
Semantics and Verification of Software
Lecture 18: Nondeterminism and Parallelism III

(Calculus of Communicating Systems)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/


Outline

1 Calculus of Communicating Systems

2 Semantics of CCS

Semantics and Verification of Software Summer Semester 2013 18.2



The Calculus of Communicating Systems

History:

Robin Milner: A Calculus of Communicating Systems

LNCS 92, Springer, 1980

Robin Milner: Communication and Concurrency

Prentice-Hall, 1989

Robin Milner: Communicating and Mobile Systems: the π-calculus
Cambridge University Press, 1999

Semantics and Verification of Software Summer Semester 2013 18.3



The Calculus of Communicating Systems

History:

Robin Milner: A Calculus of Communicating Systems

LNCS 92, Springer, 1980

Robin Milner: Communication and Concurrency

Prentice-Hall, 1989

Robin Milner: Communicating and Mobile Systems: the π-calculus
Cambridge University Press, 1999

Approach: describing parallelism on a simple and abstract level, using
only a few basic primitives

no explicit storage (variables)

no explicit representation of values (numbers, Booleans, ...)

⇒ parallel system reduced to communication potential

Semantics and Verification of Software Summer Semester 2013 18.3



Syntax of CCS I

Definition 18.1 (Syntax of CCS)

Let N be a set of (action) names.

Semantics and Verification of Software Summer Semester 2013 18.4



Syntax of CCS I

Definition 18.1 (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N} denotes the set of co-names.

Semantics and Verification of Software Summer Semester 2013 18.4



Syntax of CCS I

Definition 18.1 (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N} denotes the set of co-names.

Act := N ∪ N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Semantics and Verification of Software Summer Semester 2013 18.4



Syntax of CCS I

Definition 18.1 (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N} denotes the set of co-names.

Act := N ∪ N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Let Pid be a set of process identifiers.

Semantics and Verification of Software Summer Semester 2013 18.4



Syntax of CCS I

Definition 18.1 (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N} denotes the set of co-names.

Act := N ∪ N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following syntax:
P ::= nil (inaction)

| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| new a P (restriction)
| A(a1, . . . , an) (process call)

where α ∈ Act, a, ai ∈ N, and A ∈ Pid .

Semantics and Verification of Software Summer Semester 2013 18.4



Syntax of CCS II

Definition 18.1 (continued)

A (recursive) process definition is an equation system of the form

(Ai(ai1, . . . , aini ) = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ai ∈ Pid (pairwise different), ni ∈ N, aij ∈ N

(ai1, . . . , aini pairwise different), and Pi ∈ Prc (with process identifiers
from {A1, . . . ,Ak}).

Semantics and Verification of Software Summer Semester 2013 18.5



Syntax of CCS II

Definition 18.1 (continued)

A (recursive) process definition is an equation system of the form

(Ai(ai1, . . . , aini ) = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ai ∈ Pid (pairwise different), ni ∈ N, aij ∈ N

(ai1, . . . , aini pairwise different), and Pi ∈ Prc (with process identifiers
from {A1, . . . ,Ak}).

Notational Conventions:

a means a

A(a1, . . . , an) sometimes written as A(~a), A() as A

prefixing and restriction binds stronger than composition, composition
binds stronger than choice:

new a P + b.Q ‖ R means (new a P) + ((b.Q) ‖ R)

Semantics and Verification of Software Summer Semester 2013 18.5



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

Semantics and Verification of Software Summer Semester 2013 18.6



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

Semantics and Verification of Software Summer Semester 2013 18.6



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

Semantics and Verification of Software Summer Semester 2013 18.6



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the nondeterministic choice between P1 and P2.

Semantics and Verification of Software Summer Semester 2013 18.6



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the nondeterministic choice between P1 and P2.

P1 ‖ P2 denotes the parallel execution of P1 and P2, involving
interleaving or communication.

Semantics and Verification of Software Summer Semester 2013 18.6



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the nondeterministic choice between P1 and P2.

