Semantics and Verification of Software

Lecture 17: Nondeterminism and Parallelism |l
(Communicating Sequential Processes)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-1i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

@ Recapitulation: Channel Communication

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 17.2

Communicating Sequential Processes

@ Approach: Communicating Sequential Processes (CSP) by T. Hoare
and R. Milner
@ Models system of processors that
e have (only) local store and
e run a sequential program (“process”)
@ Communication proceeds in the following way:
e processes communicate along channels
e process can send/receive on a channel if another process

simultaneously performs the complementary 1/0O operation
= no buffering (synchronous communication)

@ New syntactic domains:

Channel names: a,B,7,... € Chn

Input operations: a?x where o € Chn, x € Var
Output operations: «ala where o € Chn, a € AExp
Guarded commands: gc € GCmd

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Syntax of CSP

Definition (Syntax of CSP)

The syntax of CSP is given by

a..:Z|X|31+32|31 82‘81*82€AEXP
b:::t|al 32|31>32|ﬁb|b1/\b2|b1\/b2€BEXp
c m=skip|x:=a|a?x|ala]|

c1;6 | if gc fi|do gcod | ¢ || 2 € Cmd
gci=b—c|bAa?x —c|bAala— c|ge g € GCmd

In ¢ || c2, commands ¢; and ¢; must not use common variables (only local
store)
Guarded command gc; [J gcp represents an alternative

In b — ¢, b acts as a guard that enables the execution of ¢ only if evaluated
to true

bAa?x — c and b A ala — c additionally require the respective 1/0
operation to be enabled

If none of its alternatives is enabled, a guarded command gc fails (state fail)
if nondeterministically picks an enabled alternative
A do Ioop is |terated until its body fails

Semantics and Verification of Software Summer Semester 2013 17.4

Semantics of CSP |

@ Most important aspect: 1/O operations
e E.g., (a?x;c,0) can only execute if a parallel command provides
corresponding output
= Indicate communication potential by labels
L:i={a?z|ae ChnzeZ}U{alz|a € Chn,z € Z}
@ Yields following labeled transitions:
(a?x; ¢, o) o (c,olx > z]) (forall z € Z)
(ala; o) 25 (', 0) (if (a,0) — z)
@ Now both commands, if running in parallel, can communicate:
{(a?x;¢) || (ala;), o) — (c || ¢, o[x = Z]).

@ To allow communication with other processes, the following
transitions should also be possible (for all 2/ € Z, (a,0) — z):

a?z’

{((a?x;¢) || (ala;), 0) —I> (c| (ala;), o[x — Z])
((a?x;¢) || (la; '), 0) =5 ((a?x;¢) || ¢, 0)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Semantics of CSP Il

Definition of transition relation
25 C(Cmd x) x (Cmd x ¥) U (GCmd x ¥) x (Cmd x T U {fail})

(see following slides)
e Marking A can be a label or empty: A € LU {¢}

@ Again: uniform treatment of configurations of the form
(c,o) € Cmd x X and 0 € X:
o o interpreted as (|,o) with “terminated” command |
o | satisfies ,c=c;l =] c=c|l=c

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 17.6

Semantics of CSP Il

Definition (Semantics of CSP)

Rules for commands:

(a,0) = z
(skip,0) = (|, 0) (x:=a,0) = (},o[x — z])
a, o) =z
(a?x,0) 25 (], o[x — 2]) (ala, o) 25 (1, 0)
(e1,0) = (], ") (ge,a) = {c,0")
(c1; c2,0) = (i ¢, 0”) (if gc £i,0) =5 (c, o)
(gc, o) BN (c,o”) (gc, o) — fall

(do gc od, o) = (c;do gc od, o) (do gc od, o) = {I,0)

(a1, 0) 2 (¢, o) (c2,0) 2 (ch,0)
A A
(a |l e2,0) 25 (c] || e, 0”) (a |l e,0) 25 (a |l ¢,
(c1,0) 2B (c},0") (@,0) 25 (chyo) (a1,0) 25 (c],0) (c2,0) 25 (c}, ")

