
Semantics and Verification of Software
Lecture 10: Axiomatic Semantics of WHILE III

(Completeness & Total Correctness)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Outline

1 Recapitulation: Hoare Logic

2 (In-)Completeness of Hoare Logic

3 Relative Completeness of Hoare Logic

4 Total Correctness

5 Soundness and Completeness of Total Correctness

Semantics and Verification of Software Summer Semester 2013 10.2

Partial Correctness Properties

Validity of property {A} c {B}
For all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

Semantics and Verification of Software Summer Semester 2013 10.3

Hoare Logic

Goal: syntactic derivation of valid partial correctness
properties. Here A[x 7→ a] denotes the syntactic
replacement of every occurrence of x by a in A.

Tony Hoare (* 1934)

Definition (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]} x:=a {A}

(seq)
{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

(if)
{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 {B}

(while)
{A ∧ b} c {A}

{A} while b do c {A ∧ ¬b}

(cons)
|= (A⇒ A′) {A′} c {B ′} |= (B ′ ⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ` {A} c {B}) if it is
derivable by the Hoare rules. In (while), A is called a (loop) invariant.

Semantics and Verification of Software Summer Semester 2013 10.4

Soundness of Hoare Logic

Soundness: only (semantically) valid partial correctness properties can be
(syntactically) derived

Theorem (Soundness of Hoare Logic)

For every partial correctness property {A} c {B},
` {A} c {B} ⇒ |= {A} c {B}.

Proof.

Let ` {A} c {B}. By induction over the structure of the corresponding
proof tree we show that, for every σ ∈ Σ and I ∈ Int such that σ |=I A,
CJcKσ |=I B (on the board).
(If σ = ⊥, then CJcKσ = ⊥ |=I B holds trivially.)

Semantics and Verification of Software Summer Semester 2013 10.5

Outline

1 Recapitulation: Hoare Logic

2 (In-)Completeness of Hoare Logic

3 Relative Completeness of Hoare Logic

4 Total Correctness

5 Soundness and Completeness of Total Correctness

Semantics and Verification of Software Summer Semester 2013 10.6

Incompleteness of Hoare Logic I

Soundness: only valid partial correctness properties are provable X
Completeness: all valid partial correctness properties are systematically

derivable

Theorem 10.1 (Gödel’s Incompleteness Theorem)

The set of all valid assertions

{A ∈ Assn | |= A}
is not recursively enumerable, i.e., there exists no
proof system for Assn in which all valid assertions
are systematically derivable.

Kurt Gödel
(1906–1978)

Proof.

see [Winskel 1996, p. 110 ff]

Semantics and Verification of Software Summer Semester 2013 10.7

Incompleteness of Hoare Logic II

Corollary 10.2

There is no proof system in which all valid partial correctness properties
can be enumerated.

Proof.

Given A ∈ Assn, |= A is obviously equivalent to {true} skip {A}. Thus the
enumerability of all valid partial correctness properties would imply the
enumerability of all valid assertions.

Remark: alternative proof (using computability theory):
{true} c {false} is valid iff c does not terminate on any input state. But
the set of all non-terminating WHILE statements is not enumerable.

Semantics and Verification of Software Summer Semester 2013 10.8

Outline

1 Recapitulation: Hoare Logic

2 (In-)Completeness of Hoare Logic

3 Relative Completeness of Hoare Logic

4 Total Correctness

5 Soundness and Completeness of Total Correctness

Semantics and Verification of Software Summer Semester 2013 10.9

Relative Completeness of Hoare Logic I

We will see: actual reason of incompleteness is rule

(cons)
|= (A⇒ A′) {A′} c {B ′} |= (B ′ ⇒ B)

{A} c {B}
since it is based on the validity of implications within Assn

The other language constructs are “enumerable”

Therefore: separation of proof system (Hoare Logic) and assertion
language (Assn)

One can show: if an “oracle” is available which decides whether a
given assertion is valid, then all valid partial correctness properties
can be systematically derived

⇒ Relative completeness

Semantics and Verification of Software Summer Semester 2013 10.10

Relative Completeness of Hoare Logic II

Theorem 10.3 (Cook’s Completeness Theorem)

Hoare Logic is relatively complete, i.e., for every
partial correctness property {A} c {B}:

|= {A} c {B} ⇒ ` {A} c {B}.

Stephen A. Cook
(* 1939)

Thus: if we know that a partial correctness property is valid, then we know
that there is a corresponding derivation.

The proof uses the following concept: assume that, e.g., {A} c1;c2 {B}
has to be derived. This requires an intermediate assertion C ∈ Assn such
that {A} c1 {C} and {C} c2 {B}. How to find it?

Semantics and Verification of Software Summer Semester 2013 10.11

Weakest Preconditions I

Definition 10.4 (Weakest precondition)

Given c ∈ Cmd , B ∈ Assn and I ∈ Int, the weakest precondition of B with
respect to c under I is defined by:

wpI Jc ,BK := {σ ∈ Σ⊥ | CJcKσ |=I B}.

