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The Calculus of Communicating Systems

History:

Robin Milner: A Calculus of Communicating Systems

LNCS 92, Springer, 1980

Robin Milner: Communication and Concurrency

Prentice-Hall, 1989

Robin Milner: Communicating and Mobile Systems: the π-calculus
Cambridge University Press, 1999
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The Calculus of Communicating Systems

History:

Robin Milner: A Calculus of Communicating Systems

LNCS 92, Springer, 1980

Robin Milner: Communication and Concurrency

Prentice-Hall, 1989

Robin Milner: Communicating and Mobile Systems: the π-calculus
Cambridge University Press, 1999

Approach: describing parallelism on a simple and abstract level, using
only a few basic primitives

no explicit storage (variables)

no explicit representation of values (numbers, Booleans, ...)

⇒ parallel system reduced to communication potential
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Syntax of CCS I

Definition 18.1 (Syntax of CCS)

Let N be a set of (action) names.
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Syntax of CCS I

Definition 18.1 (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N} denotes the set of co-names.

Act := N ∪ N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following syntax:
P ::= nil (inaction)

| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| new a P (restriction)
| A(a1, . . . , an) (process call)

where α ∈ Act, a, ai ∈ N, and A ∈ Pid .
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Syntax of CCS II

Definition 18.1 (continued)

A (recursive) process definition is an equation system of the form

(Ai(ai1, . . . , aini ) = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ai ∈ Pid (pairwise different), ni ∈ N, aij ∈ N

(ai1, . . . , aini pairwise different), and Pi ∈ Prc (with process identifiers
from {A1, . . . ,Ak}).
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Syntax of CCS II

Definition 18.1 (continued)

A (recursive) process definition is an equation system of the form

(Ai(ai1, . . . , aini ) = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ai ∈ Pid (pairwise different), ni ∈ N, aij ∈ N

(ai1, . . . , aini pairwise different), and Pi ∈ Prc (with process identifiers
from {A1, . . . ,Ak}).

Notational Conventions:

a means a

A(a1, . . . , an) sometimes written as A(~a), A() as A

prefixing and restriction binds stronger than composition, composition
binds stronger than choice:

new a P + b.Q ‖ R means (new a P) + ((b.Q) ‖ R)
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Meaning of CCS Constructs

nil is an inactive process that can do nothing.
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Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .
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Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.
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Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the nondeterministic choice between P1 and P2.

P1 ‖ P2 denotes the parallel execution of P1 and P2, involving
interleaving or communication.

The restriction new a P declares a as a local name which is only
known within P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an
replace the formal name parameters.

Semantics and Verification of Software Summer Semester 2013 18.6



CCS Examples

Example 18.2

(on the board)

1 One-place buffer (see Example 17.1(1) for a CSP implementation)

2 Two-place buffer

3 Parallel specification of two-place buffer
(see Example 17.1(2) for a CSP implementation)
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Outline

1 Calculus of Communicating Systems

2 Semantics of CCS
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Semantics of CCS I

Definition 18.3 (Semantics of CCS)

A process definition (Ai(ai1, . . . , aini ) = Pi | 1 ≤ i ≤ k) determines the
labeled transition system (LTS) (Prc ,Act,−→) whose transitions can be
inferred from the following rules (P ,P ′,Q,Q ′ ∈ Prc , α ∈ Act, λ ∈ N ∪ N,
a, b ∈ N, A ∈ Pid):

(Act)
α.P

α
−→ P

(Com)
P

λ
−→ P ′ Q

λ
−→ Q ′

P ‖ Q
τ

−→ P ′ ‖ Q ′

(Sum1)
P

α
−→ P ′

P + Q
α

−→ P ′
(Sum2)

Q
α

−→ Q ′

P + Q
α

−→ Q ′

(Par1)
P

α
−→ P ′

P ‖ Q
α

−→ P ′ ‖ Q
(Par2)

Q
α

−→ Q ′

P ‖ Q
α

−→ P ‖ Q ′

(New)
P

α
−→ P ′ (α /∈ {a, a})

new a P
α

−→ new a P ′
(Call)

P [~a 7→ ~b]
α

−→ P ′

A(~b)
α

−→ P ′
if A(~a) = P

(Here P [~a 7→ ~b] denotes the replacement of every ai by bi in P .)
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Semantics of CCS II

Example 18.4

(on the board)

1 One-place buffer:

B(in, out) = in.out.B(in, out)
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Semantics of CCS II

Example 18.4

(on the board)

1 One-place buffer:

B(in, out) = in.out.B(in, out)

2 Sequential two-place buffer:

B0(in, out) = in.B1(in, out)
B1(in, out) = out.B0(in, out) + in.B2(in, out)
B2(in, out) = out.B1(in, out)
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Semantics of CCS II

Example 18.4

(on the board)

1 One-place buffer:

B(in, out) = in.out.B(in, out)

2 Sequential two-place buffer:

B0(in, out) = in.B1(in, out)
B1(in, out) = out.B0(in, out) + in.B2(in, out)
B2(in, out) = out.B1(in, out)

3 Parallel two-place buffer:

B‖(in, out) = new com (B(in, com) ‖ B(com, out))
B(in, out) = in.out.B(in, out)
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Semantics of CCS III

Example 18.4 (continued)

Complete LTS of parallel two-place buffer (=: LTS(B‖(in, out))):

B‖(in, out)

new com (com.B(in, com) ‖
B(com, out))

new com (com.B(in, com) ‖ out.B(com, out))

new com (B(in, com) ‖
out.B(com, out))

new com (B(in, com) ‖ B(com, out)) empty

1 entry

full

in
in

τ

out

inout
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