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o Essential question: what is the meaning of
al e

(parallel execution of c1,c; € Cmd)?
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(parallel execution of c1,c; € Cmd)?

o Easy to answer when state spaces are disjoint:
(x := 1]y := 2,0) 2oz 1y 2]

(no interaction = corresponds to sequential execution)
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(parallel execution of c1,c; € Cmd)?

o Easy to answer when state spaces are disjoint:
(x := 1]y := 2,0) 2oz 1y 2]

(no interaction = corresponds to sequential execution)

@ But what if variables are shared?
(x := 1| x := 2);if x =1 then ¢ else

(runs c; or ¢ depending on execution order of initial assignments)
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o Essential question: what is the meaning of
al e

(parallel execution of c1,c; € Cmd)?

o Easy to answer when state spaces are disjoint:
(x := 1]y := 2,0) 2oz 1y 2]

(no interaction = corresponds to sequential execution)

@ But what if variables are shared?
(x := 1| x := 2);if x =1 then ¢ else

(runs c; or ¢ depending on execution order of initial assignments)

@ Even more complicated for non-atomic assignments...
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Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1

x:=0;
(x=x+1]x:=x+2)
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Non-Atomic Assignments

Observation: parallelism introduces new phenomena
Example 16.1

(x =x+1|x:=x+2) value of x: 1

o At first glance: x is assigned 3

@ But: both parallel components could read x before it is written
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Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1
x:=0;
(x =x+1|x:=x+2) value of x: 2

2

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written

@ Thus: x is assigned 2,
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Observation: parallelism introduces new phenomena

Example 16.1
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o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written
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Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1
x:=0;
(x =x+1|x:=x+2) value of x: 3
3

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written

@ Thus: x is assigned 2, 1, or 3
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Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1

x:=0;
(x=x+1]x:=x+2)

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written
@ Thus: x is assigned 2, 1, or 3

@ If exclusive (write) access to shared memory and atomic execution of
assignments guaranteed
= only possible outcome: 3
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Parallelism and Interaction

The problem arises due to the combination of
@ parallelism and

e interaction (here: via shared memory)
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Parallelism and Interaction

The problem arises due to the combination of
@ parallelism and

e interaction (here: via shared memory)

When modeling parallel systems, the precise description of the mechanisms
of both parallelism and interaction is crucially important.
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Reactive Systems

@ Thus: “classical” model for sequential systems
System : Input — Output

(transformational systems) is not adequate

@ Missing: aspect of interaction
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Reactive Systems

@ Thus: “classical” model for sequential systems
System : Input — Output

(transformational systems) is not adequate
@ Missing: aspect of interaction

@ Rather: reactive systems which interact with environment and among
themselves

@ Main interest: not terminating computations but infinite behavior
(system maintains ongoing interaction with environment)
@ Examples:

e operating systems

e embedded systems controlling mechanical or electrical devices
(planes, cars, home appliances, ...)

e power plants, production lines, ...
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Here: study of parallelism in connection with different kinds of interaction
@ Shared-variables communication (ParWHILE)
@ Channel communication (CSP)
@ Algebraic approaches (CCS)
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© Shared-Variables Communication
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The ParWHILE Language

Definition 16.2 (Syntax of ParWHILE)

z | x| ai+ay | ai-ay | a1*ax € AExp

t ’ ai=as ‘ ai>as | —\b| b1 A\ by | by V by, € BExp
c:=skip|x :=a|c;c | if b then ¢ else ¢; | while b do ¢ |
a |l e e Cmd

[@ i}
]
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Semantics of ParWHILE

@ Approach for defining semantics:
e assignments are executed atomically
o parallelism is modeled by interleaving, i.e., the actions of parallel
statements are merged
= Reduction of parallelism to nondeterminism -+ sequential execution
(similar to multitasking on sequential computers)
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Semantics of ParWHILE

@ Approach for defining semantics:
e assignments are executed atomically
o parallelism is modeled by interleaving, i.e., the actions of parallel
statements are merged
= Reduction of parallelism to nondeterminism -+ sequential execution
(similar to multitasking on sequential computers)
@ Requires single-step execution relation for statements
(cf. Exercise 2.1)

@ To minimize number of rules: uniform treatment of configurations of
the form (c,0) € Cmd x X and 0 € X:

e o interpreted as (|, o) with “terminated” command |
o | satisfies ;c=c;l=1]c=c|l=c

@ Thus: read (x :=01 |,0) as (x :=0,0)
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Semantics of ParWHILE 1|

Definition 16.3 (Single-step execution relation)

The single-step execution relation,
—1 C(Cmd X X) x (Cmd x ¥),

is defined by the following rules:

(a,0) = z
(skip,0) =1 ({,0) (x:=a,0) =1 (},o0[x — z])
(b,c) — true (b, o) — false

(if b then ¢ else ¢,0) —1 (c1,0) (if b then ¢ else ¢, 0) —1 (¢, 0)
(b,o) — true
(while b do c,0) —1 (c;while b do c,0)

(b,c) — false (c1,0) =1 (¢, 0")
(while b do c,0) =1 (|,0) (c1; ¢, 0) =1 {cf; &2,0")
(c1,0) —1 {(c],0") (c2,0) —1 {ch,0")
(all e2,0) =1 {cq || c2,07) (a |l e,0) =1 {a || &, 07)
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Semantics of ParWHILE Il

Let c:=(x:=1| x:=2);if x =1 then ¢; else ¢ and 0 € ¥.

v
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Semantics of ParWHILE Il

Let c:=(x:=1| x:=2);if x =1 then ¢; else ¢ and 0 € ¥.

