

Semantics and Verification of Software

Lecture 20: Nondeterminism and Parallelism V (Wrap-Up)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw13/>

Summer Semester 2013

Online Registration for Seminars and Practical Courses (Praktika) in Winter Term 2013/14

Who?

Students of: • Master Courses
• Bachelor Informatik (~~Pro~~Seminar!)

Where?

www.graphics.rwth-aachen.de/apse

When?

05.07.2013 - 17.07.2013

- 1 Recapitulation: Calculus of Communicating Systems
- 2 Decidability of Strong Bisimulation
- 3 Definition of Weak Bisimulation
- 4 Summary: Nondeterminism and Concurrency
- 5 Further Topics in Formal Semantics
- 6 Miscellaneous

Definition (Semantics of CCS)

A process definition $(A_i(a_{i1}, \dots, a_{in_i}) = P_i \mid 1 \leq i \leq k)$ determines the **labeled transition system (LTS)** (Prc, Act, \rightarrow) whose transitions can be inferred from the following rules ($P, P', Q, Q' \in Prc$, $\alpha \in Act$, $\lambda \in N \cup \bar{N}$, $a, b \in N$, $A \in Pid$):

$$(Act) \frac{}{\alpha.P \xrightarrow{\alpha} P}$$

$$(Sum_1) \frac{P \xrightarrow{\alpha} P'}{P + Q \xrightarrow{\alpha} P'}$$

$$(Par_1) \frac{P \xrightarrow{\alpha} P'}{P \parallel Q \xrightarrow{\alpha} P' \parallel Q}$$

$$(New) \frac{P \xrightarrow{\alpha} P' \ (\alpha \notin \{a, \bar{a}\})}{\text{new } a P \xrightarrow{\alpha} \text{new } a P'}$$

$$(Com) \frac{P \xrightarrow{\lambda} P' \ Q \xrightarrow{\bar{\lambda}} Q'}{P \parallel Q \xrightarrow{\tau} P' \parallel Q'}$$

$$(Sum_2) \frac{Q \xrightarrow{\alpha} Q'}{P + Q \xrightarrow{\alpha} Q'}$$

$$(Par_2) \frac{Q \xrightarrow{\alpha} Q'}{P \parallel Q \xrightarrow{\alpha} P \parallel Q'}$$

$$(Call) \frac{P[\vec{a} \mapsto \vec{b}] \xrightarrow{\alpha} P'}{A(\vec{b}) \xrightarrow{\alpha} P'} \text{ if } A(\vec{a}) = P$$

(Here $P[\vec{a} \mapsto \vec{b}]$ denotes the replacement of every a_i by b_i in P .)

Definition of Strong Bisimulation

Definition (Strong bisimulation)

A relation $\rho \subseteq Prc \times Prc$ is called a **strong bisimulation** if $P\rho Q$ implies, for every $\alpha \in Act$,

- ① $P \xrightarrow{\alpha} P' \Rightarrow \text{ex. } Q' \in Prc \text{ such that } Q \xrightarrow{\alpha} Q' \text{ and } P' \rho Q'$
- ② $Q \xrightarrow{\alpha} Q' \Rightarrow \text{ex. } P' \in Prc \text{ such that } P \xrightarrow{\alpha} P' \text{ and } P' \rho Q'$

$P, Q \in Prc$ are called **strongly bisimilar** (notation: $P \sim Q$) if there exists a strong bisimulation ρ such that $P\rho Q$.

Theorem

\sim is an equivalence relation.

Proof.

omitted

- 1 Recapitulation: Calculus of Communicating Systems
- 2 Decidability of Strong Bisimulation
- 3 Definition of Weak Bisimulation
- 4 Summary: Nondeterminism and Concurrency
- 5 Further Topics in Formal Semantics
- 6 Miscellaneous

We now show that the word problem for strong bisimulation

Problem (Word problem for strong bisimulation)

Given: $P, Q \in Prc$

Question: $P \sim Q$?

is decidable for finite-state processes (i.e., for those with $|Prc(P)|, |Prc(Q)| < \infty$ where $Prc(P) := \{P' \in Prc \mid P \longrightarrow P'\}$)
(in general it is undecidable).

