
Semantics and Verification of Software
Lecture 11: Axiomatic Semantics of WHILE IV

(Semantic Equivalence)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Outline

1 Recapitulation: Partial & Total Correctness Properties

2 Axiomatic Equivalence

3 Characteristic Assertions

4 Partial vs. Total Equivalence

5 Axiomatic vs. Operational/Denotational Equivalence

6 Summary: Axiomatic Semantics

Semantics and Verification of Software Summer Semester 2013 11.2

Hoare Logic

Goal: syntactic derivation of valid partial correctness
properties. Here A[x 7→ a] denotes the syntactic
replacement of every occurrence of x by a in A.

Tony Hoare (* 1934)

Definition (Hoare Logic)

The Hoare rules are given by
(skip)

{A} skip {A}
(asgn)

{A[x 7→ a]} x:=a {A}

(seq)
{A} c1 {C} {C} c2 {B}
{A} c1;c2 {B}

(if)
{A ∧ b} c1 {B} {A ∧ ¬b} c2 {B}
{A} if b then c1 else c2 {B}

(while)
{A ∧ b} c {A}

{A} while b do c {A ∧ ¬b}

(cons)
|= (A⇒ A′) {A′} c {B ′} |= (B ′ ⇒ B)

{A} c {B}
A partial correctness property is provable (notation: ` {A} c {B}) if it is
derivable by the Hoare rules. In (while), A is called a (loop) invariant.

Semantics and Verification of Software Summer Semester 2013 11.3

Proving Total Correctness

Goal: syntactic derivation of valid total correctness properties

Definition (Hoare Logic for total correctness)

The Hoare rules for total correctness are given by

(skip)
{A} skip {⇓A}

(asgn)
{A[x 7→ a]} x := a {⇓A}

(seq)
{A} c1 {⇓C} {C} c2 {⇓B}

{A} c1;c2 {⇓B}
(if)
{A ∧ b} c1 {⇓B} {A ∧ ¬b} c2 {⇓B}
{A} if b then c1 else c2 {⇓B}

(while)
|= (i ≥ 0 ∧ A(i + 1)⇒ b) {i ≥ 0 ∧ A(i + 1)} c {⇓A(i)} |= (A(0)⇒ ¬b)

{∃i .i ≥ 0 ∧ A(i)} while b do c {⇓A(0)}

(cons)
|= (A⇒ A′) {A′} c {⇓B ′} |= (B ′ ⇒ B)

{A} c {⇓B}

where i ∈ LVar .
A total correctness property is provable (notation: ` {A} c {⇓B}) if it is derivable
by the Hoare rules. In case of (while), A(i) is called a (loop) invariant.

Semantics and Verification of Software Summer Semester 2013 11.4

Outline

1 Recapitulation: Partial & Total Correctness Properties

2 Axiomatic Equivalence

3 Characteristic Assertions

4 Partial vs. Total Equivalence

5 Axiomatic vs. Operational/Denotational Equivalence

6 Summary: Axiomatic Semantics

Semantics and Verification of Software Summer Semester 2013 11.5

Operational and Denotational Equivalence

Definition 4.1: OJ.K : Cmd → (Σ 99K Σ) given by

OJcK(σ) = σ′ ⇐⇒ 〈c , σ〉 → σ′

Definition 4.2: Two statements c1, c2 ∈ Cmd are operationally equivalent
(notation: c1 ∼ c2) if

OJc1K = OJc2K.

Theorem 7.5: For every c ∈ Cmd ,

OJcK = CJcK,
i.e., OJ.K = CJ.K.

Semantics and Verification of Software Summer Semester 2013 11.6

Axiomatic Equivalence I

In the axiomatic semantics, two statements have to be considered
equivalent if they are indistinguishable w.r.t. partial correctness properties:

Definition 11.1 (Axiomatic equivalence)

Two statements c1, c2 ∈ Cmd are called axiomatically equivalent
(notation: c1 ≈ c2) if, for all assertions A,B ∈ Assn,

|= {A} c1 {B} ⇐⇒ |= {A} c2 {B}.

