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Goal: syntactic derivation of valid partial correctness
properties. Here A[x — a] denotes the syntactic
replacement of every occurrence of x by a in A.

Tony Hoare (* 1934)

Definition (Hoare Logic)

The Hoare rules are given by

(Shp) Y okip (A} (80 Al = A} x:=2 {A}
(se ){A}Cl{c} {Cte{B} . {ANb}a{B} {AA-b}c{B}
{A}c1;0{B} {A}if b then ¢ else ¢ {B}
(while) {A A b} ¢ {A}

{A}while b do c{AA —b}
F(A=A) {A}c{B} E(B'=B)
{A} c{B}
A partial correctness property is provable (notation: - {A} c{B}) if it is
derivable by the Hoare rules. In (while), A is called a (loop) invariant.

(cons)
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Proving Total Correctness

Goal: syntactic derivation of valid total correctness properties

Definition (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

" {ayoip (1A} S il al)x = 2 (UA)
(sea) {Ata i ¢} {CH e {iB} (i) {Anb}a{iB} {AN—b}e{lB}
{A}ta ;e {IB} {A} if b then ¢ else ¢ {{| B}
(while) E(>0NA(i+1)=b) {iZ0ANA(i+1)}c{VA(i)} E (A0)= —b)

{3i.i > 0A A(i)}while b do c {| A(0)}
FA=A) {A}c{{B} E(B'=B)
{A}c{UB}

(cons)

where j € LVar.
A total correctness property is provable (notation: - {A} ¢ {{ B}) if it is derivable
by the Hoare rules. In case of (while), A(f) is called a (loop) invariant.

v
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e Axiomatic Equivalence
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Operational and Denotational Equivalence

Definition 4.1: O[.] : Cmd — (X --» X) given by

Olc](o) =0’ < {(c,0) =’
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Operational and Denotational Equivalence

Definition 4.1: O[.] : Cmd — (X --» X) given by
Olc](o) =0’ < {(c,0) =’

Definition 4.2: Two statements c1, c; € Cmd are operationally equivalent
(notation: ¢ ~ ) if

D[[Clﬂ = D[[CQ]].
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Operational and Denotational Equivalence

Definition 4.1: O[.] : Cmd — (X --» X) given by
Olc](o) =0’ < {(c,0) =’

Definition 4.2: Two statements c1, c; € Cmd are operationally equivalent
(notation: ¢ ~ ) if

D[[Clﬂ = D[[CQ]].

Theorem 7.5: For every c € Cmd,

Ole] = €[c],

ie., O[] = ¢[].
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Axiomatic Equivalence |

In the axiomatic semantics, two statements have to be considered
equivalent if they are indistinguishable w.r.t. partial correctness properties:

Definition 11.1 (Axiomatic equivalence)

Two statements c1, co € Cmd are called axiomatically equivalent
(notation: ¢; &~ ¢) if, for all assertions A, B € Assn,

F{Ala{B} <+ F{Ala{B}.
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Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip

(cf. Lemma 4.3).

v
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Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A, B € Assn:
E {A}while b do c{B}

v
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Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip
(cf. Lemma 4.3). Let A, B € Assn:

E {A}while b do c{B}
<= F {A}while bdo c{B} (Theorem 9.4, 10.3)

v
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Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A, B € Assn:
E {A}while b do c{B}
<= F {A}while bdo c{B} (Theorem 9.4, 10.3)
<= ex. C € Assn such that = (A= C),=(CA-b= B),
F {C}while bdo c{C A=b} (rule (cons))
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Axiomatic Equivalence Il
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<= F {A}while bdo c{B} (Theorem 9.4, 10.3)
<= ex. C € Assn such that = (A= C),=(CA-b= B),
F {C}while b do c{C A—=b} (rule (cons))
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Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A, B € Assn:
E {A}while b do c{B}
<= F {A}while b do c{B}
<= ex. C € Assn such that =
F {C}while b do c{C A—=b} (rule (cons))
<= ex. C € Assn such that = (A= C),=(CA-b= B),
—

—

Theorem 9.4, 10.3)
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F{CAb}c{C} (rule (while))

ex. C € Assn such that = (A= C),E (CA-b= B),
F{C A b} c;while bdo c{C A—b} (rule (seq)),
F{C A=b}skip{C A =b} (rule (skip))
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Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A, B € Assn:
E {A}while b do c{B}
<= F {A}while b do c{B}
<= ex. C € Assn such that =
F {C}while b do c{C A—=b} (rule (cons))
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—

F{CAb}c{C} (rule (while))
ex. C € Assn such that = (A= C),E (CA-b= B),
F{C A b} c;while bdo c{C A—b} (rule (seq)),
F{C A=b}skip{C A =b} (rule (skip))
<= ex. C € Assn such that = (A= C),=(CA-b= B),
F{C} if b then (c;while b do c) else skip {C A =b} (rule (if))

v
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Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A, B € Assn:
E {A}while b do c{B}
<= F {A}while b do c{B}
<= ex. C € Assn such that =
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A= C),E(CA—-b= B),

