{\models (A \Rightarrow A_{c,B}) \quad \{A_{c,B}\} c \{B\} \quad \models (B \Rightarrow B)}{\{A\} c \{B\}}$$

□

- 1 Recapitulation: Hoare Logic
- 2 (In-)Completeness of Hoare Logic
- 3 Relative Completeness of Hoare Logic
- 4 Total Correctness
- 5 Soundness and Completeness of Total Correctness

- **Observation:** partial correctness properties only speak about terminating computations of a given program
- **Total correctness** additionally requires the proof that the program indeed stops (on the input states admitted by the precondition)
- Consider **total correctness properties** of the form

$$\{A\} c \{\Downarrow B\}$$

where  $c \in \text{Cmd}$  and  $A, B \in \text{Assn}$

- Interpretation:

Validity of property  $\{A\} c \{\Downarrow B\}$

For all states  $\sigma \in \Sigma$  which satisfy  $A$ :

the execution of  $c$  in  $\sigma$  terminates and yields a state which satisfies  $B$ .

## Definition 10.9 (Semantics of total correctness properties)

Let  $A, B \in \text{Assn}$  and  $c \in \text{Cmd}$ .

- $\{A\} c \{\Downarrow B\}$  is called **valid in  $\sigma \in \Sigma$  and  $I \in \text{Int}$**  (notation:  $\sigma \models' \{A\} c \{\Downarrow B\}$ ) if  $\sigma \models' A$  implies that  $\mathfrak{C}[c]\sigma \neq \perp$  and  $\mathfrak{C}[c]\sigma \models' B$ .
- $\{A\} c \{\Downarrow B\}$  is called **valid in  $I \in \text{Int}$**  (notation:  $\models' \{A\} c \{\Downarrow B\}$ ) if  $\sigma \models' \{A\} c \{\Downarrow B\}$  for every  $\sigma \in \Sigma$ .
- $\{A\} c \{\Downarrow B\}$  is called **valid** (notation:  $\models \{A\} c \{\Downarrow B\}$ ) if  $\models' \{A\} c \{\Downarrow B\}$  for every  $I \in \text{Int}$ .

Obviously, total implies partial correctness (but not vice versa):

## Corollary 10.10

For all  $A, B \in \text{Assn}$  and  $c \in \text{Cmd}$ ,

$$\models \{A\} c \{\Downarrow B\} \Rightarrow \models \{A\} c \{B\}.$$

# Proving Total Correctness I

**Goal:** syntactic derivation of valid total correctness properties

Definition 10.11 (Hoare Logic for total correctness)

The **Hoare rules** for total correctness are given by

$$\begin{array}{c} \text{(skip)} \frac{}{\{A\} \text{ skip } \{\Downarrow A\}} \qquad \text{(asgn)} \frac{}{\{A[x \mapsto a]\} x := a \{\Downarrow A\}} \\ \text{(seq)} \frac{\{A\} c_1 \{\Downarrow C\} \{C\} c_2 \{\Downarrow B\}}{\{A\} c_1; c_2 \{\Downarrow B\}} \qquad \text{(if)} \frac{\{A \wedge b\} c_1 \{\Downarrow B\} \{A \wedge \neg b\} c_2 \{\Downarrow B\}}{\{A\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{\Downarrow B\}} \\ \text{(while)} \frac{\models (i \geq 0 \wedge A(i+1) \Rightarrow b) \quad \{i \geq 0 \wedge A(i+1)\} c \{\Downarrow A(i)\} \quad \models (A(0) \Rightarrow \neg b)}{\{\exists i. i \geq 0 \wedge A(i)\} \text{ while } b \text{ do } c \{\Downarrow A(0)\}} \\ \text{(cons)} \frac{\models (A \Rightarrow A') \quad \{A'\} c \{\Downarrow B'\} \quad \models (B' \Rightarrow B)}{\{A\} c \{\Downarrow B\}} \end{array}$$

where  $i \in LVar$ .

A total correctness property is **provable** (notation:  $\vdash \{A\} c \{\Downarrow B\}$ ) if it is derivable by the Hoare rules. In case of (while),  $A(i)$  is called a **(loop) invariant**.

- In rule

$$\text{(while)} \frac{\models (i \geq 0 \wedge A(i+1) \Rightarrow b) \quad \{i \geq 0 \wedge A(i+1)\} \subset \{\Downarrow A(i)\} \quad \models (A(0) \Rightarrow \neg b)}{\{\exists i. i \geq 0 \wedge A(i)\} \text{ while } b \text{ do } c \{\Downarrow A(0)\}}$$

the notation  $A(i)$  indicates that assertion  $A$  parametrically depends on the value of the logical variable  $i \in LVar$ .

