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Compiler Correctness

programming language
compiler−→ machine code

semantics ↓ ↓ (simple) semantics

meaning
?
= meaning

To do:

1 Definition of abstract machine

2 Definition (operational) semantics of machine instructions

3 Definition of translation WHILE → machine code (“compiler”)

4 Proof: semantics of generated machine code = semantics of original
source code
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The Abstract Machine

Definition 12.1 (Abstract machine)

The abstract machine (AM) is given by

configurations of the form 〈d , e, σ〉 ∈ Cnf where

d ∈ Code is the sequence of instructions (code) to be executed
e ∈ Stk := (Z ∪ B)∗ is the evaluation stack (top left)
σ ∈ Σ := (Var → Z) is the (storage) state

(thus Cnf = Code × Stk × Σ)

initial configurations of the form 〈d , ε, σ〉
final configurations of the form 〈ε, e, σ〉
code sequences d and instructions i :

d ::= ε | i : d
i ::= PUSH(z) | ADD | MULT | SUB |

TRUE | FALSE | EQ | GT | AND | OR | NEG |
LOAD(x) | STORE(x) | NOOP | BRANCH(d,d) | LOOP(d,d)

(where z ∈ Z and x ∈ Var)
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Semantics of AM-Code

Definition 12.2 (Transition relation of AM)

The transition relation B ⊆ Cnf × Cnf is given by

〈PUSH(z) : d , e, σ〉 B 〈d , z : e, σ〉
〈ADD : d , z1 : z2 : e, σ〉 B 〈d , (z1 + z2) : e, σ〉
〈MULT : d , z1 : z2 : e, σ〉 B 〈d , (z1 ∗ z2) : e, σ〉
〈SUB : d , z1 : z2 : e, σ〉 B 〈d , (z1 − z2) : e, σ〉

〈TRUE : d , e, σ〉 B 〈d , true : e, σ〉
〈FALSE : d , e, σ〉 B 〈d , false : e, σ〉

〈EQ : d , z1 : z2 : e, σ〉 B 〈d , (z1 = z2) : e, σ〉
〈GT : d , z1 : z2 : e, σ〉 B 〈d , (z1 > z2) : e, σ〉
〈AND : d , t1 : t2 : e, σ〉 B 〈d , (t1 ∧ t2) : e, σ〉
〈OR : d , t1 : t2 : e, σ〉 B 〈d , (t1 ∨ t2) : e, σ〉
〈NEG : d , t : e, σ〉 B 〈d ,¬t : e, σ〉
〈LOAD(x) : d , e, σ〉 B 〈d , σ(x) : e, σ〉

〈STORE(x) : d , z : e, σ〉 B 〈d , e, σ[x 7→ z ]〉
〈NOOP : d , e, σ〉 B 〈d , e, σ〉

〈BRANCH(dtrue,dfalse) : d , t : e, σ〉 B 〈dt : d , e, σ〉
〈LOOP(d1,d2) : d , e, σ〉 B 〈d1 :BRANCH(d2:LOOP(d1,d2),NOOP) :d , e, σ〉
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Alternative Choices

Remark: more traditional machine architectures

Variables referenced by address (and not by name)

configurations 〈d , e,m〉 with memory m ∈ Z∗

LOAD(x)/STORE(x) replaced by GET(n)/PUT(n) (where n ∈ N)

BRANCH and LOOP instruction replaced by code addresses (labels) and
jumping instructions

configurations 〈pc, d , e,m〉 with program counter pc ∈ N
BRANCH and LOOP implemented by control flow, using JUMP(l) and
JUMPFALSE(l) (l ∈ N)

Registers for storing intermediate values
(in place of evaluation stack e)

Semantics and Verification of Software Summer Semester 2013 12.7



Alternative Choices

Remark: more traditional machine architectures

Variables referenced by address (and not by name)

configurations 〈d , e,m〉 with memory m ∈ Z∗

LOAD(x)/STORE(x) replaced by GET(n)/PUT(n) (where n ∈ N)

