Semantics and Verification of Software

Lecture 12: Provably Correct Implementation |
(Abstract Machine)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-1i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

@ Compiler Correctness

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 12.2

Compiler Correctness

. compiler .
programming language ~—— machine code

semantics |, 1 (simple) semantics
?

meaning = meaning

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Compiler Correctness

. compiler .
programming language ~—— machine code
semantics |, 1 (simple) semantics
?

meaning = meaning

To do:
@ Definition of abstract machine
@ Definition (operational) semantics of machine instructions
@ Definition of translation WHILE — machine code (“compiler”)

@ Proof: semantics of generated machine code = semantics of original
source code

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 12.3

© The Abstract Machine

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 12.4

The Abstract Machine

Definition 12.1 (Abstract machine)

The abstract machine (AM) is given by
e configurations of the form (d, e, o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
o e € Stk := (ZUB)* is the evaluation stack (top left)
o 0 € X :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x ¥)

v

RWNTH Semantics and Verification of Software Summer Semester 2013 12.5

The Abstract Machine

Definition 12.1 (Abstract machine)

The abstract machine (AM) is given by
e configurations of the form (d, e, o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
o e € Stk := (ZUB)* is the evaluation stack (top left)
o 0 € X :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x ¥)

e initial configurations of the form (d, ¢, o)

v

RWNTH Semantics and Verification of Software Summer Semester 2013 12.5

The Abstract Machine

Definition 12.1 (Abstract machine)

The abstract machine (AM) is given by
e configurations of the form (d, e, o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
o e € Stk := (ZUB)* is the evaluation stack (top left)
o 0 € X :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x ¥)

e initial configurations of the form (d, ¢, o)

e final configurations of the form (e, e, o)

v

RWNTH Semantics and Verification of Software Summer Semester 2013 12.5

The Abstract Machine

Definition 12.1 (Abstract machine)

The abstract machine (AM) is given by
e configurations of the form (d, e, o) € Cnf where

o d € Code is the sequence of instructions (code) to be executed
o e € Stk := (ZUB)* is the evaluation stack (top left)
o 0 € X :=(Var — Z) is the (storage) state

(thus Cnf = Code x Stk x ¥)

initial configurations of the form (d, ¢, o)

(]

final configurations of the form (e, e, o)

code sequences d and instructions i:
duo=¢eli:d
i ::= PUSH(z) | ADD | MULT | SUB |
TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)
(where z € Z and x € Var)

v

RWNTH Semantics and Verification of Software Summer Semester 2013 12.5

Semantics of AM-Code

Definition 12.2 (Transition relation of AM)

The transition relation > C Cnf x Cnf is given by
<PUSH(z) d e, a) > (d,z:e,0)
<ADD d P4 > > <d, (Z]_ +22) >
(MULT : d,zl :22 ,o) > (d,(z1 % z2) : e, a>
(SUB:d,z1 : 2 :e,0) > (d,(zn1 —) : e,a}
(TRUE d,e O’> > (d,true: e, o)
<FALSE d e 0’> > (d,false : e, o)
<EQ d,z; : > > <d, (21 = 22) e,a)
(GT:d,zl:zz ,o) > (d,(z1 > z) : e,0)
(AND : d, ty : t2 ,o) > (d, (L A) : e,0)
<OR d,ty : > > <d,(t1 V tz) >
(NEG d, t e O’> > (d,—t:e o)
(LOAD(x) : d,e,0) > (d,o(x) : e,0)
(STORE(x) : d,z:e,0) > (d,e, o[x — z])
(NOOP : d,e,0) > (d, e, 0)
(BRANCH (dirye , draise) = d, t:e,0) > (d; : d, e, 0)
<LDOP(d1,d2) d,e, O’> > <d BRANCH(C/Q L00P(d;,d>) ,NOOP) :d, e, O’>

v

RWNTH Semantics and Verification of Software Summer Semester 2013 12.6

Alternative Choices

Remark: more traditional machine architectures
@ Variables referenced by address (and not by name)

e configurations (d, e, m) with memory m € Z*
e LOAD(x) /STORE(x) replaced by GET(n) /PUT(n) (where n € N)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 12.7

Alternative Choices

Remark: more traditional machine architectures

@ Variables referenced by address (and not by name)
e configurations (d, e, m) with memory m € Z*
e LOAD(x) /STORE(x) replaced by GET(n) /PUT(n) (where n € N)

@ BRANCH and LOOP instruction replaced by code addresses (labels) and

jumping instructions
e configurations (pc, d, e, m) with program counter pc € N
e BRANCH and LOOP implemented by control flow, using JUMP (/) and
JUMPFALSE (/) (/ € N)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 12.7

