Semantics and Verification of Software

Lecture 20: Nondeterminism and Parallelism V
(Wrap-Up)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-1i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

GFRAUC"FQ INFORMATIK IRWTHAACHEN

UNIVERSITY

Online Registration for
Seminars and Practical Courses (Praktika)
in Winter Term 2013/14

Who?
Students of: = Master Courses
= Bachelor Informatik (PraSeminar!)

Where?
www.graphics.rwth-aachen.de/apse

When?
05.07.2013 - 17.07.2013

© Recapitulation: Calculus of Communicating Systems

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 20.3

Semantics of CCS |

Definition (Semantics of CCS)

A process definition (Aj(ai1,...,ain;) = Pi | 1 < i < k) determines the
labeled transition system (LTS) (Prc, Act, —) whose transitions can be
inferred from the following rules (P, P/, Q, Q" € Prc, a € Act, A€ NUN,
a,be N, Ac Pid): A\ Y
PP Q—=Q
(Act)————— (Com) p-
a.P— P P|IQ—P | Q
« / @ /
(Suml)% (SUﬂqgw
P+Q—F P+Q—Q
a / @ /
(Pary P 7 P (Par2) Q T &
PIlQR—PF|Q PIQR—P|Q
P P 3 P[3 — b] %+ P’
(New) Eya #{2.3}) (Call) 3 -]a if AG)=P
newaP — newaP’ A(b) — P’
(Here P[3 — b] denotes the replacement of every a; by b; in P.)

V
RWNTH Semantics and Verification of Software Summer Semester 2013 20.4

Definition of Strong Bisimulation

Definition (Strong bisimulation)

A relation p C Prc x Prc is called a strong bisimulation if PpQ implies, for
every a € Act,

Q@ P P = ex. Q € Prcsuch that @Q = Q" and P'pQ’
Q@ Q= Q = ex. P' € Prc such that P - P' and P/pQ’

P, Q € Prc are called strongly bisimilar (notation: P ~ Q) if there exists a
strong bisimulation p such that PpQ.

v
~ [s an equivalence relation.

Ol

omitted

RWNTH Semantics and Verification of Software Summer Semester 2013 20.5

© Decidability of Strong Bisimulation

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 20.6

The Problem

We now show that the word problem for strong bisimulation

Problem (Word problem for strong bisimulation)
Given: P, Q € Prc

Question: P ~ Q7

is decidable for finite-state processes (i.e., for those with
|Prc(P)|, |Pre(Q)| < oo where Prc(P) :={P" € Prc | P — P'})

(in general it is undecidable).

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

The Problem

We now show that the word problem for strong bisimulation

Problem (Word problem for strong bisimulation)
Given: P, Q € Prc
Question: P ~ Q7?

is decidable for finite-state processes (i.e., for those with
|Prc(P)|, |Pre(Q)| < oo where Prc(P) :={P" € Prc | P — P'})

(in general it is undecidable).
To this aim we give an algorithm which iteratively partitions the state set

of an LTS such that the single blocks correspond to the ~-equivalence
classes.

nerAACHEN Semantics and Verification of Software Summer Semester 2013 20.7

The Partitioning Algorithm |

Theorem 20.1 (Partitioning algorithm for ~)

Input: LTS (S, Act,—) (S finite)

RWNTH Semantics and Verification of Software Summer Semester 2013 20.8

The Partitioning Algorithm |

Theorem 20.1 (Partitioning algorithm for ~)

Input: LTS (S, Act,—) (S finite)
Procedure: @ Start with initial partition T := {S}

RWNTH Semantics and Verification of Software Summer Semester 2013 20.8

The Partitioning Algorithm |

Theorem 20.1 (Partitioning algorithm for ~)

Input: LTS (S, Act,—) (S finite)
Procedure: @ Start with initial partition T := {S}
@ Let B €1 be a block and o € Act an action

RWNTH Semantics and Verification of Software Summer Semester 2013 20.8

The Partitioning Algorithm |

Theorem 20.1 (Partitioning algorithm for ~)

Input: LTS (S, Act,—) (S finite)
Procedure: @ Start with initial partition T := {S}

@ Let B €11 be a block and o« € Act an action
© Forevery P € B, let

a(P):={CeMN|ex P € C with P - P'}
be the set of P's «-successor blocks

RWNTH Semantics and Verification of Software Summer Semester 2013 20.8

The Partitioning Algorithm |

Theorem 20.1 (Partitioning algorithm for ~)

