
Semantics and Verification of Software
Lecture 17: Nondeterminism and Parallelism II

(Communicating Sequential Processes)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Outline

1 Recapitulation: Channel Communication

2 CSP Examples

3 Fairness in CSP

Semantics and Verification of Software Summer Semester 2013 17.2

Communicating Sequential Processes

Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner

Models system of processors that

have (only) local store and
run a sequential program (“process”)

Communication proceeds in the following way:

processes communicate along channels
process can send/receive on a channel if another process
simultaneously performs the complementary I/O operation

⇒ no buffering (synchronous communication)

New syntactic domains:

Channel names: α, β, γ, . . . ∈ Chn
Input operations: α?x where α ∈ Chn, x ∈ Var
Output operations: α!a where α ∈ Chn, a ∈ AExp
Guarded commands: gc ∈ GCmd

Semantics and Verification of Software Summer Semester 2013 17.3

Syntax of CSP

Definition (Syntax of CSP)

The syntax of CSP is given by
a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | α?x | α!a |

c1; c2 | if gc fi | do gc od | c1 ‖ c2 ∈ Cmd
gc ::= b → c | b ∧ α?x → c | b ∧ α!a→ c | gc1 � gc2 ∈ GCmd

In c1 ‖ c2, commands c1 and c2 must not use common variables (only local
store)

Guarded command gc1 � gc2 represents an alternative

In b → c , b acts as a guard that enables the execution of c only if evaluated
to true

b ∧ α?x → c and b ∧ α!a→ c additionally require the respective I/O
operation to be enabled

If none of its alternatives is enabled, a guarded command gc fails (state fail)

if nondeterministically picks an enabled alternative

A do loop is iterated until its body fails

Semantics and Verification of Software Summer Semester 2013 17.4

Semantics of CSP I

Most important aspect: I/O operations

E.g., 〈α?x ; c , σ〉 can only execute if a parallel command provides
corresponding output

⇒ Indicate communication potential by labels

L := {α?z | α ∈ Chn, z ∈ Z} ∪ {α!z | α ∈ Chn, z ∈ Z}
Yields following labeled transitions:

〈α?x ; c , σ〉 α?z−→ 〈c , σ[x 7→ z]〉 (for all z ∈ Z)

〈α!a; c ′, σ〉 α!z−→ 〈c ′, σ〉 (if 〈a, σ〉 → z)

Now both commands, if running in parallel, can communicate:

〈(α?x ; c) ‖ (α!a; c ′), σ〉 → 〈c ‖ c ′, σ[x 7→ z]〉.
To allow communication with other processes, the following
transitions should also be possible (for all z ′ ∈ Z, 〈a, σ〉 → z):

〈(α?x ; c) ‖ (α!a; c ′), σ〉 α?z ′−→ 〈c ‖ (α!a; c ′), σ[x 7→ z ′]〉
〈(α?x ; c) ‖ (α!a; c ′), σ〉 α!z−→ 〈(α?x ; c) ‖ c ′, σ〉

Semantics and Verification of Software Summer Semester 2013 17.5

Semantics of CSP II

Definition of transition relation

λ−→⊆ (Cmd × Σ)× (Cmd × Σ) ∪ (GCmd × Σ)× (Cmd × Σ ∪ {fail})

(see following slides)

Marking λ can be a label or empty: λ ∈ L ∪ {ε}
Again: uniform treatment of configurations of the form
〈c , σ〉 ∈ Cmd × Σ and σ ∈ Σ:

σ interpreted as 〈↓, σ〉 with “terminated” command ↓
↓ satisfies ↓; c = c ; ↓ = ↓ ‖ c = c ‖ ↓ = c

Semantics and Verification of Software Summer Semester 2013 17.6

Semantics of CSP III

Definition (Semantics of CSP)

Rules for commands:

〈skip, σ〉 → 〈↓, σ〉
〈a, σ〉 → z

〈x := a, σ〉 → 〈↓, σ[x 7→ z]〉

〈α?x , σ〉 α?z−→ 〈↓, σ[x 7→ z]〉

〈a, σ〉 → z

〈α!a, σ〉 α!z−→ 〈↓, σ〉
〈c1, σ〉

λ−→ 〈c ′1, σ′〉

〈c1; c2, σ〉
λ−→ 〈c ′1; c2, σ

′〉

〈gc , σ〉 λ−→ 〈c , σ′〉

〈if gc fi, σ〉 λ−→ 〈c , σ′〉
〈gc , σ〉 λ−→ 〈c , σ′〉

〈do gc od, σ〉 λ−→ 〈c ; do gc od, σ′〉

〈gc , σ〉 → fail

〈do gc od, σ〉 → 〈↓, σ〉

〈c1, σ〉
λ−→ 〈c ′1, σ′〉

〈c1 ‖ c2, σ〉
λ−→ 〈c ′1 ‖ c2, σ

′〉

〈c2, σ〉
λ−→ 〈c ′2, σ′〉

〈c1 ‖ c2, σ〉
λ−→ 〈c1 ‖ c ′2, σ′〉

〈c1, σ〉
α?z−→ 〈c ′1, σ′〉 〈c2, σ〉

α!z−→ 〈c ′2, σ〉
〈c1 ‖ c2, σ〉 → 〈c ′1 ‖ c ′2, σ′〉

〈c1, σ〉
α!z−→ 〈c ′1, σ〉 〈c2, σ〉

α?z−→ 〈c ′2, σ′〉
〈c1 ‖ c2, σ〉 → 〈c ′1 ‖ c ′2, σ′〉

Semantics and Verification of Software Summer Semester 2013 17.7

Semantics of CSP IV

Definition (Semantics of CSP; continued)

