Semantics and Verification of Software

Lecture 17: Nondeterminism and Parallelism II
(Communicating Sequential Processes)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

@ Recapitulation: Channel Communication

Rw.rH Semantics and Verification of Software Summer Semester 2013 17.2

Communicating Sequential Processes

@ Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner
@ Models system of processors that
o have (only) local store and
@ run a sequential program (“process”)
@ Communication proceeds in the following way:
@ processes communicate along channels
@ process can send/receive on a channel if another process
simultaneously performs the complementary 1/0O operation
= no buffering (synchronous communication)
@ New syntactic domains:
Channel names: a, B,7,... € Chn
Input operations: a?x where o € Chn, x € Var
Output operations: «ala where o € Chn, a € AExp
Guarded commands: gc € GCmd

Rw.rH Semantics and Verification of Software Summer Semester 2013 17.3

Syntax of CSP

Definition (Syntax of CSP)

The syntax of CSP is given by

ai=1z|x|atay | ai—ax | a1*ax € AExp
b12:t|81 32|31>32|—|b|b1/\b2|b1\/b2€BEXp
c:=skip|x:=a|a?x|ala|

c1;6 | if gc fi|do gcod | || 2 € Cmd
gci=b—c|bAa?x —c|bAala— c|geOge € GCmd

@ In ¢ || ¢z, commands ¢; and ¢; must not use common variables (only local
store)

@ Guarded command gc; O gc, represents an alternative

@ In b — ¢, b acts as a guard that enables the execution of ¢ only if evaluated
to true

@ bAa?x — ¢ and b A ala — ¢ additionally require the respective |/0
operation to be enabled

@ If none of its alternatives is enabled, a guarded command gc fails (state fail)
@ if nondeterministically picks an enabled alternative

A do loop is iterated until its body fails
Im“ Semantics and Verification of Software Summer Semester 2013 17.4

Semantics of CSP |

@ Most important aspect: |/O operations
@ E.g., (a?x;c,0) can only execute if a parallel command provides
corresponding output
= Indicate communication potential by labels
L:={a?z|ae€ Chnyzec Z}U{alz |a € Chn,z € Z}
@ Yields following labeled transitions:
(a?x; ¢, o) o (c,o[x — z]) (for all z € Z)
(ala;c' o) 25 (o) (if (a,0) — 2)
@ Now both commands, if running in parallel, can communicate:
{(a?x;¢) || (ala; "), o) — (c|| ¢, o[x = 2]).

@ To allow communication with other processes, the following
transitions should also be possible (for all z/ € Z, (a,0) — z):

a?z

((a?x;¢) || (la;), 0) == (c || (ala; '), o[x — 2'])

alz

((a?x;¢) || (la;), 0) —= ((a?x;¢) || ¢/, 0)

Rw.rH Semantics and Verification of Software Summer Semester 2013 17.5

Semantics of CSP I

Definition of transition relation
4 C(Cmd xX) x (Cmd x L) U (GCmd x X) x (Cmd x £ U {fail})

(see following slides)

@ Marking A can be a label or empty: A € LU {e}

@ Again: uniform treatment of configurations of the form
(c,o) € Cmd x X and 0 € ¥:

o o interpreted as (|,o) with “terminated” command |
o |satisfies |,c=c;l=]|c=c|l=c

Rw.rH Semantics and Verification of Software Summer Semester 2013 17.6

Semantics of CSP Il

Definition (Semantics of CSP)

Rules for commands:

(a,0) = z
(skip, o) = (|, 0) (x:=a,0) = (},0[x — z])
a,o) =z
(a?x,0) 255 (1, o[x — 2]) (ala, o) 25 (1, 0)
(c1,0) 2, (c{,0") (gc,o) LN (c,c")
(c1; c2,0) = (i ca, 0”) (if gc £i,0) = (c,0")
(ge,0) 2 (c,0") (gc, o) — fail
(do gc od,) - (c;do gc od,o”) (do gc od,0) = (I, 0)
(c1,0) = (d], o) (c2,0) = (), 0")
(e | e20) 2 (] || c2,0") (1 || c2,0) 2 (e || &, 0")
(c1,0) 5 (c],0") {@2,0) <5 (g,0) {a,0) 25 (d],0) (c2,0) =5 (c},0")