(c,0) =1 (x:=2;if x =1 then ¢; else ¢, 0[x — 1])
(1,0) =1
(x :=1,0) =1 {{,o[x—1])
(x:=1|x:=2,0) =1 { || x:=2,0[x — 1])

since

v

RWNTH HE Semantics and Verification of Software Summer Semester 2013 16.12



Semantics of ParWHILE Il

Let c:=(x:=1| x:=2);if x =1 then ¢; else ¢ and 0 € ¥.

(c,0) =1 (x:=2;if x =1 then ¢; else ¢, 0[x — 1])
(1,0) =1
(x :=1,0) =1 {{,o[x—1])
(x:=1|x:=2,0) =1 { || x:=2,0[x — 1])
—1 (if x =1 then ¢ else ¢, 0[x — 2])
(2,0) = 2
(x:=2,0) =1 (|, o[x—2])

since

since

v
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Semantics of ParWHILE Il

Let c:=(x:=1| x:=2);if x =1 then ¢; else ¢ and 0 € ¥.

(c,0) =1 (x:=2;if x =1 then ¢; else ¢, 0[x — 1])
(1,0) =1

(x :=1,0) =1 {{,o[x—1])
(x:=1|x:=2,0) =1 { || x:=2,0[x — 1])
—1 (if x =1 then ¢ else ¢, 0[x — 2])

(2,0) = 2
(x:=2,0) =1 (},0[x— 2])
—1 <C2,0'[X — 2]>

since

since

(x,0[x—=2]) 2 (lLo[x—2]) =1
(x =1,0[x — 2]) — false

since

v

RWNTH Semantics and Verification of Software Summer Semester 2013 16.12



Semantics of ParWHILE Il

Let c:=(x:=1| x:=2);if x =1 then ¢; else ¢ and 0 € ¥.

(c,0) =1 (x:=2;if x =1 then ¢; else ¢, 0[x — 1])
(1,0) =1

(x :=1,0) =1 {{,o[x—1])
(x:=1|x:=2,0) =1 { || x:=2,0[x — 1])
—1 (if x =1 then ¢ else ¢, 0[x — 2])

(2,0) = 2
(x:=2,0) =1 (},0[x— 2])
—1 <C2,0'[X — 2]>

since

since

(x,0[x—=2]) 2 (lLo[x—2]) =1
(x =1,0[x — 2]) — false

since

Analogously: (c,a) =3 (c1,0[x — 1])

v
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© Channel Communication
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Communicating Sequential Processes

@ Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner
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Communicating Sequential Processes

@ Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner
@ Models system of processors that

e have (only) local store and
e run a sequential program (“process”)
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Communicating Sequential Processes

@ Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner
@ Models system of processors that
e have (only) local store and
e run a sequential program (“process”)
@ Communication proceeds in the following way:
e processes communicate along channels
e process can send/receive on a channel if another process

simultaneously performs the complementary 1/0O operation
= no buffering (synchronous communication)
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Communicating Sequential Processes

@ Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner
@ Models system of processors that
e have (only) local store and
e run a sequential program (“process”)
@ Communication proceeds in the following way:
e processes communicate along channels
e process can send/receive on a channel if another process

simultaneously performs the complementary 1/0O operation
= no buffering (synchronous communication)

@ New syntactic domains:

Channel names: a,B,7,... € Chn

Input operations: a?x where o € Chn, x € Var
Output operations:  «ala where o € Chn, a € AExp
Guarded commands: gc € GCmd
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Syntax of CSP

Definition 16.5 (Syntax of CSP)

The syntax of CSP is given by
a.= Z|X|al+32 | ai—as ‘ ai*ap GAEXP
b t|81 82|31>32|ﬁb|b1/\b2|b1\/b2€BEXp
c m=skip|x:=a|a?x|ala]|
c1;6 | if gc fi|do gcod | ¢ || 2 € Cmd
gci=b—c|bAa?x —c|bAala— c|ge g € GCmd
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Syntax of CSP

Definition 16.5 (Syntax of CSP)