Semantics and Verification of Software Summer Semester 2013 11.7

Axiomatic Equivalence II

Example 11.2

We show that

while b do c ≈ if b then (c;while b do c) else skip

(cf. Lemma 4.3). Let A,B ∈ Assn:
|= {A} while b do c {B}

⇐⇒ ` {A} while b do c {B} (Theorem 9.4, 10.3)
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C} while b do c {C ∧ ¬b} (rule (cons))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c {C} (rule (while))
⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),

` {C ∧ b} c;while b do c {C ∧ ¬b} (rule (seq)),
` {C ∧ ¬b} skip {C ∧ ¬b} (rule (skip))

⇐⇒ ex. C ∈ Assn such that |= (A⇒ C), |= (C ∧ ¬b ⇒ B),
` {C} if b then (c;while b do c) else skip {C ∧ ¬b} (rule (if))

⇐⇒ ` {A} if b then (c;while b do c) else skip {B} (rule (cons))
⇐⇒ |= {A} if b then (c;while b do c) else skip {B}

(Theorem 9.4, 10.3)

Semantics and Verification of Software Summer Semester 2013 11.8

Outline

1 Recapitulation: Partial & Total Correctness Properties

2 Axiomatic Equivalence

3 Characteristic Assertions

4 Partial vs. Total Equivalence

5 Axiomatic vs. Operational/Denotational Equivalence

6 Summary: Axiomatic Semantics

Semantics and Verification of Software Summer Semester 2013 11.9

Characteristic Assertions I

The following results are based of the following encoding of states by
assertions:

Definition 11.3

Given a finite subset of program variables X ⊆ Var and a state σ ∈ Σ, the
characteristic assertion of σ w.r.t. X is given by

State(σ,X) :=
∧
x∈X

(x = σ(x)︸︷︷︸
∈Z

) ∈ Assn

Moreover, we let State(⊥,X) := false.

Semantics and Verification of Software Summer Semester 2013 11.10

Characteristic Assertions II

Programs and characteristic state assertions are obviously related in the
following way:

Corollary 11.4

Let c ∈ Cmd, and let FV (c) ⊆ Var denote the set of all variables
occurring in c. Then, for every finite X ⊇ FV (c) and σ ∈ Σ,

{State(σ,X)} c {State(CJcKσ,X)}

Example 11.5 (Factorial program)

For c := (y:=1; while ¬(x=1) do (y:=y*x; x:=x-1)), X = {x, y},
σ(x) = 3, and σ(y) = 0, we obtain

State(σ,X) = (x=3 ∧ y=0)
State(CJcKσ,X) = (x=1 ∧ y=6)

Semantics and Verification of Software Summer Semester 2013 11.11

Outline

1 Recapitulation: Partial & Total Correctness Properties

2 Axiomatic Equivalence

3 Characteristic Assertions

4 Partial vs. Total Equivalence

5 Axiomatic vs. Operational/Denotational Equivalence

6 Summary: Axiomatic Semantics

Semantics and Verification of Software Summer Semester 2013 11.12

Partial vs. Total Equivalence

Now we can show that considering total rather than partial correctness
properties yields the same notion of equivalence:

Theorem 11.6

Let c1, c2 ∈ Cmd. The following propositions are equivalent:

1 ∀A,B ∈ Assn : |= {A} c1 {B} ⇐⇒ |= {A} c2 {B}
2 ∀A,B ∈ Assn : |= {A} c1 {⇓B} ⇐⇒ |= {A} c2 {⇓B}

Proof.

on the board

Semantics and Verification of Software Summer Semester 2013 11.13

Outline

1 Recapitulation: Partial & Total Correctness Properties

2 Axiomatic Equivalence

3 Characteristic Assertions

4 Partial vs. Total Equivalence

5 Axiomatic vs. Operational/Denotational Equivalence

6 Summary: Axiomatic Semantics

Semantics and Verification of Software Summer Semester 2013 11.14

Axiomatic vs. Operational/Denotational Equiv.

Theorem 11.7

Axiomatic and operational/denotational equivalence coincide, i.e., for all
c1, c2 ∈ Cmd,

c1 ≈ c2 ⇐⇒ c1 ∼ c2.

Proof.

on the board

Semantics and Verification of Software Summer Semester 2013 11.15

Outline

1 Recapitulation: Partial & Total Correctness Properties

2 Axiomatic Equivalence

3 Characteristic Assertions

4 Partial vs. Total Equivalence

5 Axiomatic vs. Operational/Denotational Equivalence

6 Summary: Axiomatic Semantics

Semantics and Verification of Software Summer Semester 2013 11.16

Summary: Axiomatic Semantics

Formalized by partial/total correctness properties

Inductively defined by Hoare Logic proof rules

Technically involved (especially loop invariants)
⇒ machine support (proof assistants) indispensable for larger
programs

Equivalence of axiomatic and operational/denotational semantics

Software engineering aspect: integrated development of program and
proof (cf. assertions in Java)

Semantics and Verification of Software Summer Semester 2013 11.17

	Recapitulation: Partial & Total Correctness Properties
	Axiomatic Equivalence
	Characteristic Assertions
	Partial vs. Total Equivalence
	Axiomatic vs. Operational/Denotational Equivalence
	Summary: Axiomatic Semantics

