
Semantics and Verification of Software
Lecture 16: Nondeterminism and Parallelism I

(Shared-Variables and Channel Communication)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Outline

1 Introduction

2 Shared-Variables Communication

3 Channel Communication

Semantics and Verification of Software Summer Semester 2013 16.2

Motivation

Essential question: what is the meaning of

c1 ‖ c2

(parallel execution of c1, c2 ∈ Cmd)?

Easy to answer when state spaces are disjoint:

〈x := 1 ‖ y := 2, σ〉 → σ[x 7→ 1, y 7→ 2]

(no interaction ⇒ corresponds to sequential execution)

But what if variables are shared?

(x := 1 ‖ x := 2); if x = 1 then c1 else c2

(runs c1 or c2 depending on execution order of initial assignments)

Even more complicated for non-atomic assignments...

Semantics and Verification of Software Summer Semester 2013 16.3

Non-Atomic Assignments

Observation: parallelism introduces new phenomena

Example 16.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x : 0123

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2, 1, or 3

If exclusive (write) access to shared memory and atomic execution of
assignments guaranteed
⇒ only possible outcome: 3

Semantics and Verification of Software Summer Semester 2013 16.4

Parallelism and Interaction

The problem arises due to the combination of

parallelism and

interaction (here: via shared memory)

Conclusion

When modeling parallel systems, the precise description of the mechanisms
of both parallelism and interaction is crucially important.

Semantics and Verification of Software Summer Semester 2013 16.5

Reactive Systems

Thus: “classical” model for sequential systems

System : Input→ Output

(transformational systems) is not adequate

Missing: aspect of interaction

Rather: reactive systems which interact with environment and among
themselves

Main interest: not terminating computations but infinite behavior
(system maintains ongoing interaction with environment)

Examples:

operating systems
embedded systems controlling mechanical or electrical devices
(planes, cars, home appliances, ...)
power plants, production lines, ...

Semantics and Verification of Software Summer Semester 2013 16.6

Overview

Here: study of parallelism in connection with different kinds of interaction

1 Shared-variables communication (ParWHILE)

2 Channel communication (CSP)

3 Algebraic approaches (CCS)

Semantics and Verification of Software Summer Semester 2013 16.7

Outline

1 Introduction

2 Shared-Variables Communication

3 Channel Communication

Semantics and Verification of Software Summer Semester 2013 16.8

The ParWHILE Language

Definition 16.2 (Syntax of ParWHILE)

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c |

c1 ‖ c2 ∈ Cmd

Semantics and Verification of Software Summer Semester 2013 16.9

Semantics of ParWHILE

Approach for defining semantics:

assignments are executed atomically
parallelism is modeled by interleaving, i.e., the actions of parallel
statements are merged

⇒ Reduction of parallelism to nondeterminism + sequential execution
(similar to multitasking on sequential computers)

Requires single-step execution relation for statements
(cf. Exercise 2.1)

To minimize number of rules: uniform treatment of configurations of
the form 〈c, σ〉 ∈ Cmd × Σ and σ ∈ Σ:

σ interpreted as 〈↓, σ〉 with “terminated” command ↓
↓ satisfies ↓; c = c ; ↓ = ↓ ‖ c = c ‖ ↓ = c

Thus: read 〈x := 0 ‖ ↓, σ〉 as 〈x := 0, σ〉

Semantics and Verification of Software Summer Semester 2013 16.10

Semantics of ParWHILE I

Definition 16.3 (Single-step execution relation)

The single-step execution relation,

→1 ⊆ (Cmd × Σ)× (Cmd × Σ),

is defined by the following rules:

〈skip, σ〉 →1 〈↓, σ〉
〈a, σ〉 → z

〈x := a, σ〉 →1 〈↓, σ[x 7→ z]〉
〈b, σ〉 → true

〈if b then c1 else c2, σ〉 →1 〈c1, σ〉
〈b, σ〉 → false

〈if b then c1 else c2, σ〉 →1 〈c2, σ〉
〈b, σ〉 → true

〈while b do c , σ〉 →1 〈c ; while b do c , σ〉
〈b, σ〉 → false

〈while b do c , σ〉 →1 〈↓, σ〉
〈c1, σ〉 →1 〈c ′1, σ′〉

〈c1; c2, σ〉 →1 〈c ′1; c2, σ
′〉

〈c1, σ〉 →1 〈c ′1, σ′〉
〈c1 ‖ c2, σ〉 →1 〈c ′1 ‖ c2, σ

′〉
〈c2, σ〉 →1 〈c ′2, σ′〉

〈c1 ‖ c2, σ〉 →1 〈c1 ‖ c ′2, σ′〉

Semantics and Verification of Software Summer Semester 2013 16.11

Semantics of ParWHILE II

Example 16.4

Let c := (x := 1 ‖ x := 2); if x = 1 then c1 else c2 and σ ∈ Σ.

〈c , σ〉 →1 〈x := 2; if x = 1 then c1 else c2, σ[x 7→ 1]〉

since

〈1, σ〉 → 1

〈x := 1, σ〉 →1 〈↓, σ[x 7→ 1]〉
〈x := 1 ‖ x := 2, σ〉 →1 〈↓ ‖ x := 2, σ[x 7→ 1]〉

→1 〈if x = 1 then c1 else c2, σ[x 7→ 2]〉

since
〈2, σ〉 → 2

〈x := 2, σ〉 →1 〈↓, σ[x 7→ 2]〉
→1 〈c2, σ[x 7→ 2]〉

since
〈x , σ[x 7→ 2]〉 → 2 〈1, σ[x 7→ 2]〉 → 1

〈x = 1, σ[x 7→ 2]〉 → false

Analogously: 〈c , σ〉 →3
1 〈c1, σ[x 7→ 1]〉

Semantics and Verification of Software Summer Semester 2013 16.12

Outline

1 Introduction

2 Shared-Variables Communication

3 Channel Communication

Semantics and Verification of Software Summer Semester 2013 16.13

Communicating Sequential Processes

Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner

Models system of processors that

have (only) local store and
run a sequential program (“process”)

Communication proceeds in the following way:

processes communicate along channels
process can send/receive on a channel if another process
simultaneously performs the complementary I/O operation

⇒ no buffering (synchronous communication)

New syntactic domains:

Channel names: α, β, γ, . . . ∈ Chn
Input operations: α?x where α ∈ Chn, x ∈ Var
Output operations: α!a where α ∈ Chn, a ∈ AExp
Guarded commands: gc ∈ GCmd

Semantics and Verification of Software Summer Semester 2013 16.14

Syntax of CSP

Definition 16.5 (Syntax of CSP)

The syntax of CSP is given by
a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | α?x | α!a |

c1; c2 | if gc fi | do gc od | c1 ‖ c2 ∈ Cmd
gc ::= b → c | b ∧ α?x → c | b ∧ α!a→ c | gc1 � gc2 ∈ GCmd

In c1 ‖ c2, commands c1 and c2 must not use common variables (only local
store)

Guarded command gc1 � gc2 represents an alternative

In b → c , b acts as a guard that enables the execution of c only if evaluated
to true

b ∧ α?x → c and b ∧ α!a→ c additionally require the respective I/O
operation to be enabled

If none of its alternatives is enabled, a guarded command gc fails (state fail)

if nondeterministically picks an enabled alternative

A do loop is iterated until its body fails

Semantics and Verification of Software Summer Semester 2013 16.15

Semantics of CSP I

Most important aspect: I/O operations

E.g., 〈α?x ; c , σ〉 can only execute if a parallel command provides
corresponding output

⇒ Indicate communication potential by labels

L := {α?z | α ∈ Chn, z ∈ Z} ∪ {α!z | α ∈ Chn, z ∈ Z}
Yields following labeled transitions:

〈α?x ; c , σ〉 α?z−→ 〈c , σ[x 7→ z]〉 (for all z ∈ Z)

〈α!a; c ′, σ〉 α!z−→ 〈c ′, σ〉 (if 〈a, σ〉 → z)

Now both commands, if running in parallel, can communicate:

〈(α?x ; c) ‖ (α!a; c ′), σ〉 → 〈c ‖ c ′, σ[x 7→ z]〉.
To allow communication with other processes, the following
transitions should also be possible (for all z ′ ∈ Z, 〈a, σ〉 → z):