P1 ‖ P2 denotes the parallel execution of P1 and P2, involving
interleaving or communication.

The restriction new a P declares a as a local name which is only
known within P .

Semantics and Verification of Software Summer Semester 2013 18.6



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the nondeterministic choice between P1 and P2.

P1 ‖ P2 denotes the parallel execution of P1 and P2, involving
interleaving or communication.

The restriction new a P declares a as a local name which is only
known within P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an
replace the formal name parameters.

Semantics and Verification of Software Summer Semester 2013 18.6



CCS Examples

Example 18.2

(on the board)

1 One-place buffer (see Example 17.1(1) for a CSP implementation)

2 Two-place buffer

3 Parallel specification of two-place buffer
(see Example 17.1(2) for a CSP implementation)

Semantics and Verification of Software Summer Semester 2013 18.7



Outline

1 Calculus of Communicating Systems

2 Semantics of CCS

Semantics and Verification of Software Summer Semester 2013 18.8



Semantics of CCS I

Definition 18.3 (Semantics of CCS)

A process definition (Ai(ai1, . . . , aini ) = Pi | 1 ≤ i ≤ k) determines the
labeled transition system (LTS) (Prc ,Act,−→) whose transitions can be
inferred from the following rules (P ,P ′,Q,Q ′ ∈ Prc , α ∈ Act, λ ∈ N ∪ N,
a, b ∈ N, A ∈ Pid):

(Act)
α.P

α
−→ P

(Com)
P

λ
−→ P ′ Q

λ
−→ Q ′

P ‖ Q
τ

−→ P ′ ‖ Q ′

(Sum1)
P

α
−→ P ′

P + Q
α

−→ P ′
(Sum2)

Q
α

−→ Q ′

P + Q
α

−→ Q ′

(Par1)
P

α
−→ P ′

P ‖ Q
α

−→ P ′ ‖ Q
(Par2)

Q
α

−→ Q ′

P ‖ Q
α

−→ P ‖ Q ′

(New)
P

α
−→ P ′ (α /∈ {a, a})

new a P
α

−→ new a P ′
(Call)

P [~a 7→ ~b]
α

−→ P ′

A(~b)
α

−→ P ′
if A(~a) = P

(Here P [~a 7→ ~b] denotes the replacement of every ai by bi in P .)

Semantics and Verification of Software Summer Semester 2013 18.9



Semantics of CCS II

Example 18.4

(on the board)

1 One-place buffer:

B(in, out) = in.out.B(in, out)

Semantics and Verification of Software Summer Semester 2013 18.10



Semantics of CCS II

Example 18.4

(on the board)

1 One-place buffer:

B(in, out) = in.out.B(in, out)

2 Sequential two-place buffer:

B0(in, out) = in.B1(in, out)
B1(in, out) = out.B0(in, out) + in.B2(in, out)
B2(in, out) = out.B1(in, out)

Semantics and Verification of Software Summer Semester 2013 18.10



Semantics of CCS II

Example 18.4

(on the board)

1 One-place buffer:

B(in, out) = in.out.B(in, out)

2 Sequential two-place buffer:

B0(in, out) = in.B1(in, out)
B1(in, out) = out.B0(in, out) + in.B2(in, out)
B2(in, out) = out.B1(in, out)

3 Parallel two-place buffer:

B‖(in, out) = new com (B(in, com) ‖ B(com, out))
B(in, out) = in.out.B(in, out)

Semantics and Verification of Software Summer Semester 2013 18.10



Semantics of CCS III

Example 18.4 (continued)

Complete LTS of parallel two-place buffer (=: LTS(B‖(in, out))):

B‖(in, out)

new com (com.B(in, com) ‖
B(com, out))

new com (com.B(in, com) ‖ out.B(com, out))

new com (B(in, com) ‖
out.B(com, out))

new com (B(in, com) ‖ B(com, out)) empty

1 entry

full

in
in

τ

out

inout

Semantics and Verification of Software Summer Semester 2013 18.11


	Calculus of Communicating Systems
	Semantics of CCS

