Semantics and Verification of Software

Lecture 19: Nondeterminism and Parallelism IV
(Equivalence of CCS Processes)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-1i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

GFRAUC"FQ INFORMATIK IRWTHAACHEN

UNIVERSITY

Online Registration for
Seminars and Practical Courses (Praktika)
in Winter Term 2013/14

Who?
Students of: = Master Courses
= Bachelor Informatik (PraSeminar!)

Where?
www.graphics.rwth-aachen.de/apse

When?
05.07.2013 - 17.07.2013

@ Recapitulation: Calculus of Communicating Systems

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 19.3

Syntax of CCS |

Definition 19.1 (Syntax of CCS)
@ Let N be a set of (action) names.
e N :={3|ac N} denotes the set of co-names.

@ Act := NUNU {7} is the set of actions where 7 denotes the silent
(or: unobservable) action.

@ Let Pid be a set of process identifiers.
@ The set Prc of process expressions is defined by the following syntax:

P ::= nil (inaction)
| a.P (prefixing)
| P1+ P, (choice)
| Pi P2 (parallel composition)
| newaP (restriction)
| A(a1,...,an) (process call)

where o € Act, a,a; € N, and A € Pid.

RWNTH Semantics and Verification of Software Summer Semester 2013 19.4

Syntax of CCS Il

Definition 19.1 (continued)

@ A (recursive) process definition is an equation system of the form
(Ai(ait, -y ain) = P | 1 < i < k)

where k > 1, A; € Pid (pairwise different), n; € N, ajj € N
(ai1, - -, ain,; pairwise different), and P; € Prc (with process identifiers
from {A1,..., Ac}).

v

Notational Conventions:
@ 3 means a
e A(ai,...,a,) sometimes written as A(a), A() as A
@ prefixing and restriction binds stronger than composition, composition
binds stronger than choice:

newaP+b.Q || R means (newaP)+ ((b.Q)] R)

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 19.5

Semantics of CCS |

Definition 19.2 (Semantics of CCS)

A process definition (Aj(ai1,...,ain;) = Pi | 1 < i < k) determines the
labeled transition system (LTS) (Prc, Act, —) whose transitions can be
inferred from the following rules (P, P/, Q, Q" € Prc, a € Act, A€ NUN,
a,be N, Ac Pid): A\ Y
PP Q—=Q
(Act)————— (Com) p-
a.P— P P|IQ—P | Q
« / @ /
(Suml)% (SUﬂqgw
P+Q—F P+Q—Q
a / @ /
(Pary P 7 P (Par2) Q T &
PIlQR—PF|Q PIQR—P|Q
P P 3 P[3 — b] %+ P’
(New) Eya #{2.3}) (Call) 3 -]a if AG)=P
newaP — newaP’ A(b) — P’
(Here P[3 — b] denotes the replacement of every a; by b; in P.)

V
RWNTH Semantics and Verification of Software Summer Semester 2013 19.6

Semantics of CCS Il

Example 19.3
Complete LTS of parallel two-place buffer (=: LTS(B)(in, out))):

By (in, out) (new com (B(in, com) || B(com, out))J empty
in i out
in
new com (com.B(in, com) || |7 |new com (B(in, com) || 1 entr
B(com, out)) out.B(com, out)) y
out in
(new com (com.B(in, com) || out.B(com, out))J full

v

RWNTH Semantics and Verification of Software Summer Semester 2013

19.7

© Equivalence of CCS Processes

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 19.8

Equivalence of CCS Processes

@ Generally: two syntactic objects are equivalent if they have the same
“meaning”

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 19.9

Equivalence of CCS Processes

@ Generally: two syntactic objects are equivalent if they have the same
“meaning”

@ Here: two processes are equivalent if they have the same “behavior”
(i.e., communication potential)

@ Communication potential described by LTS

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 19.9

Equivalence of CCS Processes

@ Generally: two syntactic objects are equivalent if they have the same
“meaning”

@ Here: two processes are equivalent if they have the same “behavior”
(i.e., communication potential)

@ Communication potential described by LTS

o First idea: define (for P, Q € Prc)

P, Q are called LTS equivalent if LTS(P) = LTS(Q)
@ But: yields too many distinctions

Example 19.1

X(a) = a.X(a) Y(a) = a.a.Y(a)

v

Semantics and Verification of Software Summer Semester 2013 19.9

Equivalence of CCS Processes

@ Generally: two syntactic objects are equivalent if they have the same
“meaning”

@ Here: two processes are equivalent if they have the same “behavior”
(i.e., communication potential)

@ Communication potential described by LTS

o First idea: define (for P, Q € Prc)

P, Q are called LTS equivalent if LTS(P) = LTS(Q)
@ But: yields too many distinctions

X(a) = a.X(a) Y(a) = a.a.Y(a)
LTS: <;D £ a {T a

although both processes can (only) execute infinitely many a-actions, and
should therefore be considered equivalent

v

Semantics and Verification of Software Summer Semester 2013 19.9

Trace Equivalence |

Second idea: reduce process to its action sequences

Definition 19.2 (Trace language)

For every P € Prc, let
Tr(P) := {w € Act* | ex. P’ € Prc such that P % P}

be the trace language of P
w ai ai
(where — 1= =5 o0...0 = forw =a;...ap).

P, Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

Semantics and Verification of Software Summer Semester 2013 19.10

Trace Equivalence |

Second idea: reduce process to its action sequences

Definition 19.2 (Trace language)

For every P € Prc, let
Tr(P) := {w € Act* | ex. P’ € Prc such that P % P}

be the trace language of P
w ai ai
(where — := =5 0...0 == forw = a;...a,).

P, Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 19.3 (One-place buffer)

B(in, out) = in.out.B(in, out)
= Tr(B(in, out)) = (in - out)* - (in+ ¢)

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 19.10

Trace Equivalence Il

Remarks:
@ The trace language of P € Prc is accepted by the LTS of P,
interpreted as a (finite or infinite) automaton with initial state P and
where every state is final.

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 19.11

Trace Equivalence Il

Remarks:

@ The trace language of P € Prc is accepted by the LTS of P,
interpreted as a (finite or infinite) automaton with initial state P and
where every state is final.

@ Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 19.11

Trace Equivalence Il

Remarks:

@ The trace language of P € Prc is accepted by the LTS of P,
interpreted as a (finite or infinite) automaton with initial state P and
where every state is final.

@ Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

@ Trace equivalence identifies processes with identical LTSs: the trace
language of a process consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q) = Tr(P) = Tr(Q)

nerAACHEN Semantics and Verification of Software Summer Semester 2013 19.11

Trace Equivalence Il

Are we satisfied with trace equivalence? No!

Example 19.4

e P: a,/.\a and Q:
b} °
are trace equivalent (since Tr(P) = Tr(Q) = {¢, a, ab})

a
b

0<—0<—0

nwr"_“ﬁ_l‘] ji Semantics and Verification of Software Summer Semester 2013 19.12

Trace Equivalence Il

Are we satisfied with trace equivalence? No!

Example 19.4
e P: a,/.\a and Q@ 1‘3
L] (] []
bl 15
[(]

are trace equivalent (since Tr(P) = Tr(Q) = {¢, a, ab})
@ But P and @ are distinguishable:
o both can execute ab
e but P can deny b after a
e while Q always has to offer b after a
(e.g., consider a model of vending machine
with a = “insert coin”, b = “return coffee”)

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 19.12

Trace Equivalence Il

Are we satisfied with trace equivalence? No!

Example 19.4
e P: a,/.\a and Q@ 1‘3
L] (] []
bl 15
[(]

are trace equivalent (since Tr(P) = Tr(Q) = {¢, a, ab})
@ But P and @ are distinguishable:
o both can execute ab
e but P can deny b after a
e while Q always has to offer b after a
(e.g., consider a model of vending machine
with a = “insert coin”, b = “return coffee”)

= take into account such deadlock properties

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 19.12

© Strong Bisimulation

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 19.13

Definition of Strong Bisimulation |

Observation: equivalence should be sensitive to deadlocks
= needs to take branching structure of processes into account

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 19.14

Definition of Strong Bisimulation |

Observation: equivalence should be sensitive to deadlocks
= needs to take branching structure of processes into account

This is guaranteed by a definition according to the following scheme:

Bisimulation scheme

P, Q € Prc are equivalent iff, for every o € Act, every a-successor of P is
equivalent to some a-successor of @, and vice versa.

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 19.14

Definition of Strong Bisimulation |

Observation: equivalence should be sensitive to deadlocks
= needs to take branching structure of processes into account

This is guaranteed by a definition according to the following scheme:

Bisimulation scheme

P, Q € Prc are equivalent iff, for every o € Act, every a-successor of P is
equivalent to some a-successor of @, and vice versa.

@ Strong version ignores special function of silent action 7
(alternative: weak bisimulation; considered later)

@ Unidirectional version: simulation
(not considered here)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 19.14

Definition of Strong Bisimulation Il

Definition 19.5 (Strong bisimulation)

A relation p C Prc x Prc is called a strong bisimulation if PpQ implies, for
every a € Act,

Q@ P P = ex. Q € Prcsuch that @Q = Q" and P'pQ’
Q@ Q= Q = ex. P' € Prc such that P - P' and P/pQ’

P, Q € Prc are called strongly bisimilar (notation: P ~ Q) if there exists a
strong bisimulation p such that PpQ.

v

Semantics and Verification of Software Summer Semester 2013 19.15

Definition of Strong Bisimulation Il

Definition 19.5 (Strong bisimulation)

A relation p C Prc x Prc is called a strong bisimulation if PpQ implies, for
every a € Act,

Q@ P P = ex. Q € Prcsuch that @Q = Q" and P'pQ’
Q@ Q= Q = ex. P' € Prc such that P - P' and P/pQ’

P, Q € Prc are called strongly bisimilar (notation: P ~ Q) if there exists a
strong bisimulation p such that PpQ.

Theorem 19.6

~ Is an equivalence relation.

omitted]

RWNTH Semantics and Verification of Software Summer Semester 2013 19.15

Example 19.7

(on the board)
@ Bisimilar but not LTS equivalent (cf. Example 19.1):

P ~ @
O alfla
a @)

v

RWNTH HE Semantics and Verification of Software Summer Semester 2013 19.16

Example 19.7

(on the board)

@ Bisimilar but not LTS equivalent (cf. Example 19.1):

P ~ @
O alfla
a @)

@ Trace equivalent (cf. Example 19.4) but not bisimilar:

P # Q
la ay N\ a
Py Q1 @3
1b bl

P> @2

v

Semantics and Verification of Software Summer Semester 2013

19.16

Bisimulation vs. LTS /Trace Equivalence

Theorem 19.8
For every P, Q € Prc,

LTS(P)=LTS(Q) Z P~Q L Ti(P)=Tr(Q)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 19.17

Bisimulation vs. LTS /Trace Equivalence

Theorem 19.8
For every P, Q € Prc,

LTS(P)=LTS(Q) Z P~Q L Ti(P)=Tr(Q)

Proof.
@ LTS(P) = LTS(Q) = P ~ Q: clear as Definition 19.5 (of ~) is
directly based on LTS(p) and LTS(Q)

v

RWNTH Semantics and Verification of Software Summer Semester 2013 19.17

Bisimulation vs. LTS /Trace Equivalence

Theorem 19.8
For every P, Q € Prc,

LTS(P)=LTS(Q) Z P~Q L Ti(P)=Tr(Q)

Proof.
@ LTS(P) = LTS(Q) = P ~ Q: clear as Definition 19.5 (of ~) is
directly based on LTS(p) and LTS(Q)

@ P~ Q# LTS(p) = LTS(Q): see Example 19.7(1)

v

RWNTH Semantics and Verification of Software Summer Semester 2013 19.17

Bisimulation vs. LTS /Trace Equivalence

Theorem 19.8
For every P, Q € Prc,

LTS(P)=LTS(Q) Z P~Q L Ti(P)=Tr(Q)

Proof.
@ LTS(P) = LTS(Q) = P ~ Q: clear as Definition 19.5 (of ~) is
directly based on LTS(p) and LTS(Q)

@ P~ Q# LTS(p) = LTS(Q): see Example 19.7(1)

e P~ Q= Tr(P)= Tr(Q): by contradiction
(show: dw € Tr(P)\ Tr(Q) = P + Q by induction on |w|)

v

RWNTH Semantics and Verification of Software Summer Semester 2013 19.17

Bisimulation vs. LTS /Trace Equivalence

Theorem 19.8
For every P, Q € Prc,

LTS(P)=LTS(Q) Z P~Q L Ti(P)=Tr(Q)

@ LTS(P) = LTS(Q) = P ~ Q: clear as Definition 19.5 (of ~) is
directly based on LTS(p) and LTS(Q)

@ P~ Q# LTS(p) = LTS(Q): see Example 19.7(1)
@ P~ Q= Tr(P)= Tr(Q): by contradiction

(show: dw € Tr(P)\ Tr(Q) = P + Q by induction on |w|)
o Tr(P)= Tr(Q) & P ~ Q: see Example 19.7(2)

Ol

v

RWNTH Semantics and Verification of Software Summer Semester 2013 19.17

More Examples |

Example 19.9

Binary semaphore
(controls exclusive access to two instances of a resource)
Sequential definition:

Semq(get, put) = get.Sem;(get, put)
Sem;(get, put) = get.Semy(get, put) + put.Semg(get, put)
Semy(get, put) = put.Sem;(get, put)

Parallel definition:

S(get,put) = So(get, put) || So(get, put)
So(get, put) = get.S1(get, put)
Si(get, put) = put.So(get, put)

Proposition: Semg(get, put) ~ S(get, put)

RWNTH Semantics and Verification of Software Summer Semester 2013 19.18

More Examples Il
Example 19.10

Two-place buffer
Sequential definition:

Bo(in,out) = in.Bi(in, out)
Bi(in,out) = out.By(in,out) + in.By(in, out)
By(in,out) = out.Bi(in,out)

Parallel definition:

By (in,out) = new com (B(in,com) || B(com, out))
B(in,out) = in.out.B(in,out)

Proposition: By (in, out) % B (in, out)

v

RWNTH HE Semantics and Verification of Software Summer Semester 2013 19.19

	Recapitulation: Calculus of Communicating Systems
	Equivalence of CCS Processes
	Strong Bisimulation