—

F{CAb}c{C} (rule (while))

ex. C € Assn such that = (A= C),E (CA-b= B),

F{C A b} c;while bdo c{C A—b} (rule (seq)),

F{C A=b}skip{C A =b} (rule (skip))

ex. C € Assn such that = (A= C),=(CA-b= B),

F {C} if b then (c;while b do c) else skip {C A =b} (rule (if))
F {A}if b then (c;while b do c) else skip{B} (rule (cons))

I
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Axiomatic Equivalence Il
Example 11.2

We show that
while b do ¢ = if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A, B € Assn:
E {A}while b do c{B}
<= F {A}while b do c{B}
ex. C € Assn such that |

—

Theorem 9.4, 10.3)

= A= C),E(CA-b= B),
F {C}while b do c{C A—=b} (rule (cons))

<= ex. C € Assn such that = (A= C),=(CA-b= B),

—

—

F{CAb}c{C} (rule (while))

ex. C € Assn such that = (A= C),E (CA-b= B),

F{C A b} c;while bdo c{C A—b} (rule (seq)),

F{C A=b}skip{C A =b} (rule (skip))

ex. C € Assn such that = (A= C),=(CA-b= B),

F {C} if b then (c;while b do c) else skip {C A =b} (rule (if))
F {A}if b then (c;while b do c) else skip{B} (rule (cons))
E {A}if b then (c;while b do c) else skip{B}

(Theorem 9.4, 10.3)

111

v
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© Characteristic Assertions
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Characteristic Assertions |

The following results are based of the following encoding of states by
assertions:
Definition 11.3

Given a finite subset of program variables X C Var and a state o € ¥, the
characteristic assertion of o w.r.t. X is given by

State(o, X) /\ (x= a(x ) € Assn
xeX
Moreover, we let State(.L, X) := false.

EZ
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Characteristic Assertions Il

Programs and characteristic state assertions are obviously related in the
following way:

Corollary 11.4

Let c € Cmd, and let FV/(c) C Var denote the set of all variables
occurring in c. Then, for every finite X O FV/(c) and o € ¥,

{State(o, X)} c {State(€[c]o, X)}
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Characteristic Assertions Il

Programs and characteristic state assertions are obviously related in the
following way:

Corollary 11.4

Let c € Cmd, and let FV/(c) C Var denote the set of all variables
occurring in c. Then, for every finite X O FV/(c) and o € ¥,

{State(o, X)} c {State(€[c]o, X)}

Example 11.5 (Factorial program)

For ¢ := (y:=1; while —(x=1) do (y:=y*x; x:=x-1)), X = {x,y},
o(x) =3, and o(y) = 0, we obtain

State(o, X) = (x=3 A y=0)
State(€[c]o, X) = (x=1 A y=6

v
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@ Partial vs. Total Equivalence
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Partial vs. Total Equivalence

Now we can show that considering total rather than partial correctness
properties yields the same notion of equivalence:

Theorem 11.6

Let c1,co € Cmd. The following propositions are equivalent:
Q VA BeAssn: E{Ala{B} — F {A}a{B}
@ VA BecAssn: E{Ala{lB} <= E{Ala{IB}
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Partial vs. Total Equivalence

Now we can show that considering total rather than partial correctness
properties yields the same notion of equivalence:

Theorem 11.6

Let c1,co € Cmd. The following propositions are equivalent:
Q VA BeAssn: E{Ala{B} — F {A}a{B}
@ VA BecAssn: E{Ala{lB} <= E{Ala{IB}

on the board
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© Axiomatic vs. Operational /Denotational Equivalence
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Axiomatic vs. Operational /Denotational Equiv.

Axiomatic and operational/denotational equivalence coincide, i.e., for all
c1, ¢ € Cmd,
CLR C < 1~ O.
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Axiomatic vs. Operational /Denotational Equiv.

Axiomatic and operational/denotational equivalence coincide, i.e., for all
c1, ¢ € Cmd,
CLR C < 1~ O.

on the board ] \
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@ Summary: Axiomatic Semantics
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Summary: Axiomatic Semantics

e Formalized by partial /total correctness properties
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Summary: Axiomatic Semantics

e Formalized by partial /total correctness properties

@ Inductively defined by Hoare Logic proof rules
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Summary: Axiomatic Semantics

e Formalized by partial /total correctness properties
@ Inductively defined by Hoare Logic proof rules

@ Technically involved (especially loop invariants)
= machine support (proof assistants) indispensable for larger
programs
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Summary: Axiomatic Semantics

Formalized by partial /total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
= machine support (proof assistants) indispensable for larger
programs

e Equivalence of axiomatic and operational/denotational semantics
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Summary: Axiomatic Semantics

Formalized by partial /total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
= machine support (proof assistants) indispensable for larger
programs

Equivalence of axiomatic and operational/denotational semantics

@ Software engineering aspect: integrated development of program and
proof (cf. assertions in Java)
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