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Motivation

Essential question: what is the meaning of

c1 ‖ c2

(parallel execution of c1, c2 ∈ Cmd)?

Easy to answer when state spaces are disjoint:

〈x := 1 ‖ y := 2, σ〉 → σ[x 7→ 1, y 7→ 2]

(no interaction ⇒ corresponds to sequential execution)

But what if variables are shared?

(x := 1 ‖ x := 2); if x = 1 then c1 else c2

(runs c1 or c2 depending on execution order of initial assignments)

Even more complicated for non-atomic assignments...
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Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x : 0123

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2, 1, or 3

If exclusive (write) access to shared memory and atomic execution of
assignments guaranteed
⇒ only possible outcome: 3
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Parallelism and Interaction

The problem arises due to the combination of

parallelism and

interaction (here: via shared memory)

Conclusion

When modeling parallel systems, the precise description of the mechanisms
of both parallelism and interaction is crucially important.
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Reactive Systems

Thus: “classical” model for sequential systems

System : Input→ Output

(transformational systems) is not adequate

Missing: aspect of interaction

Rather: reactive systems which interact with environment and among
themselves

Main interest: not terminating computations but infinite behavior
(system maintains ongoing interaction with environment)

Examples:

operating systems
embedded systems controlling mechanical or electrical devices
(planes, cars, home appliances, ...)
power plants, production lines, ...
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Overview

Here: study of parallelism in connection with different kinds of interaction

1 Shared-variables communication (ParWHILE)

2 Channel communication (CSP)

3 Algebraic approaches (CCS)
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The ParWHILE Language

Definition 16.2 (Syntax of ParWHILE)

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c |

c1 ‖ c2 ∈ Cmd
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Semantics of ParWHILE

Approach for defining semantics:

assignments are executed atomically
parallelism is modeled by interleaving, i.e., the actions of parallel
statements are merged

⇒ Reduction of parallelism to nondeterminism + sequential execution
(similar to multitasking on sequential computers)

Requires single-step execution relation for statements
(cf. Exercise 2.1)

To minimize number of rules: uniform treatment of configurations of
the form 〈c, σ〉 ∈ Cmd × Σ and σ ∈ Σ:

σ interpreted as 〈↓, σ〉 with “terminated” command ↓
↓ satisfies ↓; c = c ; ↓ = ↓ ‖ c = c ‖ ↓ = c

Thus: read 〈x := 0 ‖ ↓, σ〉 as 〈x := 0, σ〉
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Semantics of ParWHILE I

Definition 16.3 (Single-step execution relation)

The single-step execution relation,

→1 ⊆ (Cmd × Σ)× (Cmd × Σ),

is defined by the following rules:

〈skip, σ〉 →1 〈↓, σ〉
〈a, σ〉 → z

〈x := a, σ〉 →1 〈↓, σ[x 7→ z ]〉
〈b, σ〉 → true

〈if b then c1 else c2, σ〉 →1 〈c1, σ〉
〈b, σ〉 → false

〈if b then c1 else c2, σ〉 →1 〈c2, σ〉
〈b, σ〉 → true

〈while b do c , σ〉 →1 〈c ; while b do c , σ〉
〈b, σ〉 → false

〈while b do c , σ〉 →1 〈↓, σ〉
〈c1, σ〉 →1 〈c ′1, σ′〉

〈c1; c2, σ〉 →1 〈c ′1; c2, σ
′〉

〈c1, σ〉 →1 〈c ′1, σ′〉
〈c1 ‖ c2, σ〉 →1 〈c ′1 ‖ c2, σ

′〉
〈c2, σ〉 →1 〈c ′2, σ′〉

〈c1 ‖ c2, σ〉 →1 〈c1 ‖ c ′2, σ′〉
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Semantics of ParWHILE II

Example 16.4

Let c := (x := 1 ‖ x := 2); if x = 1 then c1 else c2 and σ ∈ Σ.

〈c , σ〉 →1 〈x := 2; if x = 1 then c1 else c2, σ[x 7→ 1]〉

since

〈1, σ〉 → 1

〈x := 1, σ〉 →1 〈↓, σ[x 7→ 1]〉
〈x := 1 ‖ x := 2, σ〉 →1 〈↓ ‖ x := 2, σ[x 7→ 1]〉

→1 〈if x = 1 then c1 else c2, σ[x 7→ 2]〉

since
〈2, σ〉 → 2

〈x := 2, σ〉 →1 〈↓, σ[x 7→ 2]〉
→1 〈c2, σ[x 7→ 2]〉

since
〈x , σ[x 7→ 2]〉 → 2 〈1, σ[x 7→ 2]〉 → 1

〈x = 1, σ[x 7→ 2]〉 → false

Analogously: 〈c , σ〉 →3
1 〈c1, σ[x 7→ 1]〉
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Communicating Sequential Processes

Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner

Models system of processors that

have (only) local store and
run a sequential program (“process”)

Communication proceeds in the following way:

processes communicate along channels
process can send/receive on a channel if another process
simultaneously performs the complementary I/O operation

⇒ no buffering (synchronous communication)

New syntactic domains:

Channel names: α, β, γ, . . . ∈ Chn
Input operations: α?x where α ∈ Chn, x ∈ Var
Output operations: α!a where α ∈ Chn, a ∈ AExp
Guarded commands: gc ∈ GCmd
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Syntax of CSP

Definition 16.5 (Syntax of CSP)