- Idea:  $i$  represents the **remaining number of loop iterations**
- Loop to be traversed  $i+1$  times ( $i \geq 0$ )
  - $\Rightarrow A(i+1)$  holds
  - $\Rightarrow$  execution condition  $b$  satisfied

Thus:  $\models (i \geq 0 \wedge A(i+1) \Rightarrow b)$ , and  $i+1$  decreased to  $i$  after execution of  $c$

- Execution terminated
  - $\Rightarrow A(0)$  holds
  - $\Rightarrow$  execution condition  $b$  violated

Thus:  $\models (A(0) \Rightarrow \neg b)$

# Total Correctness of Factorial Program I

## Example 10.12

Proof of  $\{A\} y := 1; c \{\Downarrow B\}$  where

$$A := (x > 0 \wedge x = i)$$

$c := \text{while } \neg(x = 1) \text{ do } (y := y * x; x := x - 1)$

$$B := (y = i!)$$

First we show that the assertion  $C(j) = (x > 0 \wedge y * x! = i! \wedge x = j + 1)$  is an invariant of  $c$ . Applying (asgn) twice yields

$$\vdash \{j \geq 0 \wedge C(j)[x \mapsto x-1]\} x := x - 1 \{\Downarrow j \geq 0 \wedge C(j)\} \text{ and}$$

$$\vdash \{j \geq 0 \wedge C(j)[x \mapsto x-1][y \mapsto y * x]\} y := y * x \{\Downarrow j \geq 0 \wedge C(j)[x \mapsto x-1]\}$$

such that (seq) implies

$$\vdash \{j \geq 0 \wedge C(j)[x \mapsto x-1][y \mapsto y * x]\} y := y * x; x := x - 1 \{\Downarrow j \geq 0 \wedge C(j)\}.$$

Now  $C(j + 1) = (x > 0 \wedge y * x! = i! \wedge x = j + 2)$  and

$$C(j)[x \mapsto x-1][y \mapsto y * x] = (x - 1 > 0 \wedge y * x * (x - 1)! = i! \wedge x - 1 = j + 1)$$

such that

$$\models ((j \geq 0 \wedge C(j + 1)) \Rightarrow (j \geq 0 \wedge C(j)[x \mapsto x-1][y \mapsto y * x])) \text{ and}$$

$$\models ((j \geq 0 \wedge C(j)) \Rightarrow C(j)).$$

## Example 10.12 (continued)

Hence (cons) implies

$$\vdash \{j \geq 0 \wedge C(j+1)\} \text{ y:=y*x; x:=x-1} \{\Downarrow C(j)\}.$$

Moreover we have

$$\models ((j \geq 0 \wedge C(j+1)) \Rightarrow \neg(x = 1)) \text{ and } \models (C(0) \Rightarrow \neg(\neg(x = 1)))$$

such that (while) yields

$$\vdash \{\exists j. j \geq 0 \wedge C(j)\} c \{\Downarrow C(0)\}.$$

For the initializing assignment, (asgn) implies

$$\vdash \{\exists j. j \geq 0 \wedge C(j)[y \mapsto 1]\} \text{ y:=1} \{\Downarrow \exists j. j \geq 0 \wedge C(j)\},$$

such that (seq) allows to conclude

$$\vdash \{\exists j. j \geq 0 \wedge C(j)[y \mapsto 1]\} \text{ y:=1; c} \{\Downarrow C(0)\}.$$

On the other hand we have (choose  $j := i - 1$ ):

$$\models ((x > 0 \wedge x = i) \Rightarrow (\exists j. j \geq 0 \wedge C(j)[y \mapsto 1])) \text{ and } \models (C(0) \Rightarrow y = i!)$$

such that (cons) yields the desired result:

$$\vdash \{x > 0 \wedge x = i\} \text{ y:=1; c} \{\Downarrow y = i!\}.$$

- 1 Recapitulation: Hoare Logic
- 2 (In-)Completeness of Hoare Logic
- 3 Relative Completeness of Hoare Logic
- 4 Total Correctness
- 5 Soundness and Completeness of Total Correctness

In analogy to Theorem 9.4 we can show that the Hoare Logic for total correctness properties is also sound:

## Theorem 10.13 (Soundness)

For every total correctness property  $\{A\} c \{\Downarrow B\}$ ,

$$\vdash \{A\} c \{\Downarrow B\} \Rightarrow \models \{A\} c \{\Downarrow B\}.$$

## Proof.

again by structural induction over the derivation tree of  $\vdash \{A\} c \{\Downarrow B\}$   
(only (while) case; on the board)



Also the counterpart to Cook's Completeness Theorem 10.3 applies:

## Theorem 10.14 (Completeness)

*The Hoare Logic for total correctness properties is **relatively complete**, i.e., for every  $\{A\} \subset \{\downarrow B\}$ :*

$$\models \{A\} \subset \{\downarrow B\} \quad \Rightarrow \quad \vdash \{A\} \subset \{\downarrow B\}.$$

## Proof.

omitted

