Semantics and Verification of Software

Lecture 16: Nondeterminism and Parallelism |
(Shared-Variables and Channel Communication)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-1i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

0 Introduction

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 16.2

o Essential question: what is the meaning of
al e

(parallel execution of c1,c; € Cmd)?

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 16.3

o Essential question: what is the meaning of
al e

(parallel execution of c1,c; € Cmd)?

o Easy to answer when state spaces are disjoint:
(x := 1]y := 2,0) 2oz 1y 2]

(no interaction = corresponds to sequential execution)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 16.3

o Essential question: what is the meaning of
al e

(parallel execution of c1,c; € Cmd)?

o Easy to answer when state spaces are disjoint:
(x := 1]y := 2,0) 2oz 1y 2]

(no interaction = corresponds to sequential execution)

@ But what if variables are shared?
(x := 1| x := 2);if x =1 then ¢ else

(runs c; or ¢ depending on execution order of initial assignments)

nerAACHEN Semantics and Verification of Software Summer Semester 2013 16.3

o Essential question: what is the meaning of
al e

(parallel execution of c1,c; € Cmd)?

o Easy to answer when state spaces are disjoint:
(x := 1]y := 2,0) 2oz 1y 2]

(no interaction = corresponds to sequential execution)

@ But what if variables are shared?
(x := 1| x := 2);if x =1 then ¢ else

(runs c; or ¢ depending on execution order of initial assignments)

@ Even more complicated for non-atomic assignments...

nerAACHEN Semantics and Verification of Software Summer Semester 2013 16.3

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1

x:=0;
(x=x+1]x:=x+2)

Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1

x:=0;
(x=x+1]x:=x+2)

o At first glance: x is assigned 3

ner_‘?;J] ji Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1

x:=0;
(x=x+1]x:=x+2)

o At first glance: x is assigned 3

@ But: both parallel components could read x before it is written

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1

x :=0;
(x =x+1|x:=x+2) value of x: 0

o At first glance: x is assigned 3

@ But: both parallel components could read x before it is written

nwr"_“:l‘] ji Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1
x:=0;
(x=x+1]|x:=x+2) value of x: 0
1

o At first glance: x is assigned 3

@ But: both parallel components could read x before it is written

nwr"_“:l‘] ji Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena
Example 16.1

(x =x+1|x:=x+2) value of x: 0

o At first glance: x is assigned 3

@ But: both parallel components could read x before it is written

nwr"_“:l‘] ji Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena
Example 16.1

(x =x+1|x:=x+2) value of x: 1

o At first glance: x is assigned 3

@ But: both parallel components could read x before it is written

nwr"_“:l‘] ji Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1
x:=0;
(x =x+1|x:=x+2) value of x: 2

2

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written

@ Thus: x is assigned 2,

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1

x :=0;
(x =x+1|x:=x+2) value of x: 0

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written

@ Thus: x is assigned 2,

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1
x:=0;
(x=x+1]|x:=x+2) value of x: 0
1

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written

@ Thus: x is assigned 2,

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena
Example 16.1

(x =x+1|x:=x+2) value of x: 0

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written

@ Thus: x is assigned 2,

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena
Example 16.1

(x =x+1|x:=x+2) value of x: 2

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written

@ Thus: x is assigned 2,

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1
x:=0;
(x =x+1|x:=x+2) value of x: 1
1

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written

@ Thus: x is assigned 2, 1,

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1

x :=0;
(x =x+1|x:=x+2) value of x: 0

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written

@ Thus: x is assigned 2, 1,

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1
x:=0;
(x =x+1|x:=x+2) value of x: 0

2

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written

@ Thus: x is assigned 2, 1,

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1
x:=0;
(x =x+1|x:=x+2) value of x: 2

2

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written

@ Thus: x is assigned 2, 1,

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1
x:=0;
(x=x+1]|x:=x+2) value of x: 2
3

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written

@ Thus: x is assigned 2, 1,

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1
x:=0;
(x =x+1|x:=x+2) value of x: 3
3

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written

@ Thus: x is assigned 2, 1, or 3

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 16.4

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1

x:=0;
(x=x+1]x:=x+2)

o At first glance: x is assigned 3
@ But: both parallel components could read x before it is written
@ Thus: x is assigned 2, 1, or 3

@ If exclusive (write) access to shared memory and atomic execution of
assignments guaranteed
= only possible outcome: 3

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 16.4

Parallelism and Interaction

The problem arises due to the combination of
@ parallelism and

e interaction (here: via shared memory)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 16.5

Parallelism and Interaction

The problem arises due to the combination of
@ parallelism and

e interaction (here: via shared memory)

When modeling parallel systems, the precise description of the mechanisms
of both parallelism and interaction is crucially important.