The syntax of CSP is given by

a..:Z|X|31+32|31 82‘81*82€AEXP
b:::t|al 32|31>32|ﬁb|b1/\b2|b1\/b2€BEXp
c m=skip|x:=a|a?x|ala]|

c1;6 | if gc fi|do gcod | ¢ || 2 € Cmd
gci=b—c|bAa?x —c|bAala— c|ge g € GCmd

In ¢ || c2, commands ¢; and ¢; must not use common variables (only local
store)
Guarded command gc; [J gcp represents an alternative

In b — ¢, b acts as a guard that enables the execution of ¢ only if evaluated
to true

bAa?x — c and b A ala — c additionally require the respective 1/0
operation to be enabled

If none of its alternatives is enabled, a guarded command gc fails (state fail)
if nondeterministically picks an enabled alternative
A do Ioop is |terated until its body fails
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Semantics of CSP |

@ Most important aspect: 1/O operations
e E.g., (a?x;c,0) can only execute if a parallel command provides
corresponding output
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Semantics of CSP |

@ Most important aspect: 1/O operations
e E.g., (a?x;c,0) can only execute if a parallel command provides
corresponding output
= Indicate communication potential by labels
L:i={a?z|ae ChnzeZ}U{alz|a € Chn,z € Z}
@ Yields following labeled transitions:
(a?x; ¢, o) o (c,olx > z]) (forall z € Z)
(ala; o) 25 (', 0) (if (a,0) = z)
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Semantics of CSP |

@ Most important aspect: 1/O operations
e E.g., (a?x;c,0) can only execute if a parallel command provides
corresponding output
= Indicate communication potential by labels
L:i={a?z|ae ChnzeZ}U{alz|a € Chn,z € Z}
@ Yields following labeled transitions:
(a?x; ¢, o) o (c,olx > z]) (forall z € Z)
(ala; o) 25 (', o) (if (a,0) = z)
@ Now both commands, if running in parallel, can communicate:
{(a?x;¢) || (ala; ), o) — (c || ¢, o[x = Z]).
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Semantics of CSP |

@ Most important aspect: 1/O operations
e E.g., (a?x;c,0) can only execute if a parallel command provides
corresponding output
= Indicate communication potential by labels
L:i={a?z|ae ChnzeZ}U{alz|a € Chn,z € Z}
@ Yields following labeled transitions:
(a?x; ¢, o) o (c,olx > z]) (forall z € Z)
(ala; o) 25 (', 0) (if (a,0) = z)
@ Now both commands, if running in parallel, can communicate:
{(a?x;¢) || (ala; ), o) — (c || ¢, o[x = Z]).

@ To allow communication with other processes, the following
transitions should also be possible (for all 2/ € Z, (a,0) — z):

a?z’

{((a?x;¢) || (ala; ), 0) —I> (c| (ala; ), o[x — Z])
((a?x;¢) || (la; '), 0) =5 ((a?x;¢) || ¢, 0)
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Semantics of CSP Il

Definition of transition relation
25 C(Cmd x ) x (Cmd x ¥) U (GCmd x ¥) x (Cmd x T U {fail})

(see following slides)
e Marking A can be a label or empty: A € LU {¢}

@ Again: uniform treatment of configurations of the form
(c,o) € Cmd x X and 0 € X:
o o interpreted as (|,o) with “terminated” command |
o | satisfies ,c=c;l =] c=c|l=c
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Semantics of CSP Il

Definition 16.6 (Semantics of CSP)

Rules for commands:

(a,0) = z
(skip,0) = (|, 0) (x:=a,0) = (},o[x — z])
a, o) =z
(a?x,0) 25 (], o[x — 2]) (ala, o) 25 (1, 0)
(e1,0) = (], ") (ge,a) = {c,0")
(c1; c2,0) = (i ¢, 0”) (if gc £i,0) =5 (c, o)
(gc, o) BN (c,o”) (gc, o) — fall

(do gc od, o) = (c;do gc od, o) (do gc od, o) = {I,0)

(a1, 0) 2 (¢, o) (c2,0) 2 (ch,0)
A A
(a |l e2,0) 25 (c] || e, 0”) (a |l e,0) 25 (a |l ¢,
(c1,0) 2B (c},0") (@,0) 25 (chyo) (a1,0) 25 (c],0) (c2,0) 25 (c}, ")

(al e,0)={all ed) (al e,0) = {al e,0d)

v
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Semantics of CSP IV

Definition 16.6 (Semantics of CSP; continued)

Rules for guarded commands:

(b,o) — true (b, o) — false
(b—c,0) = (c,0) (b — c,o) — fall
(b,o) — true (b,o) — false
(bNa?x — c,o) LI (c,o[x — z]) (bAa?x — c,o) — falil

(b,o) — true (a,0) — z (b,o) — false
(bAala— c,0) — fail

(bAala— c,0) 25 (c,o)

(ge1,0) =2 (c, o) (gca, o) = (c, )
(gan O gey, o) 2, (c,o’) (gan O geo, 0) 2 c,a’)

(gc1,0) — fail (gep, o) — fail

(gc1 O gep, o) — fall

v
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