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Syntax of CCS I

Definition 19.1 (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N} denotes the set of co-names.

Act := N ∪ N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following syntax:
P ::= nil (inaction)
| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| new a P (restriction)
| A(a1, . . . , an) (process call)

where α ∈ Act, a, ai ∈ N, and A ∈ Pid .
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Syntax of CCS II

Definition 19.1 (continued)

A (recursive) process definition is an equation system of the form

(Ai (ai1, . . . , aini ) = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ai ∈ Pid (pairwise different), ni ∈ N, aij ∈ N
(ai1, . . . , aini pairwise different), and Pi ∈ Prc (with process identifiers
from {A1, . . . ,Ak}).

Notational Conventions:

a means a
A(a1, . . . , an) sometimes written as A(~a), A() as A
prefixing and restriction binds stronger than composition, composition
binds stronger than choice:

new a P + b.Q ‖ R means (new a P) + ((b.Q) ‖ R)
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Semantics of CCS I

Definition 19.2 (Semantics of CCS)

A process definition (Ai (ai1, . . . , aini ) = Pi | 1 ≤ i ≤ k) determines the
labeled transition system (LTS) (Prc ,Act,−→) whose transitions can be
inferred from the following rules (P,P ′,Q,Q ′ ∈ Prc, α ∈ Act, λ ∈ N ∪ N,
a, b ∈ N, A ∈ Pid):

(Act)
α.P

α−→ P
(Com)

P
λ−→ P ′ Q

λ−→ Q ′

P ‖ Q τ−→ P ′ ‖ Q ′

(Sum1)
P

α−→ P ′

P + Q
α−→ P ′

(Sum2)
Q

α−→ Q ′

P + Q
α−→ Q ′

(Par1)
P

α−→ P ′

P ‖ Q α−→ P ′ ‖ Q
(Par2)

Q
α−→ Q ′

P ‖ Q α−→ P ‖ Q ′

(New)
P

α−→ P ′ (α /∈ {a, a})
new a P

α−→ new a P ′
(Call)

P[~a 7→ ~b]
α−→ P ′

A(~b)
α−→ P ′

if A(~a) = P

(Here P[~a 7→ ~b] denotes the replacement of every ai by bi in P.)
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Semantics of CCS II

Example 19.3

Complete LTS of parallel two-place buffer (=: LTS(B‖(in, out))):

B‖(in, out)

new com (com.B(in, com) ‖
B(com, out))

new com (com.B(in, com) ‖ out.B(com, out))

new com (B(in, com) ‖
out.B(com, out))

new com (B(in, com) ‖ B(com, out)) empty

1 entry

full

in
in

τ

out

inout
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Equivalence of CCS Processes

Generally: two syntactic objects are equivalent if they have the same
“meaning”

Here: two processes are equivalent if they have the same “behavior”
(i.e., communication potential)

Communication potential described by LTS

First idea: define (for P,Q ∈ Prc)
P,Q are called LTS equivalent if LTS(P) = LTS(Q)

But: yields too many distinctions

Example 19.1

X (a) = a.X (a) Y (a) = a.a.Y (a)

LTS:
•
	
a 6=

•
a ↓↑ a•

although both processes can (only) execute infinitely many a-actions, and
should therefore be considered equivalent
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Trace Equivalence I

Second idea: reduce process to its action sequences

Definition 19.2 (Trace language)

For every P ∈ Prc , let

Tr(P) := {w ∈ Act∗ | ex. P ′ ∈ Prc such that P
w−→ P ′}

be the trace language of P
(where

w−→ :=
a1−→ ◦ . . . ◦ a1−→ for w = a1 . . . an).

P,Q ∈ Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 19.3 (One-place buffer)

B(in, out) = in.out.B(in, out)

⇒ Tr(B(in, out)) = (in · out)∗ · (in + ε)
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Trace Equivalence II

Remarks:

The trace language of P ∈ Prc is accepted by the LTS of P,
interpreted as a (finite or infinite) automaton with initial state P and
where every state is final.

Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

Trace equivalence identifies processes with identical LTSs: the trace
language of a process consists of the (finite) paths in the LTS. Thus:

LTS(P) = LTS(Q)⇒ Tr(P) = Tr(Q)
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Trace Equivalence III

Are we satisfied with trace equivalence? No!