The syntax of CSP is given by
a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | α?x | α!a |

c1; c2 | if gc fi | do gc od | c1 ‖ c2 ∈ Cmd
gc ::= b → c | b ∧ α?x → c | b ∧ α!a→ c | gc1 � gc2 ∈ GCmd

In c1 ‖ c2, commands c1 and c2 must not use common variables (only local
store)

Guarded command gc1 � gc2 represents an alternative

In b → c , b acts as a guard that enables the execution of c only if evaluated
to true

b ∧ α?x → c and b ∧ α!a→ c additionally require the respective I/O
operation to be enabled

If none of its alternatives is enabled, a guarded command gc fails (state fail)

if nondeterministically picks an enabled alternative

A do loop is iterated until its body fails
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Semantics of CSP I

Most important aspect: I/O operations

E.g., 〈α?x ; c , σ〉 can only execute if a parallel command provides
corresponding output

⇒ Indicate communication potential by labels

L := {α?z | α ∈ Chn, z ∈ Z} ∪ {α!z | α ∈ Chn, z ∈ Z}
Yields following labeled transitions:

〈α?x ; c , σ〉 α?z−→ 〈c , σ[x 7→ z ]〉 (for all z ∈ Z)

〈α!a; c ′, σ〉 α!z−→ 〈c ′, σ〉 (if 〈a, σ〉 → z)

Now both commands, if running in parallel, can communicate:

〈(α?x ; c) ‖ (α!a; c ′), σ〉 → 〈c ‖ c ′, σ[x 7→ z ]〉.
To allow communication with other processes, the following
transitions should also be possible (for all z ′ ∈ Z, 〈a, σ〉 → z):

〈(α?x ; c) ‖ (α!a; c ′), σ〉 α?z ′−→ 〈c ‖ (α!a; c ′), σ[x 7→ z ′]〉
〈(α?x ; c) ‖ (α!a; c ′), σ〉 α!z−→ 〈(α?x ; c) ‖ c ′, σ〉
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Semantics of CSP II

Definition of transition relation

λ−→⊆ (Cmd × Σ)× (Cmd × Σ) ∪ (GCmd × Σ)× (Cmd × Σ ∪ {fail})

(see following slides)

Marking λ can be a label or empty: λ ∈ L ∪ {ε}
Again: uniform treatment of configurations of the form
〈c , σ〉 ∈ Cmd × Σ and σ ∈ Σ:

σ interpreted as 〈↓, σ〉 with “terminated” command ↓
↓ satisfies ↓; c = c ; ↓ = ↓ ‖ c = c ‖ ↓ = c
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Semantics of CSP III

Definition 16.6 (Semantics of CSP)

Rules for commands:

〈skip, σ〉 → 〈↓, σ〉
〈a, σ〉 → z

〈x := a, σ〉 → 〈↓, σ[x 7→ z ]〉

〈α?x , σ〉 α?z−→ 〈↓, σ[x 7→ z ]〉

〈a, σ〉 → z

〈α!a, σ〉 α!z−→ 〈↓, σ〉
〈c1, σ〉

λ−→ 〈c ′1, σ′〉

〈c1; c2, σ〉
λ−→ 〈c ′1; c2, σ

′〉

〈gc , σ〉 λ−→ 〈c , σ′〉

〈if gc fi, σ〉 λ−→ 〈c , σ′〉
〈gc , σ〉 λ−→ 〈c , σ′〉

〈do gc od, σ〉 λ−→ 〈c ; do gc od, σ′〉

〈gc , σ〉 → fail

〈do gc od, σ〉 → 〈↓, σ〉

〈c1, σ〉
λ−→ 〈c ′1, σ′〉

〈c1 ‖ c2, σ〉
λ−→ 〈c ′1 ‖ c2, σ

′〉

〈c2, σ〉
λ−→ 〈c ′2, σ′〉

〈c1 ‖ c2, σ〉
λ−→ 〈c1 ‖ c ′2, σ′〉

〈c1, σ〉
α?z−→ 〈c ′1, σ′〉 〈c2, σ〉

α!z−→ 〈c ′2, σ〉
〈c1 ‖ c2, σ〉 → 〈c ′1 ‖ c ′2, σ′〉

〈c1, σ〉
α!z−→ 〈c ′1, σ〉 〈c2, σ〉

α?z−→ 〈c ′2, σ′〉
〈c1 ‖ c2, σ〉 → 〈c ′1 ‖ c ′2, σ′〉
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Semantics of CSP IV

Definition 16.6 (Semantics of CSP; continued)

Rules for guarded commands:
〈b, σ〉 → true

〈b → c, σ〉 → 〈c , σ〉
〈b, σ〉 → false

〈b → c , σ〉 → fail

〈b, σ〉 → true

〈b ∧ α?x → c , σ〉 α?z−→ 〈c, σ[x 7→ z ]〉

〈b, σ〉 → false

〈b ∧ α?x → c , σ〉 → fail

〈b, σ〉 → true 〈a, σ〉 → z

〈b ∧ α!a→ c , σ〉 α!z−→ 〈c , σ〉

〈b, σ〉 → false

〈b ∧ α!a→ c , σ〉 → fail

〈gc1, σ〉
λ−→ 〈c , σ′〉

〈gc1 � gc2, σ〉
λ−→ 〈c, σ′〉

〈gc2, σ〉
λ−→ 〈c , σ′〉

〈gc1 � gc2, σ〉
λ−→ 〈c , σ′〉

〈gc1, σ〉 → fail 〈gc2, σ〉 → fail

〈gc1 � gc2, σ〉 → fail
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