Semantics and Verification of Software

Lecture 11: Axiomatic Semantics of WHILE IV
(Semantic Equivalence)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-1i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

© Recapitulation: Partial & Total Correctness Properties

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 11.2



Goal: syntactic derivation of valid partial correctness
properties. Here A[x — a] denotes the syntactic
replacement of every occurrence of x by a in A.

Tony Hoare (* 1934)

Definition (Hoare Logic)

The Hoare rules are given by

(Shp) Y okip (A} (80 Al = A} x:=2 {A}
(se ){A}Cl{c} {Cte{B} . {ANb}a{B} {AA-b}c{B}
{A}c1;0{B} {A}if b then ¢ else ¢ {B}
(while) {A A b} ¢ {A}

{A}while b do c{AA —b}
F(A=A) {A}c{B} E(B'=B)
{A} c{B}
A partial correctness property is provable (notation: - {A} c{B}) if it is
derivable by the Hoare rules. In (while), A is called a (loop) invariant.

(cons)

RWNTH HE Semantics and Verification of Software Summer Semester 2013

1.3



Proving Total Correctness

Goal: syntactic derivation of valid total correctness properties

Definition (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

" {ayoip (1A} S il al)x = 2 (UA)
(sea) {Ata i ¢} {CH e {iB} (i) {Anb}a{iB} {AN—b}e{lB}
{A}ta ;e {IB} {A} if b then ¢ else ¢ {{| B}
(while) E(>0NA(i+1)=b) {iZ0ANA(i+1)}c{VA(i)} E (A0)= —b)

{3i.i > 0A A(i)}while b do c {| A(0)}
FA=A) {A}c{{B} E(B'=B)
{A}c{UB}

(cons)

where j € LVar.
A total correctness property is provable (notation: - {A} ¢ {{ B}) if it is derivable
by the Hoare rules. In case of (while), A(f) is called a (loop) invariant.

v

RWNTH Semantics and Verification of Software Summer Semester 2013 11.4



e Axiomatic Equivalence

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 11.5



Operational and Denotational Equivalence

Definition 4.1: O[.] : Cmd — (X --» X) given by

Olc](o) =0’ < {(c,0) =’

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 11.6



Operational and Denotational Equivalence

Definition 4.1: O[.] : Cmd — (X --» X) given by
Olc](o) =0’ < {(c,0) =’

Definition 4.2: Two statements c1, c; € Cmd are operationally equivalent
(notation: ¢ ~ ) if

D[[Clﬂ = D[[CQ]].

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 11.6



Operational and Denotational Equivalence

Definition 4.1: O[.] : Cmd — (X --» X) given by
Olc](o) =0’ < {(c,0) =’

Definition 4.2: Two statements c1, c; € Cmd are operationally equivalent
(notation: ¢ ~ ) if

D[[Clﬂ = D[[CQ]].

Theorem 7.5: For every c € Cmd,

Ole] = €[c],

ie., O[] = ¢[].

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013



Axiomatic Equivalence |

In the axiomatic semantics, two statements have to be considered
equivalent if they are indistinguishable w.r.t. partial correctness properties:

Definition 11.1 (Axiomatic equivalence)

Two statements c1, co € Cmd are called axiomatically equivalent
(notation: ¢; &~ ¢) if, for all assertions A, B € Assn,

F{Ala{B} <+ F{Ala{B}.

Semantics and Verification of Software Summer Semester 2013 11.7




Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip

(cf. Lemma 4.3).

v

RWNTH HE Semantics and Verification of Software Summer Semester 2013 11.8



Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A, B € Assn:
E {A}while b do c{B}

v

RWNTH HE Semantics and Verification of Software Summer Semester 2013 11.8



Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip
(cf. Lemma 4.3). Let A, B € Assn:

E {A}while b do c{B}
<= F {A}while bdo c{B} (Theorem 9.4, 10.3)

v

RWNTH HE Semantics and Verification of Software Summer Semester 2013 11.8



Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A, B € Assn:
E {A}while b do c{B}
<= F {A}while bdo c{B} (Theorem 9.4, 10.3)
<= ex. C € Assn such that = (A= C),=(CA-b= B),
F {C}while bdo c{C A=b} (rule (cons))

v

RWNTH HE Semantics and Verification of Software Summer Semester 2013 11.8



Axiomatic Equivalence Il
Example 11.2

We show that

while b do ¢ = if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A, B € Assn:
E {A}while b do c{B}
<= F {A}while bdo c{B} (Theorem 9.4, 10.3)
<= ex. C € Assn such that = (A= C),=(CA-b= B),
F {C}while b do c{C A—=b} (rule (cons))
<= ex. C € Assn such that = (A= C),=(CA-b= B),
F{CAb}c{C} (rule (while))

v

RWNTH Semantics and Verification of Software Summer Semester 2013 11.8



Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A, B € Assn:
E {A}while b do c{B}
<= F {A}while b do c{B}
<= ex. C € Assn such that =
F {C}while b do c{C A—=b} (rule (cons))
<= ex. C € Assn such that = (A= C),=(CA-b= B),
—

—

Theorem 9.4, 10.3)
A= C),E(CA—-b= B),

—

F{CAb}c{C} (rule (while))

ex. C € Assn such that = (A= C),E (CA-b= B),
F{C A b} c;while bdo c{C A—b} (rule (seq)),
F{C A=b}skip{C A =b} (rule (skip))

v

RWNTH Semantics and Verification of Software Summer Semester 2013 11.8



Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A, B € Assn:
E {A}while b do c{B}
<= F {A}while b do c{B}
<= ex. C € Assn such that =
F {C}while b do c{C A—=b} (rule (cons))
<= ex. C € Assn such that = (A= C),=(CA-b= B),
—

—

Theorem 9.4, 10.3)
A= C),E(CA—-b= B),

—

F{CAb}c{C} (rule (while))
ex. C € Assn such that = (A= C),E (CA-b= B),
F{C A b} c;while bdo c{C A—b} (rule (seq)),
F{C A=b}skip{C A =b} (rule (skip))
<= ex. C € Assn such that = (A= C),=(CA-b= B),
F{C} if b then (c;while b do c) else skip {C A =b} (rule (if))

v

RWNTH Semantics and Verification of Software Summer Semester 2013 11.8



Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A, B € Assn:
E {A}while b do c{B}
<= F {A}while b do c{B}
<= ex. C € Assn such that =
F {C}while b do c{C A—=b} (rule (cons))
<= ex. C € Assn such that = (A= C),=(CA-b= B),
—

—

Theorem 9.4, 10.3)
A= C),E(CA—-b= B),

—

F{CAb}c{C} (rule (while))

ex. C € Assn such that = (A= C),E (CA-b= B),

F{C A b} c;while bdo c{C A—b} (rule (seq)),

F{C A=b}skip{C A =b} (rule (skip))

ex. C € Assn such that = (A= C),=(CA-b= B),

F {C} if b then (c;while b do c) else skip {C A =b} (rule (if))
F {A}if b then (c;while b do c) else skip{B} (rule (cons))

I

v

RWNTH Semantics and Verification of Software Summer Semester 2013 11.8



Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A, B € Assn:
E {A}while b do c{B}
<= F {A}while b do c{B}
ex. C € Assn such that |

—

Theorem 9.4, 10.3)

= A= C),E(CA-b= B),
F {C}while b do c{C A—=b} (rule (cons))

<= ex. C € Assn such that = (A= C),=(CA-b= B),

—

—

F{CAb}c{C} (rule (while))

ex. C € Assn such that = (A= C),E (CA-b= B),

F{C A b} c;while bdo c{C A—b} (rule (seq)),

F{C A=b}skip{C A =b} (rule (skip))

ex. C € Assn such that = (A= C),=(CA-b= B),

F {C} if b then (c;while b do c) else skip {C A =b} (rule (if))
F {A}if b then (c;while b do c) else skip{B} (rule (cons))
E {A}if b then (c;while b do c) else skip{B}

(Theorem 9.4, 10.3)

111

v

RWNTH Semantics and Verification of Software Summer Semester 2013 11.8



© Characteristic Assertions

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 11.9



Characteristic Assertions |

The following results are based of the following encoding of states by
assertions:
Definition 11.3

Given a finite subset of program variables X C Var and a state o € ¥, the
characteristic assertion of o w.r.t. X is given by

State(o, X) /\ (x= a(x ) € Assn
xeX
Moreover, we let State(.L, X) := false.

