Semantics and Verification of Software

Lecture 15: Extension by Blocks and Procedures Il
(Denotational Semantics)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-1i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

@ Recapitulation: Operational Semantics of Blocks and Procedures

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 15.2

Extending the Syntax

Syntactic categories:

Category Domain Meta variable
Procedure identifiers PVar ={P,Q,...} P
Procedure declarations PDec p
Variable declarations VDec v
Commands (statements) Cmd c

Context-free grammar:

p = proc P is c;p|e € PDec

v i=var x;v | ¢ € VDec

cu=skip|x :=al|c;c | if b then ¢ else ¢ | while b do ¢ |
call P |begin v p ¢ end € Cmd

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 15.3

Locations and Stores

@ So far: states ¥ = {0 | 0 : Var — Z}
@ Now: explicit control over all (nested) instances of a variable:

e variable environments VEnv := {p | p: Var --» Loc}
e locations Loc := N
o stores Sto:={o | o : Loc --+Z}

(partial function to maintain allocation information)

= Two-level access to a variable x € Var:
© determine current memory location of x:

I:= p(x)
@ reading/writing access to o at position /

@ Thus: previous state information represented as o o p

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Procedure Environments and Declarations

o Effect of procedure call determined by its body and variable and
procedure environment of its declaration:

PEnv := {r | m: PVar --» Cmd x VEnv x PEnv}

denotes the set of procedure environments

e Effect of declaration: update of environment (and store)

upd,[.] : VDec x VEnv x Sto — VEnv x Sto
upd, [var x;v](p, o) := upd,[v](p[x — k], o[k — 0])
upd, [€](p, 0) := (p, o)
upd,[.] : PDec x VEnv x PEnv — PEnv
updy[proc P is c;p](p,) := upd,[pl(p, [P — (¢, p, m)])
upd,[e](p,7) =7

where [, := min{/ € Loc | o(l) = L}

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 15.5

Execution Relation |

Definition (Execution relation)
For c € Cmd, 0,0’ € Sto, p € VEnv, and 7 € PEnv, the execution
relation (p,) F (c,0) — ¢’ (“in environment (p, 7), statement ¢
transforms store o into ¢’") is defined by the following rules:

(skip)

(p,m) F (skip,0) = o
(a,00p) = z
p,) (x 1= a,0) = o[p(x) — Z]
(p,m)F{c,0) = (p,7)F{c2,0') = "
(p,m)F{c;c,0) = 0"
(b,oop)—true (p,7)F (c1,0) — o’
(p 7) b (if b then ¢ else ¢,0) — o’
(i6) (b,oop)—false (p,7)F (c,0) =0’
(p,7) - (if b then ¢ else ¢, 0) — o

(asgn) (

(seq)

(if-t)

v

RWNTH Semantics and Verification of Software Summer Semester 2013 15.6

Execution Relation |l

Definition (Execution relation; continued)

(b,o o p) — false
(p,m) F (while b do c,0) — o

(wh-f)

"

(b,0 0 p)—true (p,m)F{(c,o)—=c" (p,7)F(while b do c,0’') =0

(wh-t) (p,m) I (while b do ¢,0) — o”
(0, 7' [P~ (c,p/, 7)) F (c,0) = 0’ - = (c,p', 7
e A i e — @)= G
(block) upd, [v](p,0) = (¢, 0") (p'supd,[pl(p', 7)) F (c,0") — o”

(p,7) F (begin v p ¢ end, o) — o”

RWNTH Semantics and Verification of Software Summer Semester 2013 15.7

© Denotational Semantics: Handling Variable Declarations

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 15.8

Handling Variable Declarations

Exactly as in operational semantics:

o Variable environments keep location information:

VEnv :={p| p: Var --» Loc}

with Loc := N

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 15.9

Handling Variable Declarations

Exactly as in operational semantics:

o Variable environments keep location information:
VEnv :={p| p: Var --» Loc}

with Loc := N

o Effect of variable declaration: update of environment and store

upd, [.] : VDec x VEnv x Sto — VEnv x Sto
upd, [var x;v](p, o) := upd,[v](p[x — L], o[k — 0])
upd, [e](p, o) := (p, o)

where [:= min{/ € Loc | o(l) = L}

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 15.9

Statement Semantics Using Locations

o First step: reformulation of Definition 5.1 using locations
e Sofar: €[] : Cmd — (X --» X)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 15.10

