
Semantics and Verification of Software
Lecture 12: Provably Correct Implementation I

(Abstract Machine)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Outline

1 Compiler Correctness

2 The Abstract Machine

3 Properties of AM

Semantics and Verification of Software Summer Semester 2013 12.2

Compiler Correctness

programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

To do:

1 Definition of abstract machine

2 Definition (operational) semantics of machine instructions

3 Definition of translation WHILE → machine code (“compiler”)

4 Proof: semantics of generated machine code = semantics of original
source code

Semantics and Verification of Software Summer Semester 2013 12.3

Compiler Correctness

programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

To do:

1 Definition of abstract machine

2 Definition (operational) semantics of machine instructions

3 Definition of translation WHILE → machine code (“compiler”)

4 Proof: semantics of generated machine code = semantics of original
source code

Semantics and Verification of Software Summer Semester 2013 12.3

Outline

1 Compiler Correctness

2 The Abstract Machine

3 Properties of AM

Semantics and Verification of Software Summer Semester 2013 12.4

The Abstract Machine

Definition 12.1 (Abstract machine)

The abstract machine (AM) is given by

configurations of the form 〈d , e, σ〉 ∈ Cnf where

d ∈ Code is the sequence of instructions (code) to be executed
e ∈ Stk := (Z ∪ B)∗ is the evaluation stack (top left)
σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Code × Stk × Σ)

initial configurations of the form 〈d , ε, σ〉
final configurations of the form 〈ε, e, σ〉
code sequences d and instructions i :

d ::= ε | i : d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z ∈ Z and x ∈ Var)

Semantics and Verification of Software Summer Semester 2013 12.5

The Abstract Machine

Definition 12.1 (Abstract machine)

The abstract machine (AM) is given by

configurations of the form 〈d , e, σ〉 ∈ Cnf where

d ∈ Code is the sequence of instructions (code) to be executed
e ∈ Stk := (Z ∪ B)∗ is the evaluation stack (top left)
σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Code × Stk × Σ)

initial configurations of the form 〈d , ε, σ〉

final configurations of the form 〈ε, e, σ〉
code sequences d and instructions i :

d ::= ε | i : d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z ∈ Z and x ∈ Var)

Semantics and Verification of Software Summer Semester 2013 12.5

The Abstract Machine

Definition 12.1 (Abstract machine)

The abstract machine (AM) is given by

configurations of the form 〈d , e, σ〉 ∈ Cnf where

d ∈ Code is the sequence of instructions (code) to be executed
e ∈ Stk := (Z ∪ B)∗ is the evaluation stack (top left)
σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Code × Stk × Σ)

initial configurations of the form 〈d , ε, σ〉
final configurations of the form 〈ε, e, σ〉

code sequences d and instructions i :
d ::= ε | i : d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z ∈ Z and x ∈ Var)

Semantics and Verification of Software Summer Semester 2013 12.5

The Abstract Machine

Definition 12.1 (Abstract machine)

The abstract machine (AM) is given by

configurations of the form 〈d , e, σ〉 ∈ Cnf where

d ∈ Code is the sequence of instructions (code) to be executed
e ∈ Stk := (Z ∪ B)∗ is the evaluation stack (top left)
σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Code × Stk × Σ)

initial configurations of the form 〈d , ε, σ〉
final configurations of the form 〈ε, e, σ〉
code sequences d and instructions i :

d ::= ε | i : d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z ∈ Z and x ∈ Var)

Semantics and Verification of Software Summer Semester 2013 12.5

Semantics of AM-Code

Definition 12.2 (Transition relation of AM)

The transition relation B ⊆ Cnf × Cnf is given by

〈PUSH(z) : d , e, σ〉 B 〈d , z : e, σ〉
〈ADD : d , z1 : z2 : e, σ〉 B 〈d , (z1 + z2) : e, σ〉
〈MULT : d , z1 : z2 : e, σ〉 B 〈d , (z1 ∗ z2) : e, σ〉
〈SUB : d , z1 : z2 : e, σ〉 B 〈d , (z1 − z2) : e, σ〉