Corollary 10.5

For every c ∈ Cmd, A,B ∈ Assn, and I ∈ Int:

1 |=I {A} c {B} ⇐⇒ AI ⊆ wpI Jc ,BK
2 If A0 ∈ Assn such that AI

0 = wpI Jc ,BK for every I ∈ Int, then

|= {A} c {B} ⇐⇒ |= (A⇒ A0)

Remark: (2) justifies the notion of weakest precondition: it is implied by
every precondition A which makes {A} c {B} valid

Semantics and Verification of Software Summer Semester 2013 10.12

Weakest Preconditions II

Definition 10.6 (Expressivity of assertion languages)

An assertion language Assn is called expressive if, for every c ∈ Cmd and
B ∈ Assn, there exists Ac,B ∈ Assn such that

AI
c,B = wpI Jc ,BK

for every I ∈ Int.

Theorem 10.7 (Expressivity of Assn)

Assn is expressive.

Proof.

(idea; see [Winskel 1996, p. 103 ff for details])
Given c ∈ Cmd and B ∈ Assn, construct Ac,B ∈ Assn with
σ |=I Ac,B ⇐⇒ CJcKσ |=I B (for every σ ∈ Σ⊥, I ∈ Int). For example:

Askip,B := B Ax:=a,B := B[x 7→ a]
Ac1;c2,B := Ac1,Ac2,B

. . .

(for while: “Gödelization” of sequences of intermediate states)
Semantics and Verification of Software Summer Semester 2013 10.13

Relative Completeness of Hoare Logic II

The following lemma shows that weakest preconditions are “derivable”:

Lemma 10.8

For every c ∈ Cmd and B ∈ Assn:

` {Ac,B} c {B}

Proof.

by structural induction over c (omitted)

Proof (Cook’s Completeness Theorem 10.3).

We have to show that Hoare Logic is relatively complete, i.e., that

|= {A} c {B} ⇒ ` {A} c {B}.
Lemma 10.8: ` {Ac,B} c {B}
Corollary 10.5: |= {A} c {B} ⇒ |= (A⇒ Ac,B)

(cons)
|= (A⇒ Ac,B) {Ac,B} c {B} |= (B ⇒ B)

{A} c {B}
Semantics and Verification of Software Summer Semester 2013 10.14

Outline

1 Recapitulation: Hoare Logic

2 (In-)Completeness of Hoare Logic

3 Relative Completeness of Hoare Logic

4 Total Correctness

5 Soundness and Completeness of Total Correctness

Semantics and Verification of Software Summer Semester 2013 10.15

Total Correctness

Observation: partial correctness properties only speak about
terminating computations of a given program

Total correctness additionally requires the proof that the program
indeed stops (on the input states admitted by the precondition)

Consider total correctness properties of the form

{A} c {⇓B}
where c ∈ Cmd and A,B ∈ Assn

Interpretation:

Validity of property {A} c {⇓B}
For all states σ ∈ Σ which satisfy A:
the execution of c in σ terminates and yields a state which satisfies B.

Semantics and Verification of Software Summer Semester 2013 10.16

Semantics of Total Correctness Properties

Definition 10.9 (Semantics of total correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

{A} c {⇓B} is called valid in σ ∈ Σ and I ∈ Int (notation:
σ |=I {A} c {⇓B}) if σ |=I A implies that CJcKσ 6= ⊥ and
CJcKσ |=I B.

{A} c {⇓B} is called valid in I ∈ Int (notation: |=I {A} c {⇓B}) if
σ |=I {A} c {⇓B} for every σ ∈ Σ.

{A} c {⇓B} is called valid (notation: |= {A} c {⇓B}) if
|=I {A} c {⇓B} for every I ∈ Int.

Obviously, total implies partial correctness (but not vice versa):

Corollary 10.10

For all A,B ∈ Assn and c ∈ Cmd,

|= {A} c {⇓B} ⇒|= {A} c {B}.
Semantics and Verification of Software Summer Semester 2013 10.17

Proving Total Correctness I

Goal: syntactic derivation of valid total correctness properties

Definition 10.11 (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

(skip)
{A} skip {⇓A}

(asgn)
{A[x 7→ a]} x := a {⇓A}

(seq)
{A} c1 {⇓C} {C} c2 {⇓B}

{A} c1;c2 {⇓B}
(if)
{A ∧ b} c1 {⇓B} {A ∧ ¬b} c2 {⇓B}
{A} if b then c1 else c2 {⇓B}

(while)
|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i .i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

(cons)
|= (A⇒ A′) {A′} c {⇓B ′} |= (B ′ ⇒ B)

{A} c {⇓B}

where i ∈ LVar .
A total correctness property is provable (notation: ` {A} c {⇓B}) if it is derivable
by the Hoare rules. In case of (while), A(i) is called a (loop) invariant.