Statement Semantics Using Locations

o First step: reformulation of Definition 5.1 using locations
e Sofar: €[] : Cmd — (X --» X)

Definition 15.1 (Denotational semantics using locations)

The (denotational) semantic functional for statements,

¢'[.] : Cmd — VEnv — (Sto --» Sto),

is given by:
¢'[[skip]p := idsto
¢'[x := ap o = o[p(x) — A[a](lookup p)]
er; e]p = (Te]p) o (Cealp)

¢'[if b then ¢ else c;]p := cond(B[b] o (lookup p), € [c1]p, € [c2]p)
¢’[while b do c]p := fix(P)

where lookup : VEnv — Sto — ¥ with lookup p 0 :== o o p and
o : (Sto --» Sto) — (Sto --» Sto) :
f +— cond(B[b] o (lookup p), f o € [c]p, idsto)

RWNTH HE Semantics and Verification of Software Summer Semester 2013 15.10

© Denotational Semantics: Handling Procedures

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 15.11

Procedure Environments

@ Procedure environments now store semantic information:
o So far: PEnv := {m | m: PVar --» Cmd x VEnv x PEnv}
o Now: PEnv := {m | m: PVar --» (Sto --» Sto)}, to be used in
¢"[.] : Cmd — VEnv — PEnv — (Sto --» Sto)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 15.12

Procedure Environments

@ Procedure environments now store semantic information:
o So far: PEnv := {m | m: PVar --» Cmd x VEnv x PEnv}
o Now: PEnv := {m | m: PVar --» (Sto --» Sto)}, to be used in
¢"[.] : Cmd — VEnv — PEnv — (Sto --» Sto)

@ Procedure declarations (“proc P is ¢") update procedure
environment:

upd,[.] : PDec x VEnv x PEnv — PEnv

e non-recursive case: P not (indirectly) called within ¢

= 7(P) immediately given by €"[c]p =

upd,[proc P is c;p](p,7) := upd,[p](p, 7[P — &"[c]p n])

o recursive case: 7(P) must be a solution of equation

f=¢&"[c]pn[P > f]

(cf. fixpoint semantics of while loop — Slide 5.15)

upd,[proc P is c;p](p,n) := upd,[p](p, 7[P = fix(V)])
where W : (Sto --» Sto) — (Sto --» Sto) : f — &"[[c]p w[P — f]

o upd,[e](p,7) =7
o Remark: non-recursive is special case of recursive situation
RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 15.12

Statement Semantics Including Procedures

So far: ¢'[.] : Cmd — VEnv — (Sto --+ Sto)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 15.13

Statement Semantics Including Procedures

So far: ¢'[.] : Cmd — VEnv — (Sto --+ Sto)

Definition 15.2 (Denotational semantics with procedures)
¢"[.] : Cmd — VEnv — PEnv — (Sto --» Sto)

is given by:
¢’ [skip]p 7 :
x :=alpmo:
e ep
¢’[if b then ¢ else q]p 7 :

idsto

U[;(x) — Afa](lookup p)]
(& [ca]p) o (€"[ca]p)
cond(B[b] o (lookup p),
 a]pm,[e]p)
fix(®)

m(P)

@//IIC]]p/ 7_[./ 0./

¢’[while b do c]p 7 :
" [call Plpm :
¢’[begin v p c end]pmo :

where upd, [v](p,0) = (0, 0")
upd,[p](p',) = =
Iookup poi=00p
O(F) ‘= cond (B[] o (lookup), £ o €”[cp . ids1o)

RWNTH Semantics and Verification of Software Summer Semester 2013 15.13

@ Two Examples

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 15.14

Example: Non-Recursive Case

Example 15.3 (Non-recursive procedure call)

(also demonstrates static scoping principle)
¢ — begin
var x;
proc P is x = x - 1;
X = 2; }(,‘1
begin
var x;
x :=3; 0
call P;
end;
end
o Initial environments/store: py € VEnv, my € PEnv, oy € Sto
e Computation of €”[c]py 7y op: on the board

| Semantics and Verification of Software Summer Semester 2013

Example: Recursive Case

Example 15.4 (Recursive procedure call)