Alternative Choices

Remark: more traditional machine architectures
@ Variables referenced by address (and not by name)
e configurations (d, e, m) with memory m € Z*
e LOAD(x) /STORE(x) replaced by GET(n) /PUT(n) (where n € N)
@ BRANCH and LOOP instruction replaced by code addresses (labels) and
jumping instructions
e configurations (pc, d, e, m) with program counter pc € N
e BRANCH and LOOP implemented by control flow, using JUMP (/) and
JUMPFALSE (/) (/ € N)
@ Registers for storing intermediate values
(in place of evaluation stack e)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 12.7

Terminating and Looping Computations

Definition 12.3 (AM computations)

@ A finite computation is a finite configuration sequence of the form
0,71, - - -,k Where k € N and ~y;_1 >y, for each i € {1,... k}

nerAACHEN Semantics and Verification of Software Summer Semester 2013 12.8

Terminating and Looping Computations

Definition 12.3 (AM computations)

@ A finite computation is a finite configuration sequence of the form
0,71, - - -,k Where k € N and ~y;_1 >y, for each i € {1,... k}

o If, in addition, there is no ~ such that v, > v, then v9,71, ...,k is
called terminating

Semantics and Verification of Software Summer Semester 2013 12.8

Terminating and Looping Computations

Definition 12.3 (AM computations)

@ A finite computation is a finite configuration sequence of the form
0,71, - - -,k Where k € N and ~y;_1 >y, for each i € {1,... k}

o If, in addition, there is no ~ such that v, > v, then v9,71, ...,k is
called terminating

@ A looping computation is an infinite configuration sequence of the
form 0,71, 72, . .. where ; > 11 for each i € N

Semantics and Verification of Software Summer Semester 2013

12.8

Terminating and Looping Computations

Definition 12.3 (AM computations)

@ A finite computation is a finite configuration sequence of the form
0,71, - - -,k Where k € N and ~y;_1 >y, for each i € {1,... k}

o If, in addition, there is no ~ such that v, > v, then v9,71, ...,k is
called terminating

@ A looping computation is an infinite configuration sequence of the
form 0,71, 72, . .. where ; > 11 for each i € N

Note: a terminating computation may end in a final configuration
((e,e,0)) or in a stuck configuration (e.g., (ADD, 1, 0))

Semantics and Verification of Software Summer Semester 2013 12.8

A Terminating Computation

Example 12.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) :LOAD(x) : ADD: STORE(x), €, 0)

Semantics and Verification of Software Summer Semester 2013 12.9

A Terminating Computation

Example 12.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) :LOAD(x) : ADD: STORE(x), €, 0)
>> (LOAD(x) :ADD:STORE(x),1,0)

Semantics and Verification of Software Summer Semester 2013 12.9

A Terminating Computation

Example 12.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) :LOAD(x) : ADD: STORE(x), €, 0)
>> (LOAD(x) :ADD:STORE(x),1,0)
> (ADD:STORE(x),3:1,0)

Semantics and Verification of Software Summer Semester 2013 12.9

A Terminating Computation

Example 12.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) :LOAD (x) : ADD: STORE (x), ¢, o)
>> (LOAD(x) :ADD:STORE(x),1,0)
> (ADD:STORE(x),3:1,0)
> (STORE(x),4,0)

Semantics and Verification of Software Summer Semester 2013 12.9

A Terminating Computation

Example 12.4

For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:

(PUSH(1) :LOAD (x) : ADD: STORE (x), ¢, o)
>> (LOAD(x) :ADD:STORE(x),1,0)
> (ADD:STORE(x),3:1,0)
> (STORE(x),4,0)
> (g,&,0[x — 4])

Semantics and Verification of Software Summer Semester 2013 12.9

A Terminating Computation

Example 12.4
For d := PUSH(1) : LOAD(x) : ADD: STORE(x) and o(x) = 3, we obtain the
following terminating computation:
(PUSH(1) : LOAD (x) : ADD: STORE (x) , &, 0)

>> (LOAD(x) :ADD:STORE(x),1,0)

> (ADD:STORE(x),3:1,0)

> (STORE(x),4,0)

> (e,g,0[x— 4])
Remark: implements statement x := x + 1

Semantics and Verification of Software Summer Semester 2013 12.9

A Looping Computation

Example 12.5

The following computation loops:
(LOOP (TRUE,NOOP) , £, o)

Semantics and Verification of Software Summer Semester 2013 12.10

A Looping Computation

Example 12.5

The following computation loops:
(LOOP (TRUE,NOOP) , £, o)
> (TRUE:BRANCH (NOOP:L0OOP (TRUE,NOOP) ,NOOP), ¢, o)