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 16.5

Reactive Systems

@ Thus: “classical” model for sequential systems
System : Input — Output

(transformational systems) is not adequate

@ Missing: aspect of interaction

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Reactive Systems

@ Thus: “classical” model for sequential systems
System : Input — Output

(transformational systems) is not adequate
@ Missing: aspect of interaction

@ Rather: reactive systems which interact with environment and among
themselves

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 16.6

Reactive Systems

@ Thus: “classical” model for sequential systems
System : Input — Output

(transformational systems) is not adequate
@ Missing: aspect of interaction

@ Rather: reactive systems which interact with environment and among
themselves

@ Main interest: not terminating computations but infinite behavior
(system maintains ongoing interaction with environment)
@ Examples:

e operating systems

e embedded systems controlling mechanical or electrical devices
(planes, cars, home appliances, ...)

e power plants, production lines, ...

nerAACHEN Semantics and Verification of Software Summer Semester 2013 16.6

Here: study of parallelism in connection with different kinds of interaction
@ Shared-variables communication (ParWHILE)
@ Channel communication (CSP)
@ Algebraic approaches (CCS)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 16.7

© Shared-Variables Communication

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 16.8

The ParWHILE Language

Definition 16.2 (Syntax of ParWHILE)

z | x| ai+ay | ai-ay | a1*ax € AExp

t ’ ai=as ‘ ai>as | —\b| b1 A\ by | by V by, € BExp
c:=skip|x :=a|c;c | if b then ¢ else ¢; | while b do ¢ |
a |l e e Cmd

[@ i}
]

nerAACHEN Semantics and Verification of Software Summer Semester 2013 16.9

Semantics of ParWHILE

@ Approach for defining semantics:
e assignments are executed atomically
o parallelism is modeled by interleaving, i.e., the actions of parallel
statements are merged
= Reduction of parallelism to nondeterminism -+ sequential execution
(similar to multitasking on sequential computers)

nerAACHEN Semantics and Verification of Software Summer Semester 2013 16.10

Semantics of ParWHILE

@ Approach for defining semantics:
e assignments are executed atomically
o parallelism is modeled by interleaving, i.e., the actions of parallel
statements are merged
= Reduction of parallelism to nondeterminism -+ sequential execution
(similar to multitasking on sequential computers)
@ Requires single-step execution relation for statements
(cf. Exercise 2.1)

@ To minimize number of rules: uniform treatment of configurations of
the form (c,0) € Cmd x X and 0 € X:

e o interpreted as (|, o) with “terminated” command |
o | satisfies ;c=c;l=1]c=c|l=c

@ Thus: read (x :=01 |,0) as (x :=0,0)

nerAACHEN Semantics and Verification of Software Summer Semester 2013 16.10

Semantics of ParWHILE 1|

Definition 16.3 (Single-step execution relation)

The single-step execution relation,
—1 C(Cmd X X) x (Cmd x ¥),

is defined by the following rules:

(a,0) = z
(skip,0) =1 ({,0) (x:=a,0) =1 (},o0[x — z])
(b,c) — true (b, o) — false

(if b then ¢ else ¢,0) —1 (c1,0) (if b then ¢ else ¢, 0) —1 (¢, 0)
(b,o) — true
(while b do c,0) —1 (c;while b do c,0)

(b,c) — false (c1,0) =1 (¢, 0")
(while b do c,0) =1 (|,0) (c1; ¢, 0) =1 {cf; &2,0")
(c1,0) —1 {(c],0") (c2,0) —1 {ch,0")
(all e2,0) =1 {cq || c2,07) (a |l e,0) =1 {a || &, 07)

RWNTH Semantics and Verification of Software Summer Semester 2013 16.11

Semantics of ParWHILE Il

Let c:=(x:=1| x:=2);if x =1 then ¢; else ¢ and 0 € ¥.

v

RWNTH HE Semantics and Verification of Software Summer Semester 2013 16.12

Semantics of ParWHILE Il

Let c:=(x:=1| x:=2);if x =1 then ¢; else ¢ and 0 € ¥.

(c,0) =1 (x:=2;if x =1 then ¢; else ¢, 0[x — 1])
(1,0) =1
(x :=1,0) =1 {{,o[x—1])
(x:=1|x:=2,0) =1 { || x:=2,0[x — 1])

since

v

RWNTH HE Semantics and Verification of Software Summer Semester 2013 16.12

Semantics of ParWHILE Il

Let c:=(x:=1| x:=2);if x =1 then ¢; else ¢ and 0 € ¥.