〈TRUE : d , e, σ〉 B 〈d , true : e, σ〉
〈FALSE : d , e, σ〉 B 〈d , false : e, σ〉

〈EQ : d , z1 : z2 : e, σ〉 B 〈d , (z1 = z2) : e, σ〉
〈GT : d , z1 : z2 : e, σ〉 B 〈d , (z1 > z2) : e, σ〉
〈AND : d , t1 : t2 : e, σ〉 B 〈d , (t1 ∧ t2) : e, σ〉
〈OR : d , t1 : t2 : e, σ〉 B 〈d , (t1 ∨ t2) : e, σ〉
〈NEG : d , t : e, σ〉 B 〈d ,¬t : e, σ〉
〈LOAD(x) : d , e, σ〉 B 〈d , σ(x) : e, σ〉

〈STORE(x) : d , z : e, σ〉 B 〈d , e, σ[x 7→ z]〉
〈NOOP : d , e, σ〉 B 〈d , e, σ〉

〈BRANCH(dtrue,dfalse) : d , t : e, σ〉 B 〈dt : d , e, σ〉
〈LOOP(d1,d2) : d , e, σ〉 B 〈d1 :BRANCH(d2:LOOP(d1,d2),NOOP) :d , e, σ〉

Semantics and Verification of Software Summer Semester 2013 12.6

Alternative Choices

Remark: more traditional machine architectures

Variables referenced by address (and not by name)

configurations 〈d , e,m〉 with memory m ∈ Z∗

LOAD(x)/STORE(x) replaced by GET(n)/PUT(n) (where n ∈ N)

BRANCH and LOOP instruction replaced by code addresses (labels) and
jumping instructions

configurations 〈pc, d , e,m〉 with program counter pc ∈ N
BRANCH and LOOP implemented by control flow, using JUMP(l) and
JUMPFALSE(l) (l ∈ N)

Registers for storing intermediate values
(in place of evaluation stack e)

Semantics and Verification of Software Summer Semester 2013 12.7

Alternative Choices

Remark: more traditional machine architectures

Variables referenced by address (and not by name)

configurations 〈d , e,m〉 with memory m ∈ Z∗

LOAD(x)/STORE(x) replaced by GET(n)/PUT(n) (where n ∈ N)

BRANCH and LOOP instruction replaced by code addresses (labels) and
jumping instructions

configurations 〈pc, d , e,m〉 with program counter pc ∈ N
BRANCH and LOOP implemented by control flow, using JUMP(l) and
JUMPFALSE(l) (l ∈ N)

Registers for storing intermediate values
(in place of evaluation stack e)

Semantics and Verification of Software Summer Semester 2013 12.7

Alternative Choices

Remark: more traditional machine architectures

Variables referenced by address (and not by name)

configurations 〈d , e,m〉 with memory m ∈ Z∗

LOAD(x)/STORE(x) replaced by GET(n)/PUT(n) (where n ∈ N)

BRANCH and LOOP instruction replaced by code addresses (labels) and
jumping instructions

configurations 〈pc, d , e,m〉 with program counter pc ∈ N
BRANCH and LOOP implemented by control flow, using JUMP(l) and
JUMPFALSE(l) (l ∈ N)

Registers for storing intermediate values
(in place of evaluation stack e)

Semantics and Verification of Software Summer Semester 2013 12.7

Terminating and Looping Computations

Definition 12.3 (AM computations)

A finite computation is a finite configuration sequence of the form
γ0, γ1, . . . , γk where k ∈ N and γi−1 B γi for each i ∈ {1, . . . , k}

If, in addition, there is no γ such that γk B γ, then γ0, γ1, . . . , γk is
called terminating