We now show that the word problem for strong bisimulation

Problem (Word problem for strong bisimulation)

Given: $P, Q \in Prc$

Question: $P \sim Q$?

is decidable for finite-state processes (i.e., for those with $|Prc(P)|, |Prc(Q)| < \infty$ where $Prc(P) := \{P' \in Prc \mid P \longrightarrow P'\}$)
(in general it is undecidable).

To this aim we give an algorithm which iteratively partitions the state set of an LTS such that the single blocks correspond to the \sim -equivalence classes.

The Partitioning Algorithm I

Theorem 20.1 (Partitioning algorithm for \sim)

Input: $LTS (S, Act, \rightarrow)$ (S finite)

The Partitioning Algorithm I

Theorem 20.1 (Partitioning algorithm for \sim)

Input: $LTS (S, Act, \rightarrow)$ (S finite)

Procedure: ① Start with initial partition $\Pi := \{S\}$

The Partitioning Algorithm I

Theorem 20.1 (Partitioning algorithm for \sim)

Input: $LTS (S, Act, \rightarrow)$ (S finite)

Procedure:

- 1 Start with initial partition $\Pi := \{S\}$
- 2 Let $B \in \Pi$ be a block and $\alpha \in Act$ an action

The Partitioning Algorithm I

Theorem 20.1 (Partitioning algorithm for \sim)

Input: $LTS (S, Act, \rightarrow)$ (S finite)

Procedure:

- ① Start with initial partition $\Pi := \{S\}$
- ② Let $B \in \Pi$ be a block and $\alpha \in Act$ an action
- ③ For every $P \in B$, let
$$\alpha(P) := \{C \in \Pi \mid \text{ex. } P' \in C \text{ with } P \xrightarrow{\alpha} P'\}$$
be the set of P 's α -successor blocks

The Partitioning Algorithm I

Theorem 20.1 (Partitioning algorithm for \sim)

Input: $LTS (S, Act, \rightarrow)$ (S finite)

Procedure:

- ① Start with initial partition $\Pi := \{S\}$
- ② Let $B \in \Pi$ be a block and $\alpha \in Act$ an action
- ③ For every $P \in B$, let
$$\alpha(P) := \{C \in \Pi \mid \text{ex. } P' \in C \text{ with } P \xrightarrow{\alpha} P'\}$$
be the set of P 's α -successor blocks
- ④ Partition $B = \bigcup_{i=1}^k B_i$ such that
$$P, Q \in B_i \iff \alpha(P) = \alpha(Q) \text{ for every } \alpha \in Act$$

The Partitioning Algorithm I

Theorem 20.1 (Partitioning algorithm for \sim)

Input: $LTS (S, Act, \rightarrow)$ (S finite)

Procedure: ① Start with initial partition $\Pi := \{S\}$

② Let $B \in \Pi$ be a block and $\alpha \in Act$ an action

③ For every $P \in B$, let

$$\alpha(P) := \{C \in \Pi \mid \text{ex. } P' \in C \text{ with } P \xrightarrow{\alpha} P'\}$$

be the set of P 's α -successor blocks

④ Partition $B = \bigcup_{i=1}^k B_i$ such that

$$P, Q \in B_i \iff \alpha(P) = \alpha(Q) \text{ for every } \alpha \in Act$$

⑤ Let $\Pi := (\Pi \setminus \{B\}) \cup \{B_1, \dots, B_k\}$

The Partitioning Algorithm I

Theorem 20.1 (Partitioning algorithm for \sim)

Input: $LTS (S, Act, \rightarrow)$ (S finite)

