Semantics and Verification of Software

Lecture 14: Extension by Blocks and Procedures |
(Operational Semantics)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-1i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

@ Extension by Blocks and Procedures

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 14.2

Blocks and Procedures

e Extension of WHILE by blocks with (local) variables and (recursive)
procedures
@ Simple memory model (X := {0 | o : Var — Z}) not sufficient
anymore as variables can occur in several instances
= Involves new semantic concepts:
e variable und procedure environments
o locations (memory addresses) and stores (memory states)
@ Important: scope of variable and procedure identifiers
static scoping: scope of identifier = declaration environment
(also: "lexical” scoping; here)
dynamic scoping: scope of identifier = calling environment
(old Algol/Lisp dialects)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 14.3

Static and Dynamic Scoping

Example 14.1

begin
var x; var y;
proc P is y := x;
x :=1;
begin static scoping = y =1
var x; dynamic scoping = y = 2
X = 2;
call P
end
end

nerAACHEN Semantics and Verification of Software Summer Semester 2013 14.4

© Extending the Syntax

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 14.5

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={P,Q,...} P
Procedure declarations PDec p
Variable declarations VDec v
Commands (statements) Cmd c

Context-free grammar:

p = proc P is c;p|e € PDec

v i=var x;v | ¢ € VDec

cu=skip|x :=al|c;c | if b then ¢ else ¢ | while b do ¢ |
call P |begin v p ¢ end € Cmd

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 14.6

© New Semantic Domains

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 14.7

Locations and Stores

@ So far: states ¥ = {0 | 0 : Var — Z}
@ Now: explicit control over all (nested) instances of a variable:

e variable environments VEnv := {p | p: Var --» Loc}
o locations Loc := N
o stores Sto:={o | o : Loc --+ Z}

(partial function to maintain allocation information)

= Two-level access to a variable x € Var:
© determine current memory location of x:

I:= p(x)
@ reading/writing access to o at position /

@ Thus: previous state information represented as o o p

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Procedure Environments and Declarations

o Effect of procedure call determined by its body and variable and
procedure environment of its declaration:

PEnv := {r | m: PVar --» Cmd x VEnv x PEnv}

denotes the set of procedure environments

e Effect of declaration: update of environment (and store)

upd,[.] : VDec x VEnv x Sto — VEnv x Sto
upd, [var x;v](p, o) := upd,[v](p[x — k], o[k — 0])
upd, [€](p, 0) := (p,)
upd,[.] : PDec x VEnv x PEnv — PEnv
updy[proc P is c;p](p,) := upd,[pl(p, [P — (¢, p, m)])
upd,[e](p,7) =7

where [, := min{/ € Loc | o(l) = L}

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 14.9

e Execution Relation

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 14.10

Execution Relation |

Definition 14.2 (Execution relation)
For c € Cmd, 0,0’ € Sto, p € VEnv, and 7 € PEnv, the execution
relation (p,) F (c,0) — ¢’ (“in environment (p, 7), statement ¢
transforms store o into ¢’") is defined by the following rules:

(skip)

(p,m) F (skip,0) = o
(a,00p) = z
p,) (x 1= a,0) = o[p(x) — Z]
(p,m)F{c,0) = (p,7)F{c2,0') = "
(p,m)F{c;c,0) = 0"
(b,oop)—true (p,7)F (c1,0) — o’
(p 7) b (if b then ¢ else ¢,0) — o’
(i6) (b,oop)—false (p,7)F (c,0) =0’
(p,7) - (if b then ¢ else ¢, 0) — o

(asgn) (

(seq)

(if-t)

v

RWNTH Semantics and Verification of Software Summer Semester 2013 14.11

Execution Relation |l

Definition 14.2 (Execution relation; continued)

(b,o o p) — false
(p,m) F (while b do c,0) — o

(wh-f)

"

(b,0 0 p)—true (p,m)F{(c,o)—=c" (p,7)F(while b do c,0’') =0

(wh-t) (p,m) I (while b do ¢,0) — o”
(0, 7' [P~ (c,p/, 7)) F (c,0) = 0’ - = (c,p', 7
e A i e — @)= G
(block) upd, [v](p,0) = (¢, 0") (p'supd,[pl(p', 7)) F (c,0") — o”

(p,7) F (begin v p ¢ end, o) — o”

RWNTH Semantics and Verification of Software Summer Semester 2013 14.12

Execution Relation |1l

Remarks about rules (call) and (block):

@ Static scoping is modelled in (call) by using the environments p’ and
7' (as determined in (block)) from the declaration site of procedure P
(and not p and 7 from the calling site)

@ In (call), the procedure environment associated with procedure P is
extended by a P-entry to handle recursive calls of P:

w[P = (c,)]

nerAACHEN Semantics and Verification of Software Summer Semester 2013 14.13

Execution Relation IV

Example 14.3

¢ = begin
var x; var y; v
proc F is
begin
var z;
Z = X;
if z=1 then skip p
else x := x-1; F
call F; 2 e
y =z *y
end)
x :=2; y :=1; call F }Cg
end
Let oy(/) = pp(x) = my(P) = L for all € Loc,x € Var, P € PVar
Notation: ojjy < 0(0) =i,0(1) =j,0(2) = k,0(3) =/
Derivation tree for (pg, mg) F (c,0p) — o1221: on the board

V.

RWNTH Semantics and Verification of Software Summer Semester 2013 14.14

	Extension by Blocks and Procedures
	Extending the Syntax
	New Semantic Domains
	Execution Relation