(c,0) =1 (x:=2;if x =1 then ¢; else ¢, 0[x — 1])
(1,0) =1
(x :=1,0) =1 {{,o[x—1])
(x:=1|x:=2,0) =1 { || x:=2,0[x — 1])
—1 (if x =1 then ¢ else ¢, 0[x — 2])
(2,0) = 2
(x:=2,0) =1 (|, o[x—2])

since

since

v

RWNTH HE Semantics and Verification of Software Summer Semester 2013 16.12

Semantics of ParWHILE Il

Let c:=(x:=1| x:=2);if x =1 then ¢; else ¢ and 0 € ¥.

(c,0) =1 (x:=2;if x =1 then ¢; else ¢, 0[x — 1])
(1,0) =1

(x :=1,0) =1 {{,o[x—1])
(x:=1|x:=2,0) =1 { || x:=2,0[x — 1])
—1 (if x =1 then ¢ else ¢, 0[x — 2])

(2,0) = 2
(x:=2,0) =1 (},0[x— 2])
—1 <C2,0'[X — 2]>

since

since

(x,0[x—=2]) 2 (lLo[x—2]) =1
(x =1,0[x — 2]) — false

since

v

RWNTH Semantics and Verification of Software Summer Semester 2013 16.12

Semantics of ParWHILE Il

Let c:=(x:=1| x:=2);if x =1 then ¢; else ¢ and 0 € ¥.

(c,0) =1 (x:=2;if x =1 then ¢; else ¢, 0[x — 1])
(1,0) =1

(x :=1,0) =1 {{,o[x—1])
(x:=1|x:=2,0) =1 { || x:=2,0[x — 1])
—1 (if x =1 then ¢ else ¢, 0[x — 2])

(2,0) = 2
(x:=2,0) =1 (},0[x— 2])
—1 <C2,0'[X — 2]>

since

since

(x,0[x—=2]) 2 (lLo[x—2]) =1
(x =1,0[x — 2]) — false

since

Analogously: (c,a) =3 (c1,0[x — 1])

v

RWNTH Semantics and Verification of Software Summer Semester 2013 16.12

© Channel Communication

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 16.13

Communicating Sequential Processes

@ Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 16.14

Communicating Sequential Processes

@ Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner
@ Models system of processors that

e have (only) local store and
e run a sequential program (“process”)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 16.14

Communicating Sequential Processes

@ Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner
@ Models system of processors that
e have (only) local store and
e run a sequential program (“process”)
@ Communication proceeds in the following way:
e processes communicate along channels
e process can send/receive on a channel if another process

simultaneously performs the complementary 1/0O operation
= no buffering (synchronous communication)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Communicating Sequential Processes

@ Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner
@ Models system of processors that
e have (only) local store and
e run a sequential program (“process”)
@ Communication proceeds in the following way:
e processes communicate along channels
e process can send/receive on a channel if another process

simultaneously performs the complementary 1/0O operation
= no buffering (synchronous communication)

@ New syntactic domains:

Channel names: a,B,7,... € Chn

Input operations: a?x where o € Chn, x € Var
Output operations: «ala where o € Chn, a € AExp
Guarded commands: gc € GCmd

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Syntax of CSP

Definition 16.5 (Syntax of CSP)

The syntax of CSP is given by
a.= Z|X|al+32 | ai—as ‘ ai*ap GAEXP
b t|81 82|31>32|ﬁb|b1/\b2|b1\/b2€BEXp
c m=skip|x:=a|a?x|ala]|
c1;6 | if gc fi|do gcod | ¢ || 2 € Cmd
gci=b—c|bAa?x —c|bAala— c|ge g € GCmd

nerAACHEN Semantics and Verification of Software Summer Semester 2013 16.15

Syntax of CSP

Definition 16.5 (Syntax of CSP)

The syntax of CSP is given by

a..:Z|X|31+32|31 82‘81*82€AEXP
b:::t|al 32|31>32|ﬁb|b1/\b2|b1\/b2€BEXp
c m=skip|x:=a|a?x|ala]|

c1;6 | if gc fi|do gcod | ¢ || 2 € Cmd
gci=b—c|bAa?x —c|bAala— c|ge g € GCmd

In ¢ || c2, commands ¢; and ¢; must not use common variables (only local
store)
Guarded command gc; [J gcp represents an alternative

In b — ¢, b acts as a guard that enables the execution of ¢ only if evaluated
to true

bAa?x — c and b A ala — c additionally require the respective 1/0
operation to be enabled

If none of its alternatives is enabled, a guarded command gc fails (state fail)
if nondeterministically picks an enabled alternative
A do Ioop is |terated until its body fails

