
Semantics and Verification of Software
Lecture 14: Extension by Blocks and Procedures I

(Operational Semantics)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Outline

1 Extension by Blocks and Procedures

2 Extending the Syntax

3 New Semantic Domains

4 Execution Relation

Semantics and Verification of Software Summer Semester 2013 14.2

Blocks and Procedures

Extension of WHILE by blocks with (local) variables and (recursive)
procedures

Simple memory model (Σ := {σ | σ : Var → Z}) not sufficient
anymore as variables can occur in several instances

⇒ Involves new semantic concepts:

variable und procedure environments
locations (memory addresses) and stores (memory states)

Important: scope of variable and procedure identifiers

static scoping: scope of identifier = declaration environment
(also: “lexical” scoping; here)

dynamic scoping: scope of identifier = calling environment
(old Algol/Lisp dialects)

Semantics and Verification of Software Summer Semester 2013 14.3

Blocks and Procedures

Extension of WHILE by blocks with (local) variables and (recursive)
procedures

Simple memory model (Σ := {σ | σ : Var → Z}) not sufficient
anymore as variables can occur in several instances

⇒ Involves new semantic concepts:

variable und procedure environments
locations (memory addresses) and stores (memory states)

Important: scope of variable and procedure identifiers

static scoping: scope of identifier = declaration environment
(also: “lexical” scoping; here)

dynamic scoping: scope of identifier = calling environment
(old Algol/Lisp dialects)

Semantics and Verification of Software Summer Semester 2013 14.3

Blocks and Procedures

Extension of WHILE by blocks with (local) variables and (recursive)
procedures

Simple memory model (Σ := {σ | σ : Var → Z}) not sufficient
anymore as variables can occur in several instances

⇒ Involves new semantic concepts:

variable und procedure environments
locations (memory addresses) and stores (memory states)

Important: scope of variable and procedure identifiers

static scoping: scope of identifier = declaration environment
(also: “lexical” scoping; here)

dynamic scoping: scope of identifier = calling environment
(old Algol/Lisp dialects)

Semantics and Verification of Software Summer Semester 2013 14.3

Static and Dynamic Scoping

Example 14.1

begin
var x; var y;
proc P is y := x;
x := 1;
begin
var x;
x := 2;
call P

end
end

static scoping ⇒ y = 1
dynamic scoping ⇒ y = 2

Semantics and Verification of Software Summer Semester 2013 14.4

Static and Dynamic Scoping

Example 14.1

begin
var x; var y;
proc P is y := x;
x := 1;
begin
var x;
x := 2;
call P

end
end

static scoping ⇒ y = 1

dynamic scoping ⇒ y = 2

Semantics and Verification of Software Summer Semester 2013 14.4

Static and Dynamic Scoping

Example 14.1

begin
var x; var y;
proc P is y := x;
x := 1;
begin
var x;
x := 2;
call P

end
end

static scoping ⇒ y = 1
dynamic scoping ⇒ y = 2

Semantics and Verification of Software Summer Semester 2013 14.4

Outline

1 Extension by Blocks and Procedures

2 Extending the Syntax

3 New Semantic Domains

4 Execution Relation

Semantics and Verification of Software Summer Semester 2013 14.5

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Variable declarations VDec v
Commands (statements) Cmd c

Context-free grammar:

p ::= proc P is c;p | ε ∈ PDec
v ::= var x;v | ε ∈ VDec
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c |

call P | begin v p c end ∈ Cmd

Semantics and Verification of Software Summer Semester 2013 14.6

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Variable declarations VDec v
Commands (statements) Cmd c