A looping computation is an infinite configuration sequence of the
form γ0, γ1, γ2, . . . where γi B γi+1 for each i ∈ N

Note: a terminating computation may end in a final configuration
(〈ε, e, σ〉) or in a stuck configuration (e.g., 〈ADD, 1, σ〉)

Semantics and Verification of Software Summer Semester 2013 12.8

Terminating and Looping Computations

Definition 12.3 (AM computations)

A finite computation is a finite configuration sequence of the form
γ0, γ1, . . . , γk where k ∈ N and γi−1 B γi for each i ∈ {1, . . . , k}
If, in addition, there is no γ such that γk B γ, then γ0, γ1, . . . , γk is
called terminating

A looping computation is an infinite configuration sequence of the
form γ0, γ1, γ2, . . . where γi B γi+1 for each i ∈ N

Note: a terminating computation may end in a final configuration
(〈ε, e, σ〉) or in a stuck configuration (e.g., 〈ADD, 1, σ〉)

Semantics and Verification of Software Summer Semester 2013 12.8

Terminating and Looping Computations

Definition 12.3 (AM computations)

A finite computation is a finite configuration sequence of the form
γ0, γ1, . . . , γk where k ∈ N and γi−1 B γi for each i ∈ {1, . . . , k}
If, in addition, there is no γ such that γk B γ, then γ0, γ1, . . . , γk is
called terminating

A looping computation is an infinite configuration sequence of the
form γ0, γ1, γ2, . . . where γi B γi+1 for each i ∈ N

Note: a terminating computation may end in a final configuration
(〈ε, e, σ〉) or in a stuck configuration (e.g., 〈ADD, 1, σ〉)

Semantics and Verification of Software Summer Semester 2013 12.8

Terminating and Looping Computations

Definition 12.3 (AM computations)

A finite computation is a finite configuration sequence of the form
γ0, γ1, . . . , γk where k ∈ N and γi−1 B γi for each i ∈ {1, . . . , k}
If, in addition, there is no γ such that γk B γ, then γ0, γ1, . . . , γk is
called terminating

A looping computation is an infinite configuration sequence of the
form γ0, γ1, γ2, . . . where γi B γi+1 for each i ∈ N

Note: a terminating computation may end in a final configuration
(〈ε, e, σ〉) or in a stuck configuration (e.g., 〈ADD, 1, σ〉)

Semantics and Verification of Software Summer Semester 2013 12.8

A Terminating Computation

Example 12.4

For d := PUSH(1):LOAD(x):ADD:STORE(x) and σ(x) = 3, we obtain the
following terminating computation:

〈PUSH(1):LOAD(x):ADD:STORE(x), ε, σ〉

B 〈LOAD(x):ADD:STORE(x), 1, σ〉
B 〈ADD:STORE(x), 3 : 1, σ〉
B 〈STORE(x), 4, σ〉
B 〈ε, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

Semantics and Verification of Software Summer Semester 2013 12.9

A Terminating Computation

Example 12.4

For d := PUSH(1):LOAD(x):ADD:STORE(x) and σ(x) = 3, we obtain the
following terminating computation:

〈PUSH(1):LOAD(x):ADD:STORE(x), ε, σ〉
B 〈LOAD(x):ADD:STORE(x), 1, σ〉

B 〈ADD:STORE(x), 3 : 1, σ〉
B 〈STORE(x), 4, σ〉
B 〈ε, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

Semantics and Verification of Software Summer Semester 2013 12.9

A Terminating Computation

Example 12.4

For d := PUSH(1):LOAD(x):ADD:STORE(x) and σ(x) = 3, we obtain the
following terminating computation:

〈PUSH(1):LOAD(x):ADD:STORE(x), ε, σ〉
B 〈LOAD(x):ADD:STORE(x), 1, σ〉
B 〈ADD:STORE(x), 3 : 1, σ〉

B 〈STORE(x), 4, σ〉
B 〈ε, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

Semantics and Verification of Software Summer Semester 2013 12.9

A Terminating Computation

Example 12.4

For d := PUSH(1):LOAD(x):ADD:STORE(x) and σ(x) = 3, we obtain the
following terminating computation:

〈PUSH(1):LOAD(x):ADD:STORE(x), ε, σ〉
B 〈LOAD(x):ADD:STORE(x), 1, σ〉
B 〈ADD:STORE(x), 3 : 1, σ〉
B 〈STORE(x), 4, σ〉

B 〈ε, ε, σ[x 7→ 4]〉
Remark: implements statement x := x + 1

Semantics and Verification of Software Summer Semester 2013 12.9

A Terminating Computation

Example 12.4

For d := PUSH(1):LOAD(x):ADD:STORE(x) and σ(x) = 3, we obtain the
following terminating computation:

〈PUSH(1):LOAD(x):ADD:STORE(x), ε, σ〉
B 〈LOAD(x):ADD:STORE(x), 1, σ〉
B 〈ADD:STORE(x), 3 : 1, σ〉
B 〈STORE(x), 4, σ〉
B 〈ε, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

Semantics and Verification of Software Summer Semester 2013 12.9

A Terminating Computation

Example 12.4

For d := PUSH(1):LOAD(x):ADD:STORE(x) and σ(x) = 3, we obtain the
following terminating computation:

〈PUSH(1):LOAD(x):ADD:STORE(x), ε, σ〉
B 〈LOAD(x):ADD:STORE(x), 1, σ〉
B 〈ADD:STORE(x), 3 : 1, σ〉
B 〈STORE(x), 4, σ〉
B 〈ε, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1

Semantics and Verification of Software Summer Semester 2013 12.9

A Looping Computation

Example 12.5

The following computation loops:

〈LOOP(TRUE,NOOP), ε, σ〉

B 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉
B 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉
B 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉
B 〈LOOP(TRUE,NOOP), ε, σ〉
B . . .

Remark: implements statement while true do skip

Semantics and Verification of Software Summer Semester 2013 12.10

A Looping Computation

Example 12.5

The following computation loops:

〈LOOP(TRUE,NOOP), ε, σ〉
B 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉

B 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉
B 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉
B 〈LOOP(TRUE,NOOP), ε, σ〉
B . . .

Remark: implements statement while true do skip

Semantics and Verification of Software Summer Semester 2013 12.10

A Looping Computation

Example 12.5

The following computation loops:

〈LOOP(TRUE,NOOP), ε, σ〉
B 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉
B 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉

B 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉
B 〈LOOP(TRUE,NOOP), ε, σ〉
B . . .

Remark: implements statement while true do skip

Semantics and Verification of Software Summer Semester 2013 12.10

A Looping Computation

Example 12.5

The following computation loops:

〈LOOP(TRUE,NOOP), ε, σ〉
B 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉
B 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉
B 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉

B 〈LOOP(TRUE,NOOP), ε, σ〉
B . . .

Remark: implements statement while true do skip

Semantics and Verification of Software Summer Semester 2013 12.10

A Looping Computation

Example 12.5

The following computation loops:

〈LOOP(TRUE,NOOP), ε, σ〉
B 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉
B 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉
B 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉
B 〈LOOP(TRUE,NOOP), ε, σ〉

B . . .

Remark: implements statement while true do skip

Semantics and Verification of Software Summer Semester 2013 12.10

A Looping Computation

Example 12.5

The following computation loops:

〈LOOP(TRUE,NOOP), ε, σ〉
B 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉
B 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉
B 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉
B 〈LOOP(TRUE,NOOP), ε, σ〉
B . . .

Remark: implements statement while true do skip

Semantics and Verification of Software Summer Semester 2013 12.10

A Looping Computation

Example 12.5

The following computation loops:

〈LOOP(TRUE,NOOP), ε, σ〉
B 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉
B 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉
B 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉
B 〈LOOP(TRUE,NOOP), ε, σ〉
B . . .