(al e,0)={all ed) (al e,0) = {al e,0d)

v

RWNTH Semantics and Verification of Software Summer Semester 2013 17.7

Semantics of CSP IV

Definition (Semantics of CSP; continued)

Rules for guarded commands:

(b,o) — true (b, o) — false
(b—c,0) = (c,0) (b — c,o) — fall
(b,o) — true (b,o) — false
(bNa?x — c,o) LI (c,o[x — z]) (bAa?x — c,o) — falil

(b,o) — true (a,0) — z (b,o) — false
(bAala— c,0) — fail

(bAala— c,0) 25 (c,o)

(ge1,0) =2 (c, o) (gca, o) = (c,)
(gan O gey, o) 2, (c,o’) (gan O geo, 0) 2 c,a’)

(gc1,0) — fail (gep, o) — fail

(gc1 O gep, o) — fall

v

RWNTH Semantics and Verification of Software Summer Semester 2013 17.8

© CSP Examples

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 17.9

CSP Examples

(on the board)

@ do (true A a?x — [Blx) od
describes a process that repeatedly receives a value along « and
forwards it along £ (i.e., a one-place buffer)
@ do true A a?x — Blx od || do true A B7y — vly od
specifies a two-place buffer that receives along o and sends along ~
(using 3 for internal communication)
© Nondeterministic choice between input channels:
@ if (true Aa?x — ¢ Otrue A 57y — o) fi
@ if (true — (a?x;c) Otrue = (B?y;) £i
Expected: progress whenever environment provides data on « or 3

@ correct
@ incorrect (can deadlock)

RWNTH Semantics and Verification of Software Summer Semester 2013 17.10

© Fairness in CSP

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 17.11

Fairness |

@ Informally: unfair behaviour excludes processes from being executed

@ Here: consider parallel composition of n > 1 sequential programs with
executions of the form ko — K1 — ko — ... where

Kj = (c{") ... c,g’),aj> and, for some 1 </ < nand ky € N,
c,.(k) = c,.(ko) for all kK > ko

@ But: only unfair if ¢; not enabled

Definition 17.2 (Enabledness)

¢j is enabled in configuration k = (c1 || ... || cn, o) if there exists
K ={c|l... || ¢,0') with K — " and ¢/ # ;.

v

Example 17.3

Q x:=0enabled in (x:=0| y:=1,0) (actually always enabled)
@ a7?x enabled in (a?x || a!0,0)
© a?x not enabled in (a?x || 51, 0)

v

nwr"_“:l‘] ji Semantics and Verification of Software Summer Semester 2013 17.12

Fairness ||

Definition 17.4 (Fairness)

An execution ko — k1 — k2 — ... where r; = (cU) || ... || ¢, 5}) and, for some
1<i<nand k €N, c,»(k) = c,»(k”) for all k > ko is called

@ strongly unfair if ¢*) is enabled in ry for all k > ko

@ weakly unfair if c,.(k) is enabled in ky for infinitely many k > ko

|

Example 17.5

Q (dotrue > x:=x+1lod|y:=y+1,...)
— (x:=x+1l;dotrue > x:=x+1lod|y:=y+1,...)
— (dotrue—> x:=x+lod|y:=y+1,...) = ...

is strongly unfair since y := y + 1 is always enabled

Q do true > x:=x+1od | &'l | a?y,...)

— (x:=x+1;dotrue » x:=x+1od| all| a?y,...)
— (dotrue > x:=x+1lod| all|a?y,...)—...
is strongly unfair since both 1/O operations are always enabled
Q (do a!l — skip od || do a?x — skip od || a?y,...)
— (skip;do a!l — skip od || skip;do a?x — skip od || a?y,...)
— (skip;do a!l — skip od || do a?x — skip od || a?y,...)
— (do a!l — skip od || do a?x — skip od || a?y,...) — ...

is weakly unfair since a?y is enabled in every third configuration
RWNTH Semantics and Verification of Software Summer Semester 2013 17.13

	Recapitulation: Channel Communication
	CSP Examples
	Fairness in CSP