Input: LTS (S, Act,—) (S finite)

Procedure:

Q Start with initial partition I := {S}

@ Let B €11 be a block and o« € Act an action

© Forevery P € B, let

a(P):={CeMN|ex P € C with P - P'}

be the set of P's «-successor blocks
Q Partition B = |J¥_, B; such that

P,Q € B < «a(P) = «a(Q) for every a € Act

Semantics and Verification of Software

Summer Semester 2013

20.8

The Partitioning Algorithm |

Theorem 20.1 (Partitioning algorithm for ~)

Input: LTS (S, Act,—) (S finite)
Procedure: @ Start with initial partition T := {S}

@ Let B €11 be a block and o« € Act an action
© Forevery P € B, let

a(P):={CcN|ex P ¢ Cwith P -* P’}
be the set of P's «-successor blocks
Q Partition B = |J¥_, B; such that

P,Q € Bi < a(P) = a(Q) for every a € Act
@ LetM:=(N\{B})U{B....,B}

RWNTH Semantics and Verification of Software Summer Semester 2013

20.8

The Partitioning Algorithm |

Theorem 20.1 (Partitioning algorithm for ~)

Input: LTS (S, Act,—) (S finite)

Procedure:

Q Start with initial partition I := {S}

@ Let B €11 be a block and o« € Act an action

© Forevery P € B, let

a(P):={CeMN|ex P € C with P - P'}

be the set of P's «-successor blocks
Q Partition B = |J¥_, B; such that

P,Q € B < «a(P) = «a(Q) for every a € Act

Q@ LetM:=(N\{B}Y)U{By,...,B}

@ Continue with (2) until Tl becomes stable

Semantics and Verification of Software

Summer Semester 2013

20.8

The Partitioning Algorithm |

Theorem 20.1 (Partitioning algorithm for ~)

Input: LTS (S, Act,—) (S finite)
Procedure: @ Start with initial partition T := {S}

@ Let B €11 be a block and o« € Act an action

© Forevery P € B, let

a(P):={CeMN|ex P € C with P - P'}

be the set of P's «-successor blocks
Q Partition B = |J¥_, B; such that

P,Q € B < «a(P) = «a(Q) for every a € Act

Q@ LetM:=(N\{B}Y)U{By,...,B}

@ Continue with (2) until Tl becomes stable

Output: Partition [1 of S

RWNTH Semantics and Verification of Software

Summer Semester 2013

20.8

The Partitioning Algorithm |

Theorem 20.1 (Partitioning algorithm for ~)

Input: LTS (S, Act,—) (S finite)
Procedure: @ Start with initial partition T := {S}

@ Let B €11 be a block and o« € Act an action

© Forevery P € B, let

a(P):={CeMN|ex P € C with P - P'}

be the set of P's «-successor blocks
Q Partition B = |J¥_, B; such that

P,Q € B < «a(P) = «a(Q) for every a € Act

Q@ LetM:=(N\{B}Y)U{By,...,B}

@ Continue with (2) until Tl becomes stable

Output: Partition [1 of S
Then, for every P,Q € S,

P~Q < ex BellwithP,Qec B

RWNTH Semantics and Verification of Software

Summer Semester 2013

20.8

The Partitioning Algorithm I

Remark: if states from two disjoint LTSs (51, Act1, —1) and

(S2, Acty, —2) (where S; N S, = () are to be compared, their union
(51U Sp, Act1 U Actp, —>1 U —3) is chosen as input (here usually
Act1 = ACtz)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 20.9

The Partitioning Algorithm I

Remark: if states from two disjoint LTSs (51, Act1, —1) and

(S2, Acty, —2) (where S; N S, = () are to be compared, their union
(51U Sp, Act1 U Actp, —>1 U —3) is chosen as input (here usually
Act1 = ACtz)

Example 20.2

Binary semaphore (on the board)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 20.9

© Definition of Weak Bisimulation

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 20.10

Inadequacy of Strong Bisimulation

Observation: requirement of exact matching sometimes too strong

Example 20.3
Sequential and parallel two-place buffer:

Bo(in, out) = in.By(in, out) By (in, out) = new com (B(in, com) ||
Bi(in, out) = out.By(in, out)+ B(com, out))
in.Bs(in, out) B(in, out) = in.out.B(in, out)