BRANCH and LOOP instruction replaced by code addresses (labels) and
jumping instructions

configurations 〈pc, d , e,m〉 with program counter pc ∈ N
BRANCH and LOOP implemented by control flow, using JUMP(l) and
JUMPFALSE(l) (l ∈ N)

Registers for storing intermediate values
(in place of evaluation stack e)

Semantics and Verification of Software Summer Semester 2013 12.7



Alternative Choices

Remark: more traditional machine architectures

Variables referenced by address (and not by name)

configurations 〈d , e,m〉 with memory m ∈ Z∗

LOAD(x)/STORE(x) replaced by GET(n)/PUT(n) (where n ∈ N)

BRANCH and LOOP instruction replaced by code addresses (labels) and
jumping instructions

configurations 〈pc, d , e,m〉 with program counter pc ∈ N
BRANCH and LOOP implemented by control flow, using JUMP(l) and
JUMPFALSE(l) (l ∈ N)

Registers for storing intermediate values
(in place of evaluation stack e)

Semantics and Verification of Software Summer Semester 2013 12.7



Terminating and Looping Computations

Definition 12.3 (AM computations)

A finite computation is a finite configuration sequence of the form
γ0, γ1, . . . , γk where k ∈ N and γi−1 B γi for each i ∈ {1, . . . , k}

If, in addition, there is no γ such that γk B γ, then γ0, γ1, . . . , γk is
called terminating

A looping computation is an infinite configuration sequence of the
form γ0, γ1, γ2, . . . where γi B γi+1 for each i ∈ N

Note: a terminating computation may end in a final configuration
(〈ε, e, σ〉) or in a stuck configuration (e.g., 〈ADD, 1, σ〉)
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A Terminating Computation

Example 12.4

For d := PUSH(1):LOAD(x):ADD:STORE(x) and σ(x) = 3, we obtain the
following terminating computation:

〈PUSH(1):LOAD(x):ADD:STORE(x), ε, σ〉

B 〈LOAD(x):ADD:STORE(x), 1, σ〉
B 〈ADD:STORE(x), 3 : 1, σ〉
B 〈STORE(x), 4, σ〉
B 〈ε, ε, σ[x 7→ 4]〉

Remark: implements statement x := x + 1
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A Looping Computation

Example 12.5

The following computation loops:

〈LOOP(TRUE,NOOP), ε, σ〉

B 〈TRUE:BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), ε, σ〉
B 〈BRANCH(NOOP:LOOP(TRUE,NOOP),NOOP), true, σ〉
B 〈NOOP:LOOP(TRUE,NOOP), ε, σ〉
B 〈LOOP(TRUE,NOOP), ε, σ〉
B . . .

Remark: implements statement while true do skip
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A New Inductive Principle

Application: Finite computations (Def. 12.3)

Definition: a finite computation γ0, γ1, . . . , γk has length k

Induction base: property holds for all computations of length 0

Induction hypothesis: property holds for all computations of length ≤ k

Induction step: property holds for all computations of length k + 1
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Application: Extension of Code and Stack

Lemma 12.6

If 〈d1, e1, σ〉B∗ 〈d ′, e ′, σ′〉, then
〈d1 : d2, e1 : e2, σ〉B∗ 〈d ′ : d2, e

′ : e2, σ
′〉

for every d2 ∈ Code and e2 ∈ Stk.

Interpretation: both the code and the stack component can be extended
without changing the behavior of the machine

Proof.

by induction on the length of the computation
(on the board)
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Another Property: Determinism

Lemma 12.7

The semantics of AM is deterministic: for all γ, γ′, γ′′ ∈ Cnf ,
γ B γ′ and γ B γ′′ imply γ′ = γ′′.

Proof.

The successor configuration is determined by the first instruction in the
code component, which is unique.

Thus the following function is well defined:

Definition 12.8 (Semantics of AM)

The semantics of an instruction sequence is given by the mapping
MJ.K : Code → (Σ 99K Σ),

defined by

MJdK(σ) :=

{
σ′ if 〈d , ε, σ〉B∗ 〈ε, e, σ′〉
undefined otherwise
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