(al e,0) = ({all e0d) (al e,0) =l e,d)

4

RWNTH Semantics and Verification of Software Summer Semester 2013 17.7

Semantics of CSP IV

Definition (Semantics of CSP; continued)

Rules for guarded commands:

(b,o) — true (b,o) — false
(b— c,0) = (c,0) (b — c,o) — fall
(b,o) — true (b,o) — false
a?z (bAa?x — c,o) — fail

(bNa?x — c,0) — (c,o[x — z])
(b,o) — true (a,0) — z (b,o) — false
(bAala— c,o) — fail

(bAala— c,0) 25 (c,0)

(ge1,0) =2 (c, o) (gc2,0) 5 (c, o)
(gar O gep, 0) A, (c,o) (gan O gep,0) A, c,o')

(gc1,0) — fail (gep,0) — fall

(gc1 O gop, o) — fall

v

RWNTH Semantics and Verification of Software Summer Semester 2013 17.8

© CSP Examples

Rw.rH Semantics and Verification of Software Summer Semester 2013 17.9

CSP Examples

(on the board)

Q do (true A a?x — Blx) od
describes a process that repeatedly receives a value along « and
forwards it along f3 (i.e., a one-place buffer)

RWIH Semantics and Verification of Software Summer Semester 2013 17.10

CSP Examples

(on the board)
Q do (true A a?x — Blx) od
describes a process that repeatedly receives a value along « and
forwards it along f3 (i.e., a one-place buffer)
Q do true A a?x — [Blx od || do true A 5?7y — ~ly od
specifies a two-place buffer that receives along o and sends along ~
(using 3 for internal communication)

RWNTH Semantics and Verification of Software Summer Semester 2013 17.10

CSP Examples

(on the board)
Q do (true A a?x — Blx) od
describes a process that repeatedly receives a value along « and
forwards it along f3 (i.e., a one-place buffer)

Q do true A a?x — [Blx od || do true A 5?7y — ~ly od
specifies a two-place buffer that receives along o and sends along ~
(using 3 for internal communication)
© Nondeterministic choice between input channels:
@ if (true Aa?x — ¢ Otrue A 7y —) fi
@ if (true — (a?x;c) Otrue — (B?%y;) £i
Expected: progress whenever environment provides data on « or 3

@ correct
@ incorrect (can deadlock)

RWNTH Semantics and Verification of Software Summer Semester 2013 17.10

© Fairness in CSP

Rw.rH Semantics and Verification of Software Summer Semester 2013 17.11

Fairness |

@ Informally: unfair behaviour excludes processes from being executed

@ Here: consider parallel composition of n > 1 sequential programs with
executions of the form kg — K1 — ko — ... where
Kj = (C}J) . c,(,J),aj> and, for some 1 </ < nand ky € N,

) =) for all k > ko
@ But: only unfair if ¢; not enabled

Rw.rH Semantics and Verification of Software Summer Semester 2013 17.12

Fairness |

@ Informally: unfair behaviour excludes processes from being executed
@ Here: consider parallel composition of n > 1 sequential programs with
executlons of the form kg — K1 — Ko — ... where
(H Al c,,),aj> and, for some1</<nand ko € N,
,.‘k) = ,.‘) for all k > ko
@ But: only unfair if ¢; not enabled

Definition 17.2 (Enabledness)

¢ is enabled in configuration k = (¢ || ... || cn, o) if there exists
k' =(ct| ...l c,0) with K = £’ and ¢! # ¢;.

Im“ Semantics and Verification of Software Summer Semester 2013 17.12

Fairness |

@ Informally: unfair behaviour excludes processes from being executed

@ Here: consider parallel composition of n > 1 sequential programs with
executlons of the form kg — K1 — Ko — ... where
(H Al c,,),aj> and, for some1</<nand ko € N,

c,-():c,-(O) for all k > ko
@ But: only unfair if ¢; not enabled

Definition 17.2 (Enabledness)

¢; is enabled in configuration K = (¢ || ... || ¢n, o) if there exists
k' =(ct| ...l c,0) with K = £’ and ¢! # ¢;.