Rules for guarded commands:
〈b, σ〉 → true

〈b → c, σ〉 → 〈c , σ〉
〈b, σ〉 → false

〈b → c , σ〉 → fail

〈b, σ〉 → true

〈b ∧ α?x → c , σ〉 α?z−→ 〈c, σ[x 7→ z]〉

〈b, σ〉 → false

〈b ∧ α?x → c , σ〉 → fail

〈b, σ〉 → true 〈a, σ〉 → z

〈b ∧ α!a→ c , σ〉 α!z−→ 〈c , σ〉

〈b, σ〉 → false

〈b ∧ α!a→ c , σ〉 → fail

〈gc1, σ〉
λ−→ 〈c , σ′〉

〈gc1 � gc2, σ〉
λ−→ 〈c, σ′〉

〈gc2, σ〉
λ−→ 〈c , σ′〉

〈gc1 � gc2, σ〉
λ−→ 〈c , σ′〉

〈gc1, σ〉 → fail 〈gc2, σ〉 → fail

〈gc1 � gc2, σ〉 → fail

Semantics and Verification of Software Summer Semester 2013 17.8

Outline

1 Recapitulation: Channel Communication

2 CSP Examples

3 Fairness in CSP

Semantics and Verification of Software Summer Semester 2013 17.9

CSP Examples

Example 17.1

(on the board)

1 do (true ∧ α?x → β!x) od

describes a process that repeatedly receives a value along α and
forwards it along β (i.e., a one-place buffer)

2 do true ∧ α?x → β!x od ‖ do true ∧ β?y → γ!y od

specifies a two-place buffer that receives along α and sends along γ
(using β for internal communication)

3 Nondeterministic choice between input channels:
1 if (true ∧ α?x → c1 � true ∧ β?y → c2) fi
2 if (true→ (α?x ; c1) � true→ (β?y ; c2)) fi

Expected: progress whenever environment provides data on α or β
1 correct
2 incorrect (can deadlock)

Semantics and Verification of Software Summer Semester 2013 17.10

Outline

1 Recapitulation: Channel Communication

2 CSP Examples

3 Fairness in CSP

Semantics and Verification of Software Summer Semester 2013 17.11

Fairness I

Informally: unfair behaviour excludes processes from being executed

Here: consider parallel composition of n ≥ 1 sequential programs with
executions of the form κ0 → κ1 → κ2 → . . . where
κj = 〈c(j)

1 ‖ . . . ‖ c
(j)
n , σj〉 and, for some 1 ≤ i ≤ n and k0 ∈ N,

c
(k)
i = c

(k0)
i for all k ≥ k0

But: only unfair if ci not enabled

Definition 17.2 (Enabledness)

ci is enabled in configuration κ = 〈c1 ‖ . . . ‖ cn, σ〉 if there exists
κ′ = 〈c ′1 ‖ . . . ‖ c ′n, σ′〉 with κ→ κ′ and c ′i 6= ci .

Example 17.3

1 x := 0 enabled in 〈x := 0 ‖ y := 1, σ〉 (actually always enabled)

2 α?x enabled in 〈α?x ‖ α!0, σ〉
3 α?x not enabled in 〈α?x ‖ β!1, σ〉

Semantics and Verification of Software Summer Semester 2013 17.12

Fairness II

Definition 17.4 (Fairness)

An execution κ0 → κ1 → κ2 → . . . where κj = 〈c (j)
1 ‖ . . . ‖ c

(j)
n , σj〉 and, for some

1 ≤ i ≤ n and k0 ∈ N, c
(k)
i = c

(k0)
i for all k ≥ k0 is called

1 strongly unfair if c
(k)
i is enabled in κk for all k ≥ k0

2 weakly unfair if c
(k)
i is enabled in κk for infinitely many k ≥ k0

Example 17.5

1 〈do true→ x := x + 1 od ‖ y := y + 1, . . .〉
→ 〈x := x + 1; do true→ x := x + 1 od ‖ y := y + 1, . . .〉
→ 〈do true→ x := x + 1 od ‖ y := y + 1, . . .〉 → . . .
is strongly unfair since y := y + 1 is always enabled

2 〈do true→ x := x + 1 od ‖ α!1 ‖ α?y , . . .〉
→ 〈x := x + 1; do true→ x := x + 1 od ‖ α!1 ‖ α?y , . . .〉
→ 〈do true→ x := x + 1 od ‖ α!1 ‖ α?y , . . .〉 → . . .
is strongly unfair since both I/O operations are always enabled

3 〈do α!1→ skip od ‖ do α?x → skip od ‖ α?y , . . .〉
→ 〈skip; do α!1→ skip od ‖ skip; do α?x → skip od ‖ α?y , . . .〉
→ 〈skip; do α!1→ skip od ‖ do α?x → skip od ‖ α?y , . . .〉
→ 〈do α!1→ skip od ‖ do α?x → skip od ‖ α?y , . . .〉 → . . .
is weakly unfair since α?y is enabled in every third configuration

Semantics and Verification of Software Summer Semester 2013 17.13

	Recapitulation: Channel Communication
	CSP Examples
	Fairness in CSP

