
Semantics and Verification of Software
Lecture 15: Extension by Blocks and Procedures II

(Denotational Semantics)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Outline

1 Recapitulation: Operational Semantics of Blocks and Procedures

2 Denotational Semantics: Handling Variable Declarations

3 Denotational Semantics: Handling Procedures

4 Two Examples

5 Justification of Fixpoint Semantics

6 Summary: Blocks and Procedures

Semantics and Verification of Software Summer Semester 2013 15.2

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar = {P, Q, . . .} P
Procedure declarations PDec p
Variable declarations VDec v
Commands (statements) Cmd c

Context-free grammar:

p ::= proc P is c;p | ε ∈ PDec
v ::= var x;v | ε ∈ VDec
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c |

call P | begin v p c end ∈ Cmd

Semantics and Verification of Software Summer Semester 2013 15.3

Locations and Stores

So far: states Σ = {σ | σ : Var → Z}
Now: explicit control over all (nested) instances of a variable:

variable environments VEnv := {ρ | ρ : Var 99K Loc}
locations Loc := N
stores Sto := {σ | σ : Loc 99K Z}
(partial function to maintain allocation information)

⇒ Two-level access to a variable x ∈ Var :
1 determine current memory location of x :

l := ρ(x)

2 reading/writing access to σ at position l

Thus: previous state information represented as σ ◦ ρ

Semantics and Verification of Software Summer Semester 2013 15.4

Procedure Environments and Declarations

Effect of procedure call determined by its body and variable and
procedure environment of its declaration:

PEnv := {π | π : PVar 99K Cmd × VEnv × PEnv}

denotes the set of procedure environments

Effect of declaration: update of environment (and store)

updv J.K : VDec × VEnv × Sto → VEnv × Sto
updv Jvar x;vK(ρ, σ) := updv JvK(ρ[x 7→ lx], σ[lx 7→ 0])

updv JεK(ρ, σ) := (ρ, σ)

updpJ.K : PDec × VEnv × PEnv → PEnv
updpJproc P is c;pK(ρ, π) := updpJpK(ρ, π[P 7→ (c , ρ, π)])

updpJεK(ρ, π) := π

where lx := min{l ∈ Loc | σ(l) = ⊥}

Semantics and Verification of Software Summer Semester 2013 15.5

Execution Relation I

Definition (Execution relation)

For c ∈ Cmd , σ, σ′ ∈ Sto, ρ ∈ VEnv , and π ∈ PEnv , the execution
relation (ρ, π) ` 〈c , σ〉 → σ′ (“in environment (ρ, π), statement c
transforms store σ into σ′”) is defined by the following rules:

(skip)
(ρ, π) ` 〈skip, σ〉 → σ

(asgn)
〈a, σ ◦ ρ〉 → z

(ρ, π) ` 〈x := a, σ〉 → σ[ρ(x) 7→ z]

(seq)
(ρ, π) ` 〈c1, σ〉 → σ′ (ρ, π) ` 〈c2, σ

′〉 → σ′′

(ρ, π) ` 〈c1;c2, σ〉 → σ′′

(if-t)
〈b, σ ◦ ρ〉 → true (ρ, π) ` 〈c1, σ〉 → σ′

(ρ, π) ` 〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ ◦ ρ〉 → false (ρ, π) ` 〈c2, σ〉 → σ′

(ρ, π) ` 〈if b then c1 else c2, σ〉 → σ′

Semantics and Verification of Software Summer Semester 2013 15.6

Execution Relation II

Definition (Execution relation; continued)

(wh-f)
〈b, σ ◦ ρ〉 → false

(ρ, π) ` 〈while b do c , σ〉 → σ

(wh-t)
〈b, σ ◦ ρ〉→ true (ρ, π)`〈c , σ〉→σ′ (ρ, π)`〈while b do c , σ′〉→σ′′

(ρ, π) ` 〈while b do c , σ〉 → σ′′

(call)
(ρ′, π′[P 7→ (c , ρ′, π′)]) ` 〈c , σ〉 → σ′

(ρ, π) ` 〈call P, σ〉 → σ′
if π(P) = (c , ρ′, π′)

(block)
updv JvK(ρ, σ) = (ρ′, σ′) (ρ′, updpJpK(ρ′, π)) ` 〈c , σ′〉 → σ′′

(ρ, π) ` 〈begin v p c end, σ〉 → σ′′

Semantics and Verification of Software Summer Semester 2013 15.7

Outline

1 Recapitulation: Operational Semantics of Blocks and Procedures

2 Denotational Semantics: Handling Variable Declarations

3 Denotational Semantics: Handling Procedures

4 Two Examples

5 Justification of Fixpoint Semantics

6 Summary: Blocks and Procedures

Semantics and Verification of Software Summer Semester 2013 15.8

Handling Variable Declarations

Exactly as in operational semantics:

Variable environments keep location information:

VEnv := {ρ | ρ : Var 99K Loc}

with Loc := N

Effect of variable declaration: update of environment and store

updv J.K : VDec × VEnv × Sto → VEnv × Sto
updv Jvar x;vK(ρ, σ) := updv JvK(ρ[x 7→ lx], σ[lx 7→ 0])

updv JεK(ρ, σ) := (ρ, σ)

where lx := min{l ∈ Loc | σ(l) = ⊥}

Semantics and Verification of Software Summer Semester 2013 15.9

Handling Variable Declarations

Exactly as in operational semantics:

Variable environments keep location information:

VEnv := {ρ | ρ : Var 99K Loc}

with Loc := N
Effect of variable declaration: update of environment and store

updv J.K : VDec × VEnv × Sto → VEnv × Sto
updv Jvar x;vK(ρ, σ) := updv JvK(ρ[x 7→ lx], σ[lx 7→ 0])

updv JεK(ρ, σ) := (ρ, σ)

where lx := min{l ∈ Loc | σ(l) = ⊥}

Semantics and Verification of Software Summer Semester 2013 15.9

Statement Semantics Using Locations

First step: reformulation of Definition 5.1 using locations
So far: CJ.K : Cmd → (Σ 99K Σ)

Definition 15.1 (Denotational semantics using locations)

The (denotational) semantic functional for statements,

C′J.K : Cmd → VEnv → (Sto 99K Sto),

is given by:
C′JskipKρ := idSto

C′Jx := aKρ σ := σ[ρ(x) 7→ AJaK(lookup ρ σ)]
C′Jc1;c2Kρ := (C′Jc2Kρ) ◦ (C′Jc1Kρ)

C′Jif b then c1 else c2Kρ := cond(BJbK ◦ (lookup ρ),C′Jc1Kρ,C′Jc2Kρ)
C′Jwhile b do cKρ := fix(Φ)

where lookup : VEnv → Sto → Σ with lookup ρ σ := σ ◦ ρ and

Φ : (Sto 99K Sto)→ (Sto 99K Sto) :
f 7→ cond(BJbK ◦ (lookup ρ), f ◦ C′JcKρ, idSto)

Semantics and Verification of Software Summer Semester 2013 15.10

Statement Semantics Using Locations

First step: reformulation of Definition 5.1 using locations
So far: CJ.K : Cmd → (Σ 99K Σ)

Definition 15.1 (Denotational semantics using locations)

The (denotational) semantic functional for statements,

C′J.K : Cmd → VEnv → (Sto 99K Sto),

is given by:
C′JskipKρ := idSto

C′Jx := aKρ σ := σ[ρ(x) 7→ AJaK(lookup ρ σ)]
C′Jc1;c2Kρ := (C′Jc2Kρ) ◦ (C′Jc1Kρ)

C′Jif b then c1 else c2Kρ := cond(BJbK ◦ (lookup ρ),C′Jc1Kρ,C′Jc2Kρ)
C′Jwhile b do cKρ := fix(Φ)

where lookup : VEnv → Sto → Σ with lookup ρ σ := σ ◦ ρ and

Φ : (Sto 99K Sto)→ (Sto 99K Sto) :
f 7→ cond(BJbK ◦ (lookup ρ), f ◦ C′JcKρ, idSto)

Semantics and Verification of Software Summer Semester 2013 15.10

Outline

1 Recapitulation: Operational Semantics of Blocks and Procedures

2 Denotational Semantics: Handling Variable Declarations

3 Denotational Semantics: Handling Procedures

4 Two Examples

5 Justification of Fixpoint Semantics

6 Summary: Blocks and Procedures

Semantics and Verification of Software Summer Semester 2013 15.11

Procedure Environments

Procedure environments now store semantic information:
So far: PEnv := {π | π : PVar 99K Cmd × VEnv × PEnv}
Now: PEnv := {π | π : PVar 99K (Sto 99K Sto)}, to be used in
C′′J.K : Cmd → VEnv → PEnv → (Sto 99K Sto)