Semantics and Verification of Software Summer Semester 2013 12.10

A Looping Computation

Example 12.5

The following computation loops:
(LOOP (TRUE,NOOP) , £, o)
> (TRUE:BRANCH (NOOP:L0OOP (TRUE,NOOP) ,NOOP), ¢, o)
> (BRANCH(NOOP:LOOP (TRUE,NOOP) ,NOOP), true, o)

Semantics and Verification of Software Summer Semester 2013 12.10

A Looping Computation

Example 12.5

The following computation loops:
(LOOP (TRUE,NOOP) , £, o)
> (TRUE:BRANCH (NOOP:L0OOP (TRUE,NOOP) ,NOOP), ¢, o)
> (BRANCH(NOOP:LOOP (TRUE,NOOP) ,NOOP), true, o)
> (NOOP:LOOP(TRUE,NOQP),¢,0)

Semantics and Verification of Software Summer Semester 2013 12.10

A Looping Computation

Example 12.5

The following computation loops:
(LOOP (TRUE,NOOP) , £, o)
> (TRUE:BRANCH (NOOP:L0OOP (TRUE,NOOP) ,NOOP), ¢, o)
> (BRANCH(NOOP:LOOP (TRUE,NOOP) ,NOOP), true, o)
> (NOOP:LOOP(TRUE,NOQP),¢,0)
> (LOOP(TRUE,NOOP), ¢, o)

Semantics and Verification of Software Summer Semester 2013 12.10

A Looping Computation

Example 12.5

The following computation loops:
(LOOP (TRUE,NOOP) , £, o)
> (TRUE:BRANCH (NOOP:L0OOP (TRUE,NOOP) ,NOOP), ¢, o)
(BRANCH (NOOP : LOOP (TRUE, NOOP) ,NOOP), true, o)
(NOOP : LOOP (TRUE, NOOP) , €, o)
(

>
>
> (LOOP(TRUE,NOOP), ¢, o)
>

Semantics and Verification of Software Summer Semester 2013 12.10

A Looping Computation

Example 12.5

The following computation loops:
(LOOP (TRUE,NOOP) , £, o)
> (TRUE:BRANCH (NOOP:L0OOP (TRUE,NOOP) ,NOOP), ¢, o)
(BRANCH (NOOP : LOOP (TRUE, NOOP) ,NOOP), true, o)
(NOOP : LOOP (TRUE, NOOP) , €, o)
(

>
>
> (LOOP(TRUE,NOOP), ¢, o)
>

Remark: implements statement while true do skip

Semantics and Verification of Software Summer Semester 2013 12.10

© Properties of AM

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 12.11

A New Inductive Principle

Application: Finite computations (Def. 12.3)

Definition: a finite computation g, 71, - .., vk has length k
Induction base: property holds for all computations of length 0
Induction hypothesis: property holds for all computations of length < k
Induction step: property holds for all computations of length k + 1

nerAACHEN Semantics and Verification of Software Summer Semester 2013 12.12

Application: Extension of Code and Stack

If (dh,e1,0)>*(d',€,0’), then
(dl cdh, e 62,U> >* <dl : d2,e/ : 62,0/>
for every d» € Code and e, € Stk.

Interpretation: both the code and the stack component can be extended
without changing the behavior of the machine

nerAACHEN Semantics and Verification of Software Summer Semester 2013 12.13

Application: Extension of Code and Stack

If (di,e1,0) >* (d', €,0"), then
(di:da,e1:e,0) " (d': da,e : e,0)
for every d» € Code and e, € Stk.

Interpretation: both the code and the stack component can be extended
without changing the behavior of the machine

by induction on the length of the computation
(on the board) O

nwr"_“ﬁ;;] ji Semantics and Verification of Software Summer Semester 2013 12.13

Another Property: Determinism

The semantics of AM is deterministic: for all v,~',~+" € Cnf,
v+ and v >+ imply v/ =~".

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 12.14

Another Property: Determinism

The semantics of AM is deterministic: for all v,~',~+" € Cnf,
vy and v >~" imply v = +".

The successor configuration is determined by the first instruction in the
code component, which is unique. O
o

Semantics and Verification of Software Summer Semester 2013 12.14

Another Property: Determinism

The semantics of AM is deterministic: for all v,~',~v" € Cnf,
vy and v >~" imply v = +".

The successor configuration is determined by the first instruction in the
code component, which is unique. O

v

Thus the following function is well defined:

Definition 12.8 (Semantics of AM)

The semantics of an instruction sequence is given by the mapping
M[.] : Code — (X --» X),

defined by
o o if <d7€70> >* <€,€,UI>
Mdl(o) := {undefined otherwise

RWNTH Semantics and Verification of Software Summer Semester 2013 12.14

	Compiler Correctness
	The Abstract Machine
	Properties of AM