EZ

Semantics and Verification of Software Summer Semester 2013 11.10



Characteristic Assertions Il

Programs and characteristic state assertions are obviously related in the
following way:

Corollary 11.4

Let c € Cmd, and let FV/(c) C Var denote the set of all variables
occurring in c. Then, for every finite X O FV/(c) and o € ¥,

{State(o, X)} c {State(€[c]o, X)}

Semantics and Verification of Software Summer Semester 2013 11.11



Characteristic Assertions Il

Programs and characteristic state assertions are obviously related in the
following way:

Corollary 11.4

Let c € Cmd, and let FV/(c) C Var denote the set of all variables
occurring in c. Then, for every finite X O FV/(c) and o € ¥,

{State(o, X)} c {State(€[c]o, X)}

Example 11.5 (Factorial program)

For ¢ := (y:=1; while —(x=1) do (y:=y*x; x:=x-1)), X = {x,y},
o(x) =3, and o(y) = 0, we obtain

State(o, X) = (x=3 A y=0)
State(€[c]o, X) = (x=1 A y=6

v

RWNTH HE Semantics and Verification of Software Summer Semester 2013 11.11



@ Partial vs. Total Equivalence

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 11.12



Partial vs. Total Equivalence

Now we can show that considering total rather than partial correctness
properties yields the same notion of equivalence:

Theorem 11.6

Let c1,co € Cmd. The following propositions are equivalent:
Q VA BeAssn: E{Ala{B} — F {A}a{B}
@ VA BecAssn: E{Ala{lB} <= E{Ala{IB}

nerAACHEN Semantics and Verification of Software Summer Semester 2013 11.13



Partial vs. Total Equivalence

Now we can show that considering total rather than partial correctness
properties yields the same notion of equivalence:

Theorem 11.6

Let c1,co € Cmd. The following propositions are equivalent:
Q VA BeAssn: E{Ala{B} — F {A}a{B}
@ VA BecAssn: E{Ala{lB} <= E{Ala{IB}

on the board

Semantics and Verification of Software Summer Semester 2013 11.13




© Axiomatic vs. Operational /Denotational Equivalence

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 11.14



Axiomatic vs. Operational /Denotational Equiv.

Axiomatic and operational/denotational equivalence coincide, i.e., for all
c1, ¢ € Cmd,
CLR C < 1~ O.

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 11.15



Axiomatic vs. Operational /Denotational Equiv.

Axiomatic and operational/denotational equivalence coincide, i.e., for all
c1, ¢ € Cmd,
CLR C < 1~ O.

on the board ] \

nerAACHEN Semantics and Verification of Software Summer Semester 2013 11.15



@ Summary: Axiomatic Semantics

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 11.16



Summary: Axiomatic Semantics

e Formalized by partial /total correctness properties

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 11.17



Summary: Axiomatic Semantics

e Formalized by partial /total correctness properties

@ Inductively defined by Hoare Logic proof rules

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 11.17



Summary: Axiomatic Semantics

e Formalized by partial /total correctness properties
@ Inductively defined by Hoare Logic proof rules

@ Technically involved (especially loop invariants)
= machine support (proof assistants) indispensable for larger
programs

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013



Summary: Axiomatic Semantics

Formalized by partial /total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
= machine support (proof assistants) indispensable for larger
programs

e Equivalence of axiomatic and operational/denotational semantics

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013



Summary: Axiomatic Semantics

Formalized by partial /total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
= machine support (proof assistants) indispensable for larger
programs

Equivalence of axiomatic and operational/denotational semantics

@ Software engineering aspect: integrated development of program and
proof (cf. assertions in Java)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 11.17



	Recapitulation: Partial & Total Correctness Properties
	Axiomatic Equivalence
	Characteristic Assertions
	Partial vs. Total Equivalence
	Axiomatic vs. Operational/Denotational Equivalence
	Summary: Axiomatic Semantics

