Semantics and Verification of Software

Lecture 1: Introduction

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

@ Preliminaries

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

@ Lectures: Thomas Noll

o Lehrstuhl fiir Informatik 2, Room 4211
o E-mail noll@cs.rwth-aachen.de

@ Exercise classes:

o Kevin van der Pol (kvdpol@cs.rwth-aachen.de)
o Stephen Wu (Hao.Wu@cs.rwth-aachen.de)

@ Student assistants:
o David Orlea

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

noll@cs.rwth-aachen.de
kvdpol@cs.rwth-aachen.de
Hao.Wu@cs.rwth-aachen.de

Target Audience

Master[/Diplom] program Informatik

o Theoretische Informatik
o [Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung (Diplom)]

@ Master program Software Systems Engineering
e Theoretical CS

In general:

e interest in formal models for programming languages
e application of mathematical reasoning methods

Expected: basic knowledge in
e essential concepts of imperative programming languages
e formal languages and automata theory
e mathematical logic

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

@ Schedule:

o Lecture Wed 10:00-11:30 AH 6 (starting Apr 10)
o Lecture Thu 15:00-16:30 AH 5 (starting Apr 11)
o Exercise class Mon 10:00-11:30 AH 2 (starting Apr 29)

Irregular lecture dates — checkout web page!

1st assignment sheet: next Monday (Apr 15) on web page

e submission by Apr 22
e presentation on Apr 29

Work on assignments in groups of three
Examination (6 ECTS credits):

e oral or written (depending on number of participants)
e date to be fixed

Admission requires at least 50% of the points in the exercises

@ Solutions to exercises and exam in English or German

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 15

© Introduction

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Aspects of Programming Languages

Syntax: “How does a program look like?”
@ hierarchical composition of programs from structural
components
= Compiler Construction
Semantics: “What does this program mean?”
@ output/behavior/... in dependence of
input/environment/...
= This course
Pragmatics: @ length and understandability of programs
@ learnability of programming language
@ appropriateness for specific applications, ...
= Software Engineering
Historic development:
e Formal syntax since 1960s (LL/LR parsing);
semantics defined by compiler/interpreter
@ Formal semantics since 1970s

(operational /denotational /axiomatic)
RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 1.7

Why Semantics?

Idea: compiler = ultimate semantics!

@ Compiler gives each individual program a semantics
(= "behaviour” of generated machine code)

But:

e Compilers are highly complicated software systems (optimisations,
interaction with runtime system, ...)

@ Most languages have more than one compiler (with different outputs)
@ Most compilers have bugs

=- Does not help with formal reasoning about programming language or
individual programs

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 1.8

The Semantics of “Semantics”

Originally: study of meaning of symbols (linguistics)
Semantics of a program: meaning of a concrete program (/O mapping,
communication behavior, ...)
Semantics of a programming language: mapping of each (syntactically
correct) program of a concrete programming language to its
meaning

Semantics of software: various techniques for defining the semantics of
diverse programming languages

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 1.9

Motivation for Rigorous Formal Treatment |

Example 1.1

@ How often will the following loop be traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

@ What if p = nil in the following program?
while p <> nil and p~.key < val do ...

Pascal: strict boolean operations 4
Modula: non-strict boolean operations v

nwr"_“ﬁ;;] ji Semantics and Verification of Software Summer Semester 2013 1.10

Motivation for Rigorous Formal Treatment Il

@ Support for development of
e new programming languages: missing details, ambiguities and
inconsistencies can be recognized
e compilers: automatic compiler generation from appropriately defined
semantics
e programs: exact understanding of semantics avoids uncertainties in the
implementation of algorithms

@ Support for correctness proofs of

e programs: comparison of program semantics with desired behavior
(e.g., termination properties, absence of deadlocks, ...)

. . compiler .
e compilers: programming language — machine code
semantics | 1 (simple) semantics
. ? .
meaning = meaning
.. . optimization
e optimizing transformations: code — code
semantics | J semantics
. ? .
meaning = meaning

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 111

(Complementary) Kinds of Formal Semantics

Operational semantics: describes computation of the program on some
(very) abstract machine (G. Plotkin)
(c1,0) = o' (e,0')y = 0"

@ example: (seq)
(c1;¢0,0) — o
@ application: implementation of programming languages
(compilers, interpreters, ...)
Denotational semantics: mathematical definition of input/output relation
of the program by induction on its syntactic structure
(D. Scott, C. Strachey)
e example: C€[.]: Cmd — (X --» X)
Q:[[Cl H Czﬂ = Q:[[CQ]] o Q:[[Cl]]
@ application: program analysis
Axiomatic semantics: formalization of special properties of programs by
logical formulae (assertions/proof rules; R. Floyd, T. Hoare)
{A}a{C} {C}{B}

{At a2 {B}
@ application: program verification

@ example: (seq)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 1.12

Overview of the Course

© The imperative model language WHILE

@ Operational semantics of WHILE

© Denotational semantics of WHILE

@ Equivalence of operational and denotational semantics
© Axiomatic semantics of WHILE

@ Extensions: procedures and dynamic data structures

@ Applications: compiler correctness etc.

nerAACHEN Semantics and Verification of Software Summer Semester 2013 1.13

(also see the collection [“Handapparat”] at the CS Library)

@ Formal semantics:

o G. Winskel: The Formal Semantics of Programming Languages, The
MIT Press, 1996

@ Compiler correctness

e H.R. Nielson, F. Nielson: Semantics with Applications: A Formal
Introduction, Wiley, 1992

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 1.14

© The Imperative Model Language WHILE

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 1.15

Syntactic Categories

WHILE: simple imperative programming language without procedures or
advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers z={0,1,-1,...} =z
Truth values B = {true, false} t
Variables Var = {x,y,...} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) ¢

nerAACHEN Semantics and Verification of Software Summer Semester 2013 1.16

Syntax of WHILE Programs

Definition 1.2 (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free
grammar:

an=z|x|a+ay | ai-ay | axax € AExp
[2= t|al=32 | al>32]ﬁb|b1/\b2 ‘ b1 V by € BExp
c:=skip|x :=a|c;c | if b then ¢ else ¢ | while b do ¢ € Cmd

v

Remarks: we assume that

@ the syntax of numbers, truth values and variables is predefined
(i.e., no “lexical analysis™)

@ the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

Semantics and Verification of Software Summer Semester 2013 1.17

A WHILE Program and its Flow Diagram

X := 6;
y = 7T;
z := 0;
while x > 0 do
X :=x - 1;
v o=y,
while v > 0 d
v :=v - 1;
z =z + 1

Effect: z := x * y = 42

nerAACHEN Semantics and Verification of Software Summer Semester 2013 1.18

	Preliminaries
	Introduction
	The Imperative Model Language WHILE