〈(α?x ; c) ‖ (α!a; c ′), σ〉 α?z ′−→ 〈c ‖ (α!a; c ′), σ[x 7→ z ′]〉
〈(α?x ; c) ‖ (α!a; c ′), σ〉 α!z−→ 〈(α?x ; c) ‖ c ′, σ〉

Semantics and Verification of Software Summer Semester 2013 16.16

Semantics of CSP II

Definition of transition relation

λ−→⊆ (Cmd × Σ)× (Cmd × Σ) ∪ (GCmd × Σ)× (Cmd × Σ ∪ {fail})

(see following slides)

Marking λ can be a label or empty: λ ∈ L ∪ {ε}
Again: uniform treatment of configurations of the form
〈c , σ〉 ∈ Cmd × Σ and σ ∈ Σ:

σ interpreted as 〈↓, σ〉 with “terminated” command ↓
↓ satisfies ↓; c = c ; ↓ = ↓ ‖ c = c ‖ ↓ = c

Semantics and Verification of Software Summer Semester 2013 16.17

Semantics of CSP III

Definition 16.6 (Semantics of CSP)

Rules for commands:

〈skip, σ〉 → 〈↓, σ〉
〈a, σ〉 → z

〈x := a, σ〉 → 〈↓, σ[x 7→ z]〉

〈α?x , σ〉 α?z−→ 〈↓, σ[x 7→ z]〉

〈a, σ〉 → z

〈α!a, σ〉 α!z−→ 〈↓, σ〉
〈c1, σ〉

λ−→ 〈c ′1, σ′〉

〈c1; c2, σ〉
λ−→ 〈c ′1; c2, σ

′〉

〈gc , σ〉 λ−→ 〈c , σ′〉

〈if gc fi, σ〉 λ−→ 〈c , σ′〉
〈gc , σ〉 λ−→ 〈c , σ′〉

〈do gc od, σ〉 λ−→ 〈c ; do gc od, σ′〉

〈gc , σ〉 → fail

〈do gc od, σ〉 → 〈↓, σ〉

〈c1, σ〉
λ−→ 〈c ′1, σ′〉

〈c1 ‖ c2, σ〉
λ−→ 〈c ′1 ‖ c2, σ

′〉

〈c2, σ〉
λ−→ 〈c ′2, σ′〉

〈c1 ‖ c2, σ〉
λ−→ 〈c1 ‖ c ′2, σ′〉

〈c1, σ〉
α?z−→ 〈c ′1, σ′〉 〈c2, σ〉

α!z−→ 〈c ′2, σ〉
〈c1 ‖ c2, σ〉 → 〈c ′1 ‖ c ′2, σ′〉

〈c1, σ〉
α!z−→ 〈c ′1, σ〉 〈c2, σ〉

α?z−→ 〈c ′2, σ′〉
〈c1 ‖ c2, σ〉 → 〈c ′1 ‖ c ′2, σ′〉

Semantics and Verification of Software Summer Semester 2013 16.18

Semantics of CSP IV

Definition 16.6 (Semantics of CSP; continued)

Rules for guarded commands:
〈b, σ〉 → true

〈b → c, σ〉 → 〈c , σ〉
〈b, σ〉 → false

〈b → c , σ〉 → fail

〈b, σ〉 → true

〈b ∧ α?x → c , σ〉 α?z−→ 〈c, σ[x 7→ z]〉

〈b, σ〉 → false

〈b ∧ α?x → c , σ〉 → fail

〈b, σ〉 → true 〈a, σ〉 → z

〈b ∧ α!a→ c , σ〉 α!z−→ 〈c , σ〉

〈b, σ〉 → false

〈b ∧ α!a→ c , σ〉 → fail

〈gc1, σ〉
λ−→ 〈c , σ′〉

〈gc1 � gc2, σ〉
λ−→ 〈c, σ′〉

〈gc2, σ〉
λ−→ 〈c , σ′〉

〈gc1 � gc2, σ〉
λ−→ 〈c , σ′〉

〈gc1, σ〉 → fail 〈gc2, σ〉 → fail

〈gc1 � gc2, σ〉 → fail

Semantics and Verification of Software Summer Semester 2013 16.19

	Introduction
	Shared-Variables Communication
	Channel Communication