Procedure: ① Start with initial partition $\Pi := \{S\}$

② Let $B \in \Pi$ be a block and $\alpha \in Act$ an action

③ For every $P \in B$, let

$$\alpha(P) := \{C \in \Pi \mid \text{ex. } P' \in C \text{ with } P \xrightarrow{\alpha} P'\}$$

be the set of P 's α -successor blocks

④ Partition $B = \bigcup_{i=1}^k B_i$ such that

$$P, Q \in B_i \iff \alpha(P) = \alpha(Q) \text{ for every } \alpha \in Act$$

⑤ Let $\Pi := (\Pi \setminus \{B\}) \cup \{B_1, \dots, B_k\}$

⑥ Continue with (2) until Π becomes stable

The Partitioning Algorithm I

Theorem 20.1 (Partitioning algorithm for \sim)

Input: $LTS (S, Act, \rightarrow)$ (S finite)

Procedure: ① Start with initial partition $\Pi := \{S\}$

② Let $B \in \Pi$ be a block and $\alpha \in Act$ an action

③ For every $P \in B$, let

$$\alpha(P) := \{C \in \Pi \mid \text{ex. } P' \in C \text{ with } P \xrightarrow{\alpha} P'\}$$

be the set of P 's α -successor blocks

④ Partition $B = \bigcup_{i=1}^k B_i$ such that

$$P, Q \in B_i \iff \alpha(P) = \alpha(Q) \text{ for every } \alpha \in Act$$

⑤ Let $\Pi := (\Pi \setminus \{B\}) \cup \{B_1, \dots, B_k\}$

⑥ Continue with (2) until Π becomes stable

Output: Partition $\hat{\Pi}$ of S

The Partitioning Algorithm I

Theorem 20.1 (Partitioning algorithm for \sim)

Input: $LTS (S, Act, \rightarrow)$ (S finite)

Procedure:

- ① Start with initial partition $\Pi := \{S\}$
- ② Let $B \in \Pi$ be a block and $\alpha \in Act$ an action
- ③ For every $P \in B$, let
$$\alpha(P) := \{C \in \Pi \mid \text{ex. } P' \in C \text{ with } P \xrightarrow{\alpha} P'\}$$
be the set of P 's α -successor blocks
- ④ Partition $B = \bigcup_{i=1}^k B_i$ such that
$$P, Q \in B_i \iff \alpha(P) = \alpha(Q) \text{ for every } \alpha \in Act$$
- ⑤ Let $\Pi := (\Pi \setminus \{B\}) \cup \{B_1, \dots, B_k\}$
- ⑥ Continue with (2) until Π becomes stable

Output: Partition $\hat{\Pi}$ of S

Then, for every $P, Q \in S$,

$$P \sim Q \iff \text{ex. } B \in \hat{\Pi} \text{ with } P, Q \in B$$

Remark: if states from two disjoint LTSs $(S_1, Act_1, \rightarrow_1)$ and $(S_2, Act_2, \rightarrow_2)$ (where $S_1 \cap S_2 = \emptyset$) are to be compared, their union $(S_1 \cup S_2, Act_1 \cup Act_2, \rightarrow_1 \cup \rightarrow_2)$ is chosen as input (here usually $Act_1 = Act_2$)

Remark: if states from two disjoint LTSs $(S_1, Act_1, \rightarrow_1)$ and $(S_2, Act_2, \rightarrow_2)$ (where $S_1 \cap S_2 = \emptyset$) are to be compared, their union $(S_1 \cup S_2, Act_1 \cup Act_2, \rightarrow_1 \cup \rightarrow_2)$ is chosen as input (here usually $Act_1 = Act_2$)

Example 20.2

Binary semaphore (on the board)

- 1 Recapitulation: Calculus of Communicating Systems
- 2 Decidability of Strong Bisimulation
- 3 Definition of Weak Bisimulation
- 4 Summary: Nondeterminism and Concurrency
- 5 Further Topics in Formal Semantics
- 6 Miscellaneous