Procedure declarations (“proc P is c”) update procedure
environment:

updpJ.K : PDec × VEnv × PEnv → PEnv

non-recursive case: P not (indirectly) called within c
⇒ π(P) immediately given by C′′JcKρ π

updpJproc P is c;pK(ρ, π) := updpJpK(ρ, π[P 7→ C′′JcKρ π])

recursive case: π(P) must be a solution of equation
f = C′′JcKρ π[P 7→ f]
(cf. fixpoint semantics of while loop – Slide 5.15)

updpJproc P is c;pK(ρ, π) := updpJpK(ρ, π[P 7→ fix(Ψ)])

where Ψ : (Sto 99K Sto)→ (Sto 99K Sto) : f 7→ C′′JcKρ π[P 7→ f]
updpJεK(ρ, π) := π
Remark: non-recursive is special case of recursive situation

Semantics and Verification of Software Summer Semester 2013 15.12

Procedure Environments

Procedure environments now store semantic information:
So far: PEnv := {π | π : PVar 99K Cmd × VEnv × PEnv}
Now: PEnv := {π | π : PVar 99K (Sto 99K Sto)}, to be used in
C′′J.K : Cmd → VEnv → PEnv → (Sto 99K Sto)

Procedure declarations (“proc P is c”) update procedure
environment:

updpJ.K : PDec × VEnv × PEnv → PEnv

non-recursive case: P not (indirectly) called within c
⇒ π(P) immediately given by C′′JcKρ π

updpJproc P is c;pK(ρ, π) := updpJpK(ρ, π[P 7→ C′′JcKρ π])

recursive case: π(P) must be a solution of equation
f = C′′JcKρ π[P 7→ f]
(cf. fixpoint semantics of while loop – Slide 5.15)

updpJproc P is c;pK(ρ, π) := updpJpK(ρ, π[P 7→ fix(Ψ)])

where Ψ : (Sto 99K Sto)→ (Sto 99K Sto) : f 7→ C′′JcKρ π[P 7→ f]
updpJεK(ρ, π) := π
Remark: non-recursive is special case of recursive situation

Semantics and Verification of Software Summer Semester 2013 15.12

Statement Semantics Including Procedures

So far: C′J.K : Cmd → VEnv → (Sto 99K Sto)

Definition 15.2 (Denotational semantics with procedures)

C′′J.K : Cmd → VEnv → PEnv → (Sto 99K Sto)

is given by:
C′′JskipKρ π := idSto

C′′Jx := aKρ π σ := σ[ρ(x) 7→ AJaK(lookup ρ σ)]
C′′Jc1;c2Kρ π := (C′′Jc2Kρ π) ◦ (C′′Jc1Kρ π)

C′′Jif b then c1 else c2Kρ π := cond(BJbK ◦ (lookup ρ),
C′′Jc1Kρ π,C′′Jc2Kρ π)

C′′Jwhile b do cKρ π := fix(Φ)
C′′Jcall PKρ π := π(P)

C′′Jbegin v p c endKρ π σ := C′′JcKρ′ π′ σ′

where updv JvK(ρ, σ) = (ρ′, σ′)
updpJpK(ρ′, π) = π′

lookup ρ σ := σ ◦ ρ
Φ(f) := cond(BJbK ◦ (lookup ρ), f ◦ C′′JcKρ π, idSto)

Semantics and Verification of Software Summer Semester 2013 15.13

Statement Semantics Including Procedures

So far: C′J.K : Cmd → VEnv → (Sto 99K Sto)

Definition 15.2 (Denotational semantics with procedures)

C′′J.K : Cmd → VEnv → PEnv → (Sto 99K Sto)

is given by:
C′′JskipKρ π := idSto

C′′Jx := aKρ π σ := σ[ρ(x) 7→ AJaK(lookup ρ σ)]
C′′Jc1;c2Kρ π := (C′′Jc2Kρ π) ◦ (C′′Jc1Kρ π)

C′′Jif b then c1 else c2Kρ π := cond(BJbK ◦ (lookup ρ),
C′′Jc1Kρ π,C′′Jc2Kρ π)

C′′Jwhile b do cKρ π := fix(Φ)
C′′Jcall PKρ π := π(P)

C′′Jbegin v p c endKρ π σ := C′′JcKρ′ π′ σ′

where updv JvK(ρ, σ) = (ρ′, σ′)
updpJpK(ρ′, π) = π′

lookup ρ σ := σ ◦ ρ
Φ(f) := cond(BJbK ◦ (lookup ρ), f ◦ C′′JcKρ π, idSto)

Semantics and Verification of Software Summer Semester 2013 15.13

Outline

1 Recapitulation: Operational Semantics of Blocks and Procedures

2 Denotational Semantics: Handling Variable Declarations

3 Denotational Semantics: Handling Procedures

4 Two Examples

5 Justification of Fixpoint Semantics

6 Summary: Blocks and Procedures

Semantics and Verification of Software Summer Semester 2013 15.14

Example: Non-Recursive Case

Example 15.3 (Non-recursive procedure call)

