Semantics and Verification of Software

Lecture 18: Nondeterminism and Parallelism IlI
(Calculus of Communicating Systems)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

@ Calculus of Communicating Systems

Rw.rH Semantics and Verification of Software Summer Semester 2013 18.2

The Calculus of Communicating Systems

History:

@ Robin Milner: A Calculus of Communicating Systems
LNCS 92, Springer, 1980

@ Robin Milner: Communication and Concurrency
Prentice-Hall, 1989

@ Robin Milner: Communicating and Mobile Systems: the mw-calculus
Cambridge University Press, 1999

Approach: describing parallelism on a simple and abstract level, using
only a few basic primitives

@ no explicit storage (variables)
@ no explicit representation of values (numbers, Booleans, ...)

= parallel system reduced to communication potential

Rw.rH Semantics and Verification of Software Summer Semester 2013 18.3

Syntax of CCS |

Definition 18.1 (Syntax of CCS)

@ Let N be a set of (action) names.

o N :={a|ac N} denotes the set of co-names.

o Act := NUN U {7} is the set of actions where 7 denotes the silent
(or: unobservable) action.

@ Let Pid be a set of process identifiers.

@ The set Prc of process expressions is defined by the following syntax:

P = nil (inaction)
| a.P (prefixing)
| P14+ P> (choice)
| P P2 (parallel composition)
| newaP (restriction)
| A(a1,...,an) (process call)

where o € Act, a,a; € N, and A € Pid.

RWNTH Semantics and Verification of Software Summer Semester 2013 18.4

Syntax of CCS II

Definition 18.1 (continued)

@ A (recursive) process definition is an equation system of the form
(Ai(air, .-, ain) = Pi |1 < i< k)

where k > 1, A; € Pid (pairwise different), n; € N, ajj € N
(ai1, .., ain; pairwise different), and P; € Prc (with process identifiers
from {A1,..., Ac}).

4

Notational Conventions:
® 3 means a
@ A(ai,...,an) sometimes written as A(3), A() as A
@ prefixing and restriction binds stronger than composition, composition
binds stronger than choice:

newaP+b.Q || R means (newaP)+ ((b.Q)] R)

RWIH Semantics and Verification of Software Summer Semester 2013 18.5

Meaning of CCS Constructs

nil is an inactive process that can do nothing.

«.P can execute o and then behaves as P.

@ An action a € N (3 € N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 || P2), they are merged into a T-action.

@ P; + P, represents the nondeterministic choice between P; and Ps.

@ Pj || P, denotes the parallel execution of P; and P;, involving
interleaving or communication.

@ The restriction new a P declares a as a local name which is only
known within P.

@ The behavior of a process call A(as,...,a,) is defined by the
right-hand side of the corresponding equation where as, ..., a,
replace the formal name parameters.

Rw.rH Semantics and Verification of Software Summer Semester 2013 18.6

CCS Examples

Example 18.2

(on the board)
© One-place buffer (see Example 17.1(1) for a CSP implementation)
© Two-place buffer

© Parallel specification of two-place buffer
(see Example 17.1(2) for a CSP implementation)

Im“ Semantics and Verification of Software Summer Semester 2013 18.7

© Semantics of CCS

Rw.rH Semantics and Verification of Software Summer Semester 2013 18.8

Semantics of CCS |

Definition 18.3 (Semantics of CCS)

A process definition (Aj(aj1,- .., ain,) = Pi | 1 < i < k) determines the
labeled transition system (LTS) (Prc, Act, —) whose transitions can be
inferred from the following rules (P, P, Q, Q' € Prc, a € Act, A\ € NU N,
a,be N, A e Pid): o 2 S
(Act) ———— (Com)——— g——Q
a.P— P P|lQ— P | Q
a / @ /
(Sumﬂ% (Sumg)%
P+Q—F P+Q— @
« / @ /
(Pary)——L =P (Pary)—— =29
PIR—PIQ PIQR—P|Q
P2 P! 3 P& — b] 5 P!
(New) ((la #{2.3}) (Call) 3 -]a if A3)=P
new a P — new a P’ A(b) — P’
(Here P[3 — b] denotes the replacement of every a; by b; in P.)

4

RWNTH Semantics and Verification of Software Summer Semester 2013 18.9

Semantics of CCS I

(on the board)
© One-place buffer:

B(in, out) = in.out.B(in, out)

© Sequential two-place buffer:

Bo(in, out) = in.By(in, out)
Bi(in, out) = out.By(in, out) + in.By(in, out)
Bs(in, out) = out.B;(in, out)

© Parallel two-place buffer:

By (in, out) = new com (B(in, com) || B(com, out))
B(in, out) = in.out.B(in, out)

v

RWNTH Semantics and Verification of Software Summer Semester 2013 18.10

Semantics of CCS Il

Example 18.4 (continued)
Complete LTS of parallel two-place buffer (=: LTS(By(in, out))):

By (in, out) [new com (B(in, com) || B(com, out))] empty
in i out
in
new com (com.B(in, com) ||| 7| new com (B(in, com) || 1 entr
B(com, out)) out.B(com, out)) entry
out in
[new com (¢om.B(in, com) || out.B(com, out))} full

v

RWNTH Semantics and Verification of Software Summer Semester 2013 18.11

	Calculus of Communicating Systems
	Semantics of CCS

