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The Calculus of Communicating Systems

History:

@ Robin Milner: A Calculus of Communicating Systems
LNCS 92, Springer, 1980

@ Robin Milner: Communication and Concurrency
Prentice-Hall, 1989

@ Robin Milner: Communicating and Mobile Systems: the mw-calculus
Cambridge University Press, 1999

Approach: describing parallelism on a simple and abstract level, using
only a few basic primitives

@ no explicit storage (variables)
@ no explicit representation of values (numbers, Booleans, ...)

= parallel system reduced to communication potential
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Syntax of CCS |

Definition 18.1 (Syntax of CCS)

@ Let N be a set of (action) names.

o N :={a|ac N} denotes the set of co-names.

o Act := NUN U {7} is the set of actions where 7 denotes the silent
(or: unobservable) action.

@ Let Pid be a set of process identifiers.

@ The set Prc of process expressions is defined by the following syntax:

P = nil (inaction)
| a.P (prefixing)
| P14+ P> (choice)
| P P2 (parallel composition)
| newaP (restriction)
| A(a1,...,an) (process call)

where o € Act, a,a; € N, and A € Pid.
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Syntax of CCS II

Definition 18.1 (continued)

@ A (recursive) process definition is an equation system of the form
(Ai(air, .-, ain) = Pi |1 < i< k)

where k > 1, A; € Pid (pairwise different), n; € N, ajj € N
(ai1, .., ain; pairwise different), and P; € Prc (with process identifiers
from {A1,..., Ac}).

4

Notational Conventions:
® 3 means a
@ A(ai,...,an) sometimes written as A(3), A() as A
@ prefixing and restriction binds stronger than composition, composition
binds stronger than choice:

newaP+b.Q || R means (newaP)+ ((b.Q)] R)
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Meaning of CCS Constructs

nil is an inactive process that can do nothing.

«.P can execute o and then behaves as P.

@ An action a € N (3 € N) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 || P2), they are merged into a T-action.

@ P; + P, represents the nondeterministic choice between P; and Ps.

@ Pj || P, denotes the parallel execution of P; and P;, involving
interleaving or communication.

@ The restriction new a P declares a as a local name which is only
known within P.

@ The behavior of a process call A(as,...,a,) is defined by the
right-hand side of the corresponding equation where as, ..., a,
replace the formal name parameters.
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CCS Examples

Example 18.2

(on the board)
© One-place buffer (see Example 17.1(1) for a CSP implementation)
© Two-place buffer

© Parallel specification of two-place buffer
(see Example 17.1(2) for a CSP implementation)
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© Semantics of CCS
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Semantics of CCS |

Definition 18.3 (Semantics of CCS)

A process definition (Aj(aj1,- .., ain,) = Pi | 1 < i < k) determines the
labeled transition system (LTS) (Prc, Act, —) whose transitions can be
inferred from the following rules (P, P, Q, Q' € Prc, a € Act, A\ € NU N,
a,be N, A e Pid): o 2 S
(Act) ———— (Com)——— g——Q
a.P— P P|lQ— P | Q
a / @ /
(Sumﬂ% (Sumg)%
P+Q—F P+Q— @
« / @ /
(Pary)——L =P (Pary)—— =29
PIR—PIQ PIQR—P|Q
P2 P! 3 P& — b] 5 P!
(New) ((la #{2.3}) (Call) 3 - ]a if A3)=P
new a P — new a P’ A(b) — P’
(Here P[3 — b] denotes the replacement of every a; by b; in P.)

4

RWNTH Semantics and Verification of Software Summer Semester 2013 18.9



Semantics of CCS I

(on the board)
© One-place buffer:

B(in, out) = in.out.B(in, out)

© Sequential two-place buffer:

Bo(in, out) = in.By(in, out)
Bi(in, out) = out.By(in, out) + in.By(in, out)
Bs(in, out) = out.B;(in, out)

© Parallel two-place buffer:

By (in, out) = new com (B(in, com) || B(com, out))
B(in, out) = in.out.B(in, out)

v
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Semantics of CCS Il

Example 18.4 (continued)
Complete LTS of parallel two-place buffer (=: LTS(By(in, out))):

By (in, out) [new com (B(in, com) || B(com, out))] empty
in i out
in
new com (com.B(in, com) ||| 7| new com (B(in, com) || 1 entr
B(com, out)) out.B(com, out)) entry
out in
[new com (¢om.B(in, com) || out.B(com, out))} full

v
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