Example 17.3

O x:=0enabled in (x:=0| y:=1,0) (actually always enabled)
©Q a?x enabled in (a?x || a!0,0)
© a?x not enabled in (a?x || B!1,0)

4

Im“ Semantics and Verification of Software Summer Semester 2013 17.12

Fairness |l

Definition 17.4 (Fairness)

An execution ko — K1 — K2 — ... Where kj = (c{j) -l c,@,a,-) and, for some
1<i<nand ks €N, c,-(k) = c,-(kU) for all k > ko is called

@ strongly unfair if c,.(k) is enabled in xx for all k > ko

Q@ weakly unfair if c,.(k) is enabled in rx for infinitely many k > ko

Rw.rH Semantics and Verification of Software Summer Semester 2013 17.13

Fairness |l

Definition 17.4 (Fairness)

An execution ko — K1 — K2 — ... Where kj = (cfj) -l c,(,j),aj> and, for some
1<i<nand ks €N, c,-(k) = c,-(kU) for all k > ko is called

© strongly unfair if ¢*) is enabled in x for all k > ko

Q@ weakly unfair if c,.(k) is enabled in rx for infinitely many k > ko

Example 17.5

(4] (dotrue s x:=x+1lod|y:=y+1,...)
— (x:=x+1l;dotrue > x:=x+1lod|y:=y+1,...)
— (dotrue—x:=x+1lod|y:=y+1,...) = ...
is strongly unfair since y := y + 1 is always enabled

|

RWNTH Semantics and Verification of Software Summer Semester 2013 17.13

Fairness |l

Definition 17.4 (Fairness)

An execution ko — K1 — K2 — ... Where kj = (cfj) -l c,(,j),aj> and, for some
1<i<nand ks €N, c,-(k) = c,-(kU) for all k > ko is called

© strongly unfair if ¢*) is enabled in x for all k > ko

Q@ weakly unfair if c,.(k) is enabled in rx for infinitely many k > ko

Example 17.5

|

(4] (dotrue s x:=x+1lod|y:=y+1,...)
— (x:=x+1l;dotrue > x:=x+1lod|y:=y+1,...)
— (dotrue—x:=x+1lod|y:=y+1,...) = ...

s strongly unfair since y := y + 1 is always enabled

Q (do true —+ x :=x+1od || a!l || a?y,...)
— (x:=x+1;dotrue > x:=x+1od| all| a?y,...)
— (dotrue = x:=x+1lod| all|a?y,...)—...
is strongly unfair since both |/O operations are always enabled

RWNTH Semantics and Verification of Software Summer Semester 2013 17.13

Fairness |l

Definition 17.4 (Fairness)

An execution ko — K1 — K2 — ... Where kj = (cfj) -l c,@,a,-) and, for some
1<i<nand ks €N, c,-(k) = c,-(kU) for all k > ko is called

© strongly unfair if ¢*) is enabled in x for all k > ko

Q@ weakly unfair if c,.(k) is enabled in rx for infinitely many k > ko

|

Example 17.5

(4] (dotrue s x:=x+1lod|y:=y+1,...)
— (x:=x+1l;dotrue > x:=x+1lod|y:=y+1,...)
— (dotrue—x:=x+1lod|y:=y+1,...) = ...

]

strongly unfair since y := y + 1 is always enabled
Q do true » x:=x+1od | a!l | a?y,...)

— (x:=x+1;dotrue > x:=x+1od| all| a?y,...)
— (dotrue = x:=x+1lod| all|a?y,...)—...
is strongly unfair since both |/O operations are always enabled
Q (do !l — skip od || do a?x — skip od || a?y,...)
— (skip;do a!l — skip od || skip;do a?x — skip od || a?y,...)
— (skip;do a!l — skip od || do a?x — skip od || a?y,...)
— (do a!l — skip od || do a?x — skip od || a?y,...) — ...

is weakly unfair since a?y is enabled in every third configuration
RWNTH Semantics and Verification of Software Summer Semester 2013 17.13

	Recapitulation: Channel Communication
	CSP Examples
	Fairness in CSP