(also demonstrates static scoping principle)

c = begin
var x;
proc P is x := x - 1;
x := 2; } c1

begin
var x;
x := 3;
call P;

end;

 c2

end

Initial environments/store: ρ∅ ∈ VEnv , π∅ ∈ PEnv , σ∅ ∈ Sto

Computation of C′′JcKρ∅ π∅ σ∅: on the board

Semantics and Verification of Software Summer Semester 2013 15.15

Example: Recursive Case

Example 15.4 (Recursive procedure call)

c = begin
proc F is

if x = 1 then
skip;

else
y := x * y;
x := x - 1;
call F;


c1


p

y := 1;
call F;

}
c2

end

Initial environments/store: ρ1 := ρ∅[x 7→ 0, y 7→ 1] ∈ VEnv ,
π∅ ∈ PEnv , σ ∈ Sto (with σ(0) 6= ⊥)

Computation of C′′JcKρ1 π∅ σ: on the board

Semantics and Verification of Software Summer Semester 2013 15.16

Outline

1 Recapitulation: Operational Semantics of Blocks and Procedures

2 Denotational Semantics: Handling Variable Declarations

3 Denotational Semantics: Handling Procedures

4 Two Examples

5 Justification of Fixpoint Semantics

6 Summary: Blocks and Procedures

Semantics and Verification of Software Summer Semester 2013 15.17

Justification of Fixpoint Semantics

Lemma 15.5
1 (cf. Lemma 6.9)

(Sto 99K Sto,v) is a CCPO where f v g iff for all σ, σ′ ∈ Σ:
f (σ) = σ′ ⇒ g(σ) = σ′

2 (cf. Lemmata 6.13 and 6.16)
Let b ∈ BExp, c ∈ Cmd, ρ ∈ VEnv, π ∈ PEnv, and
Φ : (Sto 99K Sto)→ (Sto 99K Sto) with
Φ(f) := cond(BJbK ◦ (lookup ρ), f ◦ C′′JcKρ π, idSto). Then Φ is
monotonic and continuous w.r.t. (Sto 99K Sto,v).

3 Let proc P is c ∈ PDec, ρ ∈ VEnv, π ∈ PEnv, and
Ψ : (Sto 99K Sto)→ (Sto 99K Sto) with Ψ(f) := C′′JcKρ π[P 7→ f].
Then Ψ is monotonic and continuous w.r.t. (Sto 99K Sto,v).

Proof.

omitted

Semantics and Verification of Software Summer Semester 2013 15.18

Justification of Fixpoint Semantics

Lemma 15.5
1 (cf. Lemma 6.9)

(Sto 99K Sto,v) is a CCPO where f v g iff for all σ, σ′ ∈ Σ:
f (σ) = σ′ ⇒ g(σ) = σ′

2 (cf. Lemmata 6.13 and 6.16)
Let b ∈ BExp, c ∈ Cmd, ρ ∈ VEnv, π ∈ PEnv, and
Φ : (Sto 99K Sto)→ (Sto 99K Sto) with
Φ(f) := cond(BJbK ◦ (lookup ρ), f ◦ C′′JcKρ π, idSto). Then Φ is
monotonic and continuous w.r.t. (Sto 99K Sto,v).

3 Let proc P is c ∈ PDec, ρ ∈ VEnv, π ∈ PEnv, and
Ψ : (Sto 99K Sto)→ (Sto 99K Sto) with Ψ(f) := C′′JcKρ π[P 7→ f].
Then Ψ is monotonic and continuous w.r.t. (Sto 99K Sto,v).

Proof.

omitted

Semantics and Verification of Software Summer Semester 2013 15.18

Justification of Fixpoint Semantics

Lemma 15.5
1 (cf. Lemma 6.9)

(Sto 99K Sto,v) is a CCPO where f v g iff for all σ, σ′ ∈ Σ:
f (σ) = σ′ ⇒ g(σ) = σ′

2 (cf. Lemmata 6.13 and 6.16)
Let b ∈ BExp, c ∈ Cmd, ρ ∈ VEnv, π ∈ PEnv, and
Φ : (Sto 99K Sto)→ (Sto 99K Sto) with
Φ(f) := cond(BJbK ◦ (lookup ρ), f ◦ C′′JcKρ π, idSto). Then Φ is
monotonic and continuous w.r.t. (Sto 99K Sto,v).