Semantics and Verification of Software Summer Semester 2013 10.18

Proving Total Correctness II

In rule

(while)
|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i .i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

the notation A(i) indicates that assertion A parametrically depends
on the value of the logical variable i ∈ LVar .

Idea: i represents the remaining number of loop iterations

Loop to be traversed i + 1 times (i ≥ 0)
⇒ A(i + 1) holds
⇒ execution condition b satisfied

Thus: |= (i ≥ 0 ∧ A(i + 1)⇒ b), and i + 1 decreased to i after
execution of c

Execution terminated
⇒ A(0) holds
⇒ execution condition b violated

Thus: |= (A(0)⇒ ¬b)

Semantics and Verification of Software Summer Semester 2013 10.19

Total Correctness of Factorial Program I

Example 10.12

Proof of {A} y:=1;c {⇓B} where

A := (x > 0 ∧ x = i)
c := while ¬(x=1) do (y:=y*x; x:=x-1)
B := (y = i !)

First we show that the assertion C (j) = (x > 0∧ y ∗ x! = i !∧ x = j + 1) is
an invariant of c. Applying (asgn) twice yields

` {j ≥ 0 ∧ C (j)[x 7→ x-1]} x:=x-1 {⇓ j ≥ 0 ∧ C (j)} and
` {j ≥ 0 ∧ C (j)[x 7→ x-1][y 7→ y*x]} y:=y*x {⇓ j ≥ 0 ∧ C (j)[x 7→ x-1]}

such that (seq) implies

` {j ≥ 0 ∧ C (j)[x 7→ x-1][y 7→ y*x]} y:=y*x; x:=x-1 {⇓ j ≥ 0 ∧ C (j)}.
Now C (j + 1) = (x > 0 ∧ y*x! = i ! ∧ x = j + 2) and
C (j)[x 7→ x-1][y 7→ y*x] = (x−1 > 0∧y∗x∗ (x−1)! = i !∧x−1 = j + 1)
such that
|= ((j ≥ 0 ∧ C (j + 1))⇒ (j ≥ 0 ∧ C (j)[x 7→ x-1][y 7→ y*x])) and
|= ((j ≥ 0 ∧ C (j))⇒ C (j)).

Semantics and Verification of Software Summer Semester 2013 10.20

Total Correctness of Factorial Program II

Example 10.12 (continued)

Hence (cons) implies

` {j ≥ 0 ∧ C (j + 1)} y:=y*x; x:=x-1 {⇓C (j)}.
Moreover we have

|= ((j ≥ 0 ∧ C (j + 1))⇒ ¬(x = 1)) and |= (C (0)⇒ ¬(¬(x = 1)))

such that (while) yields

` {∃j .j ≥ 0 ∧ C (j)} c {⇓C (0)}.
For the initializing assignment, (asgn) implies

` {∃j .j ≥ 0 ∧ C (j)[y 7→ 1]} y:=1 {⇓∃j .j ≥ 0 ∧ C (j)},
such that (seq) allows to conclude

` {∃j .j ≥ 0 ∧ C (j)[y 7→ 1]} y:=1;c {⇓C (0)}.
On the other hand we have (choose j := i − 1):

|= ((x > 0 ∧ x = i)⇒ (∃j .j ≥ 0 ∧ C (j)[y 7→ 1])) and |= (C (0)⇒ y = i !)

such that (cons) yields the desired result:

` {x > 0 ∧ x = i} y:=1;c {⇓y = i !}.
Semantics and Verification of Software Summer Semester 2013 10.21

Outline

1 Recapitulation: Hoare Logic

2 (In-)Completeness of Hoare Logic

3 Relative Completeness of Hoare Logic

4 Total Correctness

5 Soundness and Completeness of Total Correctness

Semantics and Verification of Software Summer Semester 2013 10.22

Soundness

In analogy to Theorem 9.4 we can show that the Hoare Logic for total
correctness properties is also sound:

Theorem 10.13 (Soundness)

For every total correctness property {A} c {⇓B},
` {A} c {⇓B} ⇒ |= {A} c {⇓B}.

Proof.

again by structural induction over the derivation tree of ` {A} c {⇓B}
(only (while) case; on the board)

Semantics and Verification of Software Summer Semester 2013 10.23

Relative Completeness

Also the counterpart to Cook’s Completeness Theorem 10.3 applies:

Theorem 10.14 (Completeness)

The Hoare Logic for total correctness properties is relatively complete, i.e.,
for every {A} c {⇓B}:

|= {A} c {⇓B} ⇒ ` {A} c {⇓B}.

Proof.

omitted

Semantics and Verification of Software Summer Semester 2013 10.24

	Recapitulation: Hoare Logic
	(In-)Completeness of Hoare Logic
	Relative Completeness of Hoare Logic
	Total Correctness
	Soundness and Completeness of Total Correctness