¢ = begin
proc F is

if x = 1 then
skip;

else p
yi=xxy; [
X :=x - 1;
call F;

y :=1;
call F;} =

end

o Initial environments/store: p1 := py[x — 0,y — 1] € VEnv,
mp € PEnv, o € Sto (with o(0) # 1)

o Computation of €”[c]p1 7y o: on the board

v

RWNTH HE Semantics and Verification of Software Summer Semester 2013 15.16

© Justification of Fixpoint Semantics

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 15.17

Justification of Fixpoint Semantics

Lemma 15.5

Q (cf. Lemma 6.9)
(Sto --» Sto,C) is a CCPO where f C g iff for all 0,0’ € ¥:
f(c)=0" = g(oc)=0'

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 15.18

Justification of Fixpoint Semantics

Lemma 15.5

Q (cf. Lemma 6.9)
(Sto --» Sto,C) is a CCPO where f C g iff for all 0,0’ € ¥:
f(o)=0"=g(o) =0’

@ (cf. Lemmata 6.13 and 6.16)
Let b € BExp, c € Cmd, p € VEnv, m € PEnv, and
o : (Sto --» Sto) — (Sto --» Sto) with
®(f) := cond(B[b] o (lookup p), f o €"[c]p 7, idsto). Then & is
monotonic and continuous w.r.t. (Sto --» Sto, C).

RWNTH HE Semantics and Verification of Software Summer Semester 2013

Justification of Fixpoint Semantics

Lemma 15.5

Q (cf. Lemma 6.9)
(Sto --» Sto,C) is a CCPO where f C g iff for all 0,0’ € X:
f(o)=0"=g(o) =0’

@ (cf. Lemmata 6.13 and 6.16)
Let b € BExp, c € Cmd, p € VEnv, m € PEnv, and
® : (Sto --» Sto) — (Sto --» Sto) with
®(f) := cond(B[b] o (lookup p), f o €"[c]p 7, idsto). Then & is
monotonic and continuous w.r.t. (Sto --» Sto, C).

© Let proc P is c € PDec, p € VEnv, m € PEnv, and
WV : (Sto --» Sto) — (Sto --» Sto) with V(f) := ¢"[c]p n[P — f].
Then W is monotonic and continuous w.r.t. (Sto --» Sto,C).

omitted]

RWNTH Semantics and Verification of Software Summer Semester 2013 15.18

@ Summary: Blocks and Procedures

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 15.19

Summary: Blocks and Procedures

@ Blocks allow to declare local variables and recursive procedures

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 15.20

Summary: Blocks and Procedures

@ Blocks allow to declare local variables and recursive procedures
@ Requires concept of locations to support instantiation of variables

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 15.20

Summary: Blocks and Procedures

@ Blocks allow to declare local variables and recursive procedures

@ Requires concept of locations to support instantiation of variables

@ Static scoping: meaning of identifier determined by declaration
context (rather than calling context)

nerAACHEN Semantics and Verification of Software Summer Semester 2013 15.20

Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)

Meaning of variable declaration: storage allocation

nerAACHEN Semantics and Verification of Software Summer Semester 2013

Summary: Blocks and Procedures

Blocks allow to declare local variables and recursive procedures
Requires concept of locations to support instantiation of variables
Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
Meaning of variable declaration: storage allocation
Meaning of procedure call:
e operationally: execution of procedure body
= procedure environment records statement (“symbol table”)
e denotationally: application of procedure meaning
= procedure environment records (partial) store transformation
e recursive behavior again handled by fixpoint approach

nerAACHEN Semantics and Verification of Software Summer Semester 2013

Summary: Blocks and Procedures

@ Blocks allow to declare local variables and recursive procedures
@ Requires concept of locations to support instantiation of variables
@ Static scoping: meaning of identifier determined by declaration
context (rather than calling context)
@ Meaning of variable declaration: storage allocation
@ Meaning of procedure call:
e operationally: execution of procedure body
= procedure environment records statement (“symbol table”)
e denotationally: application of procedure meaning
= procedure environment records (partial) store transformation
e recursive behavior again handled by fixpoint approach
o Further extensions:
e axiomatic semantics (for proc P is ¢ € PDec)
{A} c{B}
{A} call P{B}
{A}call P{B} F {A}c{B}
{A} call P{B}

e non-recursive: (call)

o recursive: (call)

e procedure parameters
e higher-order procedures

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

	Recapitulation: Operational Semantics of Blocks and Procedures
	Denotational Semantics: Handling Variable Declarations
	Denotational Semantics: Handling Procedures
	Two Examples
	Justification of Fixpoint Semantics
	Summary: Blocks and Procedures