Example 19.4

P : •
a↙↘ a• •
b ↓•

and Q : •↓ a•↓ b•
are trace equivalent (since Tr(P) = Tr(Q) = {ε, a, ab})

But P and Q are distinguishable:

both can execute ab
but P can deny b after a
while Q always has to offer b after a

(e.g., consider a model of vending machine
with a = “insert coin”, b = “return coffee”)

⇒ take into account such deadlock properties
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Definition of Strong Bisimulation I

Observation: equivalence should be sensitive to deadlocks
⇒ needs to take branching structure of processes into account

This is guaranteed by a definition according to the following scheme:

Bisimulation scheme

P,Q ∈ Prc are equivalent iff, for every α ∈ Act, every α-successor of P is
equivalent to some α-successor of Q, and vice versa.

Strong version ignores special function of silent action τ
(alternative: weak bisimulation; considered later)

Unidirectional version: simulation
(not considered here)
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Definition of Strong Bisimulation II

Definition 19.5 (Strong bisimulation)

A relation ρ ⊆ Prc ×Prc is called a strong bisimulation if PρQ implies, for
every α ∈ Act,

1 P
α−→ P ′ ⇒ ex. Q ′ ∈ Prc such that Q

α−→ Q ′ and P ′ρQ ′

2 Q
α−→ Q ′ ⇒ ex. P ′ ∈ Prc such that P

α−→ P ′ and P ′ρQ ′

P,Q ∈ Prc are called strongly bisimilar (notation: P ∼ Q) if there exists a
strong bisimulation ρ such that PρQ.

Theorem 19.6

∼ is an equivalence relation.

Proof.

omitted

Semantics and Verification of Software Summer Semester 2013 19.15



Definition of Strong Bisimulation II

Definition 19.5 (Strong bisimulation)

A relation ρ ⊆ Prc ×Prc is called a strong bisimulation if PρQ implies, for
every α ∈ Act,

1 P
α−→ P ′ ⇒ ex. Q ′ ∈ Prc such that Q

α−→ Q ′ and P ′ρQ ′

2 Q
α−→ Q ′ ⇒ ex. P ′ ∈ Prc such that P

α−→ P ′ and P ′ρQ ′

P,Q ∈ Prc are called strongly bisimilar (notation: P ∼ Q) if there exists a
strong bisimulation ρ such that PρQ.

Theorem 19.6

∼ is an equivalence relation.

Proof.

omitted

Semantics and Verification of Software Summer Semester 2013 19.15



Examples

Example 19.7

(on the board)

1 Bisimilar but not LTS equivalent (cf. Example 19.1):

P
	
a

∼ Q1

a ↓↑ a
Q2

2 Trace equivalent (cf. Example 19.4) but not bisimilar:

P
↓ a
P1

↓ b
P2

6∼ Q
a↙↘ a
Q1 Q3

b ↓
Q2
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Bisimulation vs. LTS/Trace Equivalence

Theorem 19.8

For every P,Q ∈ Prc,

LTS(P) = LTS(Q) ⇒
6⇐ P ∼ Q ⇒

6⇐ Tr(P) = Tr(Q)

Proof.

LTS(P) = LTS(Q)⇒ P ∼ Q: clear as Definition 19.5 (of ∼) is
directly based on LTS(p) and LTS(Q)

P ∼ Q 6⇒ LTS(p) = LTS(Q): see Example 19.7(1)

P ∼ Q ⇒ Tr(P) = Tr(Q): by contradiction
(show: ∃w ∈ Tr(P) \ Tr(Q)⇒ P 6∼ Q by induction on |w |)
Tr(P) = Tr(Q) 6⇒ P ∼ Q: see Example 19.7(2)
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More Examples I

Example 19.9

Binary semaphore
(controls exclusive access to two instances of a resource)
Sequential definition:

Sem0(get, put) = get.Sem1(get, put)
Sem1(get, put) = get.Sem2(get, put) + put.Sem0(get, put)
Sem2(get, put) = put.Sem1(get, put)

Parallel definition:

S(get, put) = S0(get, put) ‖ S0(get, put)
S0(get, put) = get.S1(get, put)
S1(get, put) = put.S0(get, put)

Proposition: Sem0(get, put) ∼ S(get, put)
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More Examples II

Example 19.10

Two-place buffer
Sequential definition:

B0(in, out) = in.B1(in, out)

B1(in, out) = out.B0(in, out) + in.B2(in, out)

B2(in, out) = out.B1(in, out)

Parallel definition:

B‖(in, out) = new com (B(in, com) ‖ B(com, out))

B(in, out) = in.out.B(in, out)

Proposition: B0(in, out) 6∼ B‖(in, out)
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