Remark: implements statement while true do skip

Semantics and Verification of Software Summer Semester 2013 12.10

Outline

1 Compiler Correctness

2 The Abstract Machine

3 Properties of AM

Semantics and Verification of Software Summer Semester 2013 12.11

A New Inductive Principle

Application: Finite computations (Def. 12.3)

Definition: a finite computation γ0, γ1, . . . , γk has length k

Induction base: property holds for all computations of length 0

Induction hypothesis: property holds for all computations of length ≤ k

Induction step: property holds for all computations of length k + 1

Semantics and Verification of Software Summer Semester 2013 12.12

Application: Extension of Code and Stack

Lemma 12.6

If 〈d1, e1, σ〉B∗ 〈d ′, e ′, σ′〉, then
〈d1 : d2, e1 : e2, σ〉B∗ 〈d ′ : d2, e

′ : e2, σ
′〉

for every d2 ∈ Code and e2 ∈ Stk.

Interpretation: both the code and the stack component can be extended
without changing the behavior of the machine

Proof.

by induction on the length of the computation
(on the board)

Semantics and Verification of Software Summer Semester 2013 12.13

Application: Extension of Code and Stack

Lemma 12.6

If 〈d1, e1, σ〉B∗ 〈d ′, e ′, σ′〉, then
〈d1 : d2, e1 : e2, σ〉B∗ 〈d ′ : d2, e

′ : e2, σ
′〉

for every d2 ∈ Code and e2 ∈ Stk.

Interpretation: both the code and the stack component can be extended
without changing the behavior of the machine

Proof.

by induction on the length of the computation
(on the board)

Semantics and Verification of Software Summer Semester 2013 12.13

Another Property: Determinism

Lemma 12.7

The semantics of AM is deterministic: for all γ, γ′, γ′′ ∈ Cnf ,
γ B γ′ and γ B γ′′ imply γ′ = γ′′.

Proof.

The successor configuration is determined by the first instruction in the
code component, which is unique.

Thus the following function is well defined:

Definition 12.8 (Semantics of AM)

The semantics of an instruction sequence is given by the mapping
MJ.K : Code → (Σ 99K Σ),

defined by

MJdK(σ) :=

{
σ′ if 〈d , ε, σ〉B∗ 〈ε, e, σ′〉
undefined otherwise

Semantics and Verification of Software Summer Semester 2013 12.14

Another Property: Determinism

Lemma 12.7

The semantics of AM is deterministic: for all γ, γ′, γ′′ ∈ Cnf ,
γ B γ′ and γ B γ′′ imply γ′ = γ′′.

Proof.

The successor configuration is determined by the first instruction in the
code component, which is unique.

Thus the following function is well defined:

Definition 12.8 (Semantics of AM)

The semantics of an instruction sequence is given by the mapping
MJ.K : Code → (Σ 99K Σ),

defined by

MJdK(σ) :=

{
σ′ if 〈d , ε, σ〉B∗ 〈ε, e, σ′〉
undefined otherwise

Semantics and Verification of Software Summer Semester 2013 12.14

Another Property: Determinism

Lemma 12.7

The semantics of AM is deterministic: for all γ, γ′, γ′′ ∈ Cnf ,
γ B γ′ and γ B γ′′ imply γ′ = γ′′.

Proof.

The successor configuration is determined by the first instruction in the
code component, which is unique.

Thus the following function is well defined:

Definition 12.8 (Semantics of AM)

The semantics of an instruction sequence is given by the mapping
MJ.K : Code → (Σ 99K Σ),

defined by

MJdK(σ) :=

{
σ′ if 〈d , ε, σ〉B∗ 〈ε, e, σ′〉
undefined otherwise

Semantics and Verification of Software Summer Semester 2013 12.14

	Compiler Correctness
	The Abstract Machine
	Properties of AM