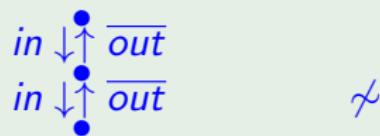
Inadequacy of Strong Bisimulation

Observation: requirement of **exact matching** sometimes too strong

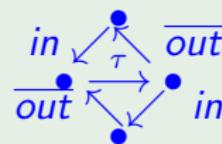
Example 20.3

Sequential and parallel two-place buffer:

$$\begin{array}{ll} B_0(in, out) = in.B_1(in, out) & B_{\parallel}(in, out) = \text{new com } (B(in, com) \parallel \\ B_1(in, out) = \overline{out}.B_0(in, out) + & \quad \quad \quad B(com, out)) \\ \quad \quad \quad in.B_2(in, out) & B(in, out) = in.\overline{out}.B(in, out) \\ B_2(in, out) = \overline{out}.B_1(in, out) & \end{array}$$



↗



Idea: abstract from silent actions

Definition 20.4

- Given $w \in Act^*$, $\hat{w} \in (N \cup \bar{N})^*$ denotes the sequence of non- τ -actions in w (in particular, $\widehat{\tau^n} = \varepsilon$ for every $n \in \mathbb{N}$).

Definition of Weak Bisimulation I

Idea: abstract from silent actions

Definition 20.4

- Given $w \in Act^*$, $\hat{w} \in (N \cup \bar{N})^*$ denotes the sequence of non- τ -actions in w (in particular, $\widehat{\tau^n} = \varepsilon$ for every $n \in \mathbb{N}$).
- For $w = \alpha_1 \dots \alpha_n \in Act^*$ and $P, Q \in Prc$, we let

$$P \xrightarrow{w} Q \iff P \xrightarrow{(\tau \rightarrow)^*} \xrightarrow{\alpha_1} \xrightarrow{(\tau \rightarrow)^*} \dots \xrightarrow{\alpha_n} \xrightarrow{(\tau \rightarrow)^*} Q$$

(and hence: $\xrightarrow{\varepsilon} = (\tau \rightarrow)^*$).

Definition of Weak Bisimulation I

Idea: abstract from silent actions

Definition 20.4

- Given $w \in Act^*$, $\widehat{w} \in (N \cup \bar{N})^*$ denotes the sequence of non- τ -actions in w (in particular, $\widehat{\tau^n} = \varepsilon$ for every $n \in \mathbb{N}$).
- For $w = \alpha_1 \dots \alpha_n \in Act^*$ and $P, Q \in Prc$, we let

$$P \xrightarrow{w} Q \iff P \xrightarrow{\tau}^* \xrightarrow{\alpha_1} \xrightarrow{\tau}^* \dots \xrightarrow{\alpha_n} \xrightarrow{\tau}^* Q$$

(and hence: $\xrightarrow{\varepsilon} = \xrightarrow{\tau}^*$).

- A relation $\rho \subseteq Prc \times Prc$ is called a **weak bisimulation** if $P\rho Q$ implies, for every $\alpha \in Act$,
 - $P \xrightarrow{\alpha} P' \Rightarrow \exists Q' \in Prc \text{ such that } Q \xrightarrow{\widehat{\alpha}} Q' \text{ and } P' \rho Q'$
 - $Q \xrightarrow{\alpha} Q' \Rightarrow \exists P' \in Prc \text{ such that } P \xrightarrow{\widehat{\alpha}} P' \text{ and } P' \rho Q'$

Definition of Weak Bisimulation I

Idea: abstract from silent actions

Definition 20.4

- Given $w \in Act^*$, $\widehat{w} \in (N \cup \bar{N})^*$ denotes the sequence of non- τ -actions in w (in particular, $\widehat{\tau^n} = \varepsilon$ for every $n \in \mathbb{N}$).
- For $w = \alpha_1 \dots \alpha_n \in Act^*$ and $P, Q \in Prc$, we let

$$P \xrightarrow{w} Q \iff P (\xrightarrow{\tau})^* \xrightarrow{\alpha_1} (\xrightarrow{\tau})^* \dots (\xrightarrow{\tau})^* \xrightarrow{\alpha_n} (\xrightarrow{\tau})^* Q$$

(and hence: $\xrightarrow{\varepsilon} = (\xrightarrow{\tau})^*$).