3 Let proc P is c ∈ PDec, ρ ∈ VEnv, π ∈ PEnv, and
Ψ : (Sto 99K Sto)→ (Sto 99K Sto) with Ψ(f) := C′′JcKρ π[P 7→ f].
Then Ψ is monotonic and continuous w.r.t. (Sto 99K Sto,v).

Proof.

omitted

Semantics and Verification of Software Summer Semester 2013 15.18

Outline

1 Recapitulation: Operational Semantics of Blocks and Procedures

2 Denotational Semantics: Handling Variable Declarations

3 Denotational Semantics: Handling Procedures

4 Two Examples

5 Justification of Fixpoint Semantics

6 Summary: Blocks and Procedures

Semantics and Verification of Software Summer Semester 2013 15.19

Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures

Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
Meaning of variable declaration: storage allocation
Meaning of procedure call:

operationally: execution of procedure body
⇒ procedure environment records statement (“symbol table”)

denotationally: application of procedure meaning
⇒ procedure environment records (partial) store transformation

recursive behavior again handled by fixpoint approach
Further extensions:

axiomatic semantics (for proc P is c ∈ PDec)

non-recursive: (call)
{A} c {B}

{A} call P {B}

recursive: (call)
{A} call P {B} ` {A} c {B}

{A} call P {B}
procedure parameters
higher-order procedures

Semantics and Verification of Software Summer Semester 2013 15.20

Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables

Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
Meaning of variable declaration: storage allocation
Meaning of procedure call:

operationally: execution of procedure body
⇒ procedure environment records statement (“symbol table”)

denotationally: application of procedure meaning
⇒ procedure environment records (partial) store transformation

recursive behavior again handled by fixpoint approach
Further extensions:

axiomatic semantics (for proc P is c ∈ PDec)

non-recursive: (call)
{A} c {B}

{A} call P {B}

recursive: (call)
{A} call P {B} ` {A} c {B}

{A} call P {B}
procedure parameters
higher-order procedures

Semantics and Verification of Software Summer Semester 2013 15.20

Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)

Meaning of variable declaration: storage allocation
Meaning of procedure call:

operationally: execution of procedure body
⇒ procedure environment records statement (“symbol table”)

denotationally: application of procedure meaning
⇒ procedure environment records (partial) store transformation

recursive behavior again handled by fixpoint approach
Further extensions:

axiomatic semantics (for proc P is c ∈ PDec)

non-recursive: (call)
{A} c {B}

{A} call P {B}

recursive: (call)
{A} call P {B} ` {A} c {B}

{A} call P {B}
procedure parameters
higher-order procedures

Semantics and Verification of Software Summer Semester 2013 15.20

Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
Meaning of variable declaration: storage allocation

Meaning of procedure call:
operationally: execution of procedure body

⇒ procedure environment records statement (“symbol table”)
denotationally: application of procedure meaning

⇒ procedure environment records (partial) store transformation
recursive behavior again handled by fixpoint approach

Further extensions:
axiomatic semantics (for proc P is c ∈ PDec)

non-recursive: (call)
{A} c {B}

{A} call P {B}

recursive: (call)
{A} call P {B} ` {A} c {B}

{A} call P {B}
procedure parameters
higher-order procedures

Semantics and Verification of Software Summer Semester 2013 15.20

Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
Meaning of variable declaration: storage allocation
Meaning of procedure call:

operationally: execution of procedure body
⇒ procedure environment records statement (“symbol table”)

denotationally: application of procedure meaning
⇒ procedure environment records (partial) store transformation

recursive behavior again handled by fixpoint approach

Further extensions:
axiomatic semantics (for proc P is c ∈ PDec)

non-recursive: (call)
{A} c {B}

{A} call P {B}

recursive: (call)
{A} call P {B} ` {A} c {B}

{A} call P {B}
procedure parameters
higher-order procedures

Semantics and Verification of Software Summer Semester 2013 15.20

Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
Meaning of variable declaration: storage allocation
Meaning of procedure call:

operationally: execution of procedure body
⇒ procedure environment records statement (“symbol table”)

denotationally: application of procedure meaning
⇒ procedure environment records (partial) store transformation

recursive behavior again handled by fixpoint approach
Further extensions:

axiomatic semantics (for proc P is c ∈ PDec)

non-recursive: (call)
{A} c {B}

{A} call P {B}

recursive: (call)
{A} call P {B} ` {A} c {B}

{A} call P {B}
procedure parameters
higher-order procedures

Semantics and Verification of Software Summer Semester 2013 15.20

	Recapitulation: Operational Semantics of Blocks and Procedures
	Denotational Semantics: Handling Variable Declarations
	Denotational Semantics: Handling Procedures
	Two Examples
	Justification of Fixpoint Semantics
	Summary: Blocks and Procedures