Context-free grammar:

p ::= proc P is c;p | ε ∈ PDec
v ::= var x;v | ε ∈ VDec
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c |

call P | begin v p c end ∈ Cmd

Semantics and Verification of Software Summer Semester 2013 14.6

Outline

1 Extension by Blocks and Procedures

2 Extending the Syntax

3 New Semantic Domains

4 Execution Relation

Semantics and Verification of Software Summer Semester 2013 14.7

Locations and Stores

So far: states Σ = {σ | σ : Var → Z}

Now: explicit control over all (nested) instances of a variable:

variable environments VEnv := {ρ | ρ : Var 99K Loc}
locations Loc := N
stores Sto := {σ | σ : Loc 99K Z}
(partial function to maintain allocation information)

⇒ Two-level access to a variable x ∈ Var :
1 determine current memory location of x :

l := ρ(x)

2 reading/writing access to σ at position l

Thus: previous state information represented as σ ◦ ρ

Semantics and Verification of Software Summer Semester 2013 14.8

Locations and Stores

So far: states Σ = {σ | σ : Var → Z}
Now: explicit control over all (nested) instances of a variable:

variable environments VEnv := {ρ | ρ : Var 99K Loc}
locations Loc := N
stores Sto := {σ | σ : Loc 99K Z}
(partial function to maintain allocation information)

⇒ Two-level access to a variable x ∈ Var :
1 determine current memory location of x :

l := ρ(x)

2 reading/writing access to σ at position l

Thus: previous state information represented as σ ◦ ρ

Semantics and Verification of Software Summer Semester 2013 14.8

Locations and Stores

So far: states Σ = {σ | σ : Var → Z}
Now: explicit control over all (nested) instances of a variable:

variable environments VEnv := {ρ | ρ : Var 99K Loc}
locations Loc := N
stores Sto := {σ | σ : Loc 99K Z}
(partial function to maintain allocation information)

⇒ Two-level access to a variable x ∈ Var :
1 determine current memory location of x :

l := ρ(x)

2 reading/writing access to σ at position l

Thus: previous state information represented as σ ◦ ρ

Semantics and Verification of Software Summer Semester 2013 14.8

Locations and Stores

So far: states Σ = {σ | σ : Var → Z}
Now: explicit control over all (nested) instances of a variable:

variable environments VEnv := {ρ | ρ : Var 99K Loc}
locations Loc := N
stores Sto := {σ | σ : Loc 99K Z}
(partial function to maintain allocation information)

⇒ Two-level access to a variable x ∈ Var :
1 determine current memory location of x :

l := ρ(x)

2 reading/writing access to σ at position l

Thus: previous state information represented as σ ◦ ρ

Semantics and Verification of Software Summer Semester 2013 14.8

Procedure Environments and Declarations

Effect of procedure call determined by its body and variable and
procedure environment of its declaration:

PEnv := {π | π : PVar 99K Cmd × VEnv × PEnv}

denotes the set of procedure environments

Effect of declaration: update of environment (and store)

updv J.K : VDec × VEnv × Sto → VEnv × Sto
updv Jvar x;vK(ρ, σ) := updv JvK(ρ[x 7→ lx], σ[lx 7→ 0])

updv JεK(ρ, σ) := (ρ, σ)

updpJ.K : PDec × VEnv × PEnv → PEnv
updpJproc P is c;pK(ρ, π) := updpJpK(ρ, π[P 7→ (c , ρ, π)])

updpJεK(ρ, π) := π

where lx := min{l ∈ Loc | σ(l) = ⊥}

Semantics and Verification of Software Summer Semester 2013 14.9

Procedure Environments and Declarations

Effect of procedure call determined by its body and variable and
procedure environment of its declaration:

PEnv := {π | π : PVar 99K Cmd × VEnv × PEnv}

denotes the set of procedure environments

Effect of declaration: update of environment (and store)

updv J.K : VDec × VEnv × Sto → VEnv × Sto
updv Jvar x;vK(ρ, σ) := updv JvK(ρ[x 7→ lx], σ[lx 7→ 0])

updv JεK(ρ, σ) := (ρ, σ)

updpJ.K : PDec × VEnv × PEnv → PEnv
updpJproc P is c;pK(ρ, π) := updpJpK(ρ, π[P 7→ (c , ρ, π)])

updpJεK(ρ, π) := π

where lx := min{l ∈ Loc | σ(l) = ⊥}

Semantics and Verification of Software Summer Semester 2013 14.9

Outline

1 Extension by Blocks and Procedures

2 Extending the Syntax

3 New Semantic Domains

4 Execution Relation

Semantics and Verification of Software Summer Semester 2013 14.10

Execution Relation I

Definition 14.2 (Execution relation)

For c ∈ Cmd , σ, σ′ ∈ Sto, ρ ∈ VEnv , and π ∈ PEnv , the execution
relation (ρ, π) ` 〈c , σ〉 → σ′ (“in environment (ρ, π), statement c
transforms store σ into σ′”) is defined by the following rules:

(skip)
(ρ, π) ` 〈skip, σ〉 → σ

(asgn)
〈a, σ ◦ ρ〉 → z

(ρ, π) ` 〈x := a, σ〉 → σ[ρ(x) 7→ z]

(seq)
(ρ, π) ` 〈c1, σ〉 → σ′ (ρ, π) ` 〈c2, σ

′〉 → σ′′

(ρ, π) ` 〈c1;c2, σ〉 → σ′′

(if-t)
〈b, σ ◦ ρ〉 → true (ρ, π) ` 〈c1, σ〉 → σ′

(ρ, π) ` 〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ ◦ ρ〉 → false (ρ, π) ` 〈c2, σ〉 → σ′

(ρ, π) ` 〈if b then c1 else c2, σ〉 → σ′

Semantics and Verification of Software Summer Semester 2013 14.11

Execution Relation II

Definition 14.2 (Execution relation; continued)

(wh-f)
〈b, σ ◦ ρ〉 → false

(ρ, π) ` 〈while b do c , σ〉 → σ

(wh-t)
〈b, σ ◦ ρ〉→ true (ρ, π)`〈c , σ〉→σ′ (ρ, π)`〈while b do c , σ′〉→σ′′

(ρ, π) ` 〈while b do c , σ〉 → σ′′

(call)
(ρ′, π′[P 7→ (c , ρ′, π′)]) ` 〈c , σ〉 → σ′

(ρ, π) ` 〈call P, σ〉 → σ′
if π(P) = (c , ρ′, π′)

(block)
updv JvK(ρ, σ) = (ρ′, σ′) (ρ′, updpJpK(ρ′, π)) ` 〈c , σ′〉 → σ′′

(ρ, π) ` 〈begin v p c end, σ〉 → σ′′

Semantics and Verification of Software Summer Semester 2013 14.12

Execution Relation III

Remarks about rules (call) and (block):

Static scoping is modelled in (call) by using the environments ρ′ and
π′ (as determined in (block)) from the declaration site of procedure P
(and not ρ and π from the calling site)

In (call), the procedure environment associated with procedure P is
extended by a P-entry to handle recursive calls of P:

π′[P 7→ (c , ρ′, π′)]

Semantics and Verification of Software Summer Semester 2013 14.13

Execution Relation IV

Example 14.3

c = begin
var x; var y; } v
proc F is

begin
var z;
z := x;
if z=1 then skip

else x := x-1;
call F;
y := z * y

 c2

 c1

end


cF


p

x := 2; y := 1; call F
}
c0

end

Let σ∅(l) = ρ∅(x) = π∅(P) = ⊥ for all l ∈ Loc, x ∈ Var ,P ∈ PVar
Notation: σijkl ⇔ σ(0) = i , σ(1) = j , σ(2) = k , σ(3) = l
Derivation tree for (ρ∅, π∅) ` 〈c , σ∅〉 → σ1221: on the board

Semantics and Verification of Software Summer Semester 2013 14.14

	Extension by Blocks and Procedures
	Extending the Syntax
	New Semantic Domains
	Execution Relation