Semantics and Verification of Software Summer Semester 2013 16.15

Semantics of CSP |

@ Most important aspect: 1/O operations
e E.g., (a?x;c,0) can only execute if a parallel command provides
corresponding output

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 16.16

Semantics of CSP |

@ Most important aspect: 1/O operations
e E.g., (a?x;c,0) can only execute if a parallel command provides
corresponding output
= Indicate communication potential by labels
L:i={a?z|ae ChnzeZ}U{alz|a € Chn,z € Z}
@ Yields following labeled transitions:
(a?x; ¢, o) o (c,olx > z]) (forall z € Z)
(ala; o) 25 (', 0) (if (a,0) = z)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Semantics of CSP |

@ Most important aspect: 1/O operations
e E.g., (a?x;c,0) can only execute if a parallel command provides
corresponding output
= Indicate communication potential by labels
L:i={a?z|ae ChnzeZ}U{alz|a € Chn,z € Z}
@ Yields following labeled transitions:
(a?x; ¢, o) o (c,olx > z]) (forall z € Z)
(ala; o) 25 (', o) (if (a,0) = z)
@ Now both commands, if running in parallel, can communicate:
{(a?x;¢) || (ala;), o) — (c || ¢, o[x = Z]).

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Semantics of CSP |

@ Most important aspect: 1/O operations
e E.g., (a?x;c,0) can only execute if a parallel command provides
corresponding output
= Indicate communication potential by labels
L:i={a?z|ae ChnzeZ}U{alz|a € Chn,z € Z}
@ Yields following labeled transitions:
(a?x; ¢, o) o (c,olx > z]) (forall z € Z)
(ala; o) 25 (', 0) (if (a,0) = z)
@ Now both commands, if running in parallel, can communicate:
{(a?x;¢) || (ala;), o) — (c || ¢, o[x = Z]).

@ To allow communication with other processes, the following
transitions should also be possible (for all 2/ € Z, (a,0) — z):

a?z’

{((a?x;¢) || (ala;), 0) —I> (c| (ala;), o[x — Z])
((a?x;¢) || (la; '), 0) =5 ((a?x;¢) || ¢, 0)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Semantics of CSP Il

Definition of transition relation
25 C(Cmd x) x (Cmd x ¥) U (GCmd x ¥) x (Cmd x T U {fail})

(see following slides)
e Marking A can be a label or empty: A € LU {¢}

@ Again: uniform treatment of configurations of the form
(c,o) € Cmd x X and 0 € X:
o o interpreted as (|,o) with “terminated” command |
o | satisfies ,c=c;l =] c=c|l=c

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 16.17

Semantics of CSP Il

Definition 16.6 (Semantics of CSP)

Rules for commands:

(a,0) = z
(skip,0) = (|, 0) (x:=a,0) = (},o[x — z])
a, o) =z
(a?x,0) 25 (], o[x — 2]) (ala, o) 25 (1, 0)
(e1,0) = (], ") (ge,a) = {c,0")
(c1; c2,0) = (i ¢, 0”) (if gc £i,0) =5 (c, o)
(gc, o) BN (c,o”) (gc, o) — fall

(do gc od, o) = (c;do gc od, o) (do gc od, o) = {I,0)

(a1, 0) 2 (¢, o) (c2,0) 2 (ch,0)
A A
(a |l e2,0) 25 (c] || e, 0”) (a |l e,0) 25 (a |l ¢,
(c1,0) 2B (c},0") (@,0) 25 (chyo) (a1,0) 25 (c],0) (c2,0) 25 (c}, ")

(al e,0)={all ed) (al e,0) = {al e,0d)

v

RWNTH Semantics and Verification of Software Summer Semester 2013 16.18

Semantics of CSP IV

Definition 16.6 (Semantics of CSP; continued)

Rules for guarded commands:

(b,o) — true (b, o) — false
(b—c,0) = (c,0) (b — c,o) — fall
(b,o) — true (b,o) — false
(bNa?x — c,o) LI (c,o[x — z]) (bAa?x — c,o) — falil

(b,o) — true (a,0) — z (b,o) — false
(bAala— c,0) — fail

(bAala— c,0) 25 (c,o)

(ge1,0) =2 (c, o) (gca, o) = (c,)
(gan O gey, o) 2, (c,o’) (gan O geo, 0) 2 c,a’)

(gc1,0) — fail (gep, o) — fail

(gc1 O gep, o) — fall

v

RWNTH Semantics and Verification of Software Summer Semester 2013 16.19

	Introduction
	Shared-Variables Communication
	Channel Communication