- A relation $\rho \subseteq Prc \times Prc$ is called a **weak bisimulation** if $P\rho Q$ implies, for every $\alpha \in Act$,
 - $P \xrightarrow{\alpha} P' \Rightarrow \exists Q' \in Prc \text{ such that } Q \xrightarrow{\widehat{\alpha}} Q' \text{ and } P' \rho Q'$
 - $Q \xrightarrow{\alpha} Q' \Rightarrow \exists P' \in Prc \text{ such that } P \xrightarrow{\widehat{\alpha}} P' \text{ and } P' \rho Q'$
- $P, Q \in Prc$ are called **weakly bisimilar** (notation: $P \approx Q$) if there exists a weak bisimulation ρ such that $P\rho Q$.

Remark: each of the two clauses in the definition of weak bisimulation subsumes **two cases**:

- $P \xrightarrow{\alpha} P'$ where $\alpha \neq \tau$
⇒ ex. $Q' \in Prc$ such that $Q (\xrightarrow{\tau})^* \xrightarrow{\alpha} (\xrightarrow{\tau})^* Q'$ and $P' \rho Q'$
- $P \xrightarrow{\tau} P'$
⇒ ex. $Q' \in Prc$ such that $Q (\xrightarrow{\tau})^* Q'$ and $P' \rho Q'$
(where $Q' = Q$ is admissible)

Remark: each of the two clauses in the definition of weak bisimulation subsumes **two cases**:

- $P \xrightarrow{\alpha} P'$ where $\alpha \neq \tau$
⇒ ex. $Q' \in Prc$ such that $Q (\xrightarrow{\tau})^* \xrightarrow{\alpha} (\xrightarrow{\tau})^* Q'$ and $P' \rho Q'$
- $P \xrightarrow{\tau} P'$
⇒ ex. $Q' \in Prc$ such that $Q (\xrightarrow{\tau})^* Q'$ and $P' \rho Q'$
(where $Q' = Q$ is admissible)

Example 20.5

Sequential and parallel two-place buffer (on the board)

- 1 Recapitulation: Calculus of Communicating Systems
- 2 Decidability of Strong Bisimulation
- 3 Definition of Weak Bisimulation
- 4 Summary: Nondeterminism and Concurrency
- 5 Further Topics in Formal Semantics
- 6 Miscellaneous

- Requires precise formal description of **parallelism** and **interaction**
- Classical “**Input → Output**” view not sufficient
(non-terminating/reactive behaviour)

- Requires precise formal description of **parallelism** and **interaction**
- Classical “**Input → Output**” view not sufficient
(non-terminating/reactive behaviour)
- Parallelism = **nondeterminism + sequential execution** (interleaving)
 - alternative approach: “**true**” **concurrency**
(Petri nets, event structures, ...)

- Requires precise formal description of **parallelism** and **interaction**
- Classical “**Input → Output**” view not sufficient
(non-terminating/reactive behaviour)
- Parallelism = **nondeterminism + sequential execution** (interleaving)
 - alternative approach: “**true**” **concurrency**
(Petri nets, event structures, ...)
- Interaction:
 - **shared variables** (ParWHILE)
 - **value-passing channels** (CSP)
 - **synchronous handshaking** (CCS)

- Requires precise formal description of **parallelism** and **interaction**
- Classical “**Input → Output**” view not sufficient
(non-terminating/reactive behaviour)
- Parallelism = **nondeterminism + sequential execution** (interleaving)
 - alternative approach: “**true**” **concurrency**
(Petri nets, event structures, ...)
- Interaction:
 - **shared variables** (ParWHILE)
 - **value-passing channels** (CSP)
 - **synchronous handshaking** (CCS)
- Requires new notions of program/process equivalence (**bisimulation**)

- 1 Recapitulation: Calculus of Communicating Systems
- 2 Decidability of Strong Bisimulation
- 3 Definition of Weak Bisimulation
- 4 Summary: Nondeterminism and Concurrency
- 5 Further Topics in Formal Semantics
- 6 Miscellaneous

- Program = list of **function definitions**

- Program = list of **function definitions**
- Simplest setting: **first-order** function definitions of the form
$$f(x_1, \dots, x_n) = t$$
 - function name f
 - formal parameters x_1, \dots, x_n
 - term t over (base and defined) function calls and x_1, \dots, x_n

- Program = list of **function definitions**
- Simplest setting: **first-order** function definitions of the form
$$f(x_1, \dots, x_n) = t$$
 - function name f
 - formal parameters x_1, \dots, x_n
 - term t over (base and defined) function calls and x_1, \dots, x_n
- **Operational semantics** (only function calls)
 - **call-by-value** case:

$$\frac{t_1 \rightarrow z_1 \quad \dots \quad t_n \rightarrow z_n \quad t[x_1 \mapsto z_1, \dots, x_n \mapsto z_n] \rightarrow z}{f(t_1, \dots, t_n) \rightarrow z}$$

- **call-by-name** case:

$$\frac{t[x_1 \mapsto t_1, \dots, x_n \mapsto t_n] \rightarrow z}{f(t_1, \dots, t_n) \rightarrow z}$$

- Denotational semantics

- program = **equation system** (for functions)
- induces call-by-value and call-by-name **functional**
- **monotonic and continuous** w.r.t. graph inclusion
- semantics := **least fixpoint** (Tarski/Knaster Theorem)
- **coincides** with operational semantics

- Denotational semantics
 - program = **equation system** (for functions)
 - induces call-by-value and call-by-name **functional**
 - **monotonic and continuous** w.r.t. graph inclusion
 - semantics := **least fixpoint** (Tarski/Knaster Theorem)
 - **coincides** with operational semantics
- **Extensions:** higher-order types, data types, ...

- Denotational semantics
 - program = **equation system** (for functions)
 - induces call-by-value and call-by-name **functional**
 - **monotonic and continuous** w.r.t. graph inclusion
 - semantics := **least fixpoint** (Tarski/Knaster Theorem)
 - **coincides** with operational semantics
- **Extensions:** higher-order types, data types, ...
- see [Winskel 1996, Sct. 9] and **Functional Programming** course [Giesl]

- 1 Recapitulation: Calculus of Communicating Systems
- 2 Decidability of Strong Bisimulation
- 3 Definition of Weak Bisimulation
- 4 Summary: Nondeterminism and Concurrency
- 5 Further Topics in Formal Semantics
- 6 Miscellaneous

- Remaining lectures:
 - Wed 17 July: recap?
 - Thu 18 July: exercise class

- Remaining lectures:
 - Wed 17 July: recap?
 - Thu 18 July: exercise class
- Oral exams:
 - Mon 22 July – Fri 26 July
 - Thu 15 August – Wed 21 August
 - Wed 4 September – Fri 11 October

Just drop me a mail!

- Remaining lectures:

- Wed 17 July: recap?
- Thu 18 July: exercise class

- Oral exams:

- Mon 22 July – Fri 26 July
- Thu 15 August – Wed 21 August
- Wed 4 September – Fri 11 October

Just drop me a mail!

- Teaching in Winter 2013/14:

- Course **Introduction to Model Checking** [Katoen]
- Course **Concurrency Theory** [Katoen/Noll]
- Seminar **Trends in Computer-Aided Verification** [Katoen/Noll/NN]