Bs(in, out) = out.Bj(in, out)

in@w in /X out
inijﬁ e ﬁ’\—.,}./n

nwr"_“:l‘] ji Semantics and Verification of Software Summer Semester 2013 20.11

Definition of Weak Bisimulation |

Idea: abstract from silent actions

Definition 20.4

e Given w € Act*, w € (N U N)* denotes the sequence of
non-7-actions in w (in particular, 7" = ¢ for every n € N).

v

RWNTH Semantics and Verification of Software Summer Semester 2013 20.12

Definition of Weak Bisimulation |

Idea: abstract from silent actions

Definition 20.4

e Given w € Act*, w € (N U N)* denotes the sequence of
non-7-actions in w (in particular, 7" = ¢ for every n € N).

@ Forw=oqay...a, € Act” and P, Q € Prc, we let
P Q — P(5) &S (D). (D) ()@

(and hence: == = (—5)%).

v

RWNTH Semantics and Verification of Software Summer Semester 2013

20.12

Definition of Weak Bisimulation |

Idea: abstract from silent actions

Definition 20.4

e Given w € Act*, w € (N U N)* denotes the sequence of
non-7-actions in w (in particular, 7" = ¢ for every n € N).

@ Forw=oqay...a, € Act” and P, Q € Prc, we let
P Q — P(5) &S (D). (D) ()@

(and hence: == = (—5)%).
@ A relation p C Prc x Prc is called a weak bisimulation if PpQ implies,
for every o € Act,

@ P -5 P'= ex. Q € Prc such that Q == Q' and P'pQ’
Q@ Q= Q = ex. P’ € Prc such that P == P’ and P'pQ’

v

RWNTH Semantics and Verification of Software Summer Semester 2013 20.12

Definition of Weak Bisimulation |

Idea: abstract from silent actions

Definition 20.4

e Given w € Act*, w € (N U N)* denotes the sequence of
non-7-actions in w (in particular, 7" = ¢ for every n € N).

@ Forw=oqay...a, € Act” and P, Q € Prc, we let
P Q — P(5) &S (D). (D) ()@

(and hence: == = (—5)%).
@ A relation p C Prc x Prc is called a weak bisimulation if PpQ implies,
for every o € Act,
Q P -2 P = ex. Q' € Prc such that @ == Q' and P'pQ’
@ Q- @ = ex. P’ € Prc such that P =% P’ and P'p@’
@ P, Q € Prc are called weakly bisimilar (notation: P ~ Q) if there
exists a weak bisimulation p such that PpQ.

v

RWNTH Semantics and Verification of Software Summer Semester 2013 20.12

Definition of Weak Bisimulation Il

Remark: each of the two clauses in the definition of weak bisimulation
subsumes two cases:
o P P where a # 7
= ex. Q' € Prc such that Q@ (—)* - (-=)* @ and P'pQ’
o P P
= ex. Q' € Prc such that Q (—)* Q' and P'pQ’
(where @ = Q is admissible)

20.13

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

Definition of Weak Bisimulation Il

Remark: each of the two clauses in the definition of weak bisimulation
subsumes two cases:

o P P where a # 7

= ex. Q' € Prc such that Q@ (—)* - (-=)* @ and P'pQ’
o P P

= ex. Q' € Prc such that Q (—)* Q' and P'pQ’

(where @ = Q is admissible)

Example 20.5
Sequential and parallel two-place buffer (on the board)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 20.13

@ Summary: Nondeterminism and Concurrency

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 20.14

Summary: Nondeterminism and Concurrency

@ Requires precise formal description of parallelism and interaction

o Classical “Input — Output” view not sufficient
(non-terminating/reactive behaviour)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

Summary: Nondeterminism and Concurrency

@ Requires precise formal description of parallelism and interaction

o Classical “Input — Output” view not sufficient
(non-terminating/reactive behaviour)

e Parallelism = nondeterminism + sequential execution (interleaving)

e alternative approach: “true” concurrency
(Petri nets, event structures, ...)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 20.15

Summary: Nondeterminism and Concurrency

Requires precise formal description of parallelism and interaction

Classical “Input — Output” view not sufficient
(non-terminating/reactive behaviour)

Parallelism = nondeterminism + sequential execution (interleaving)
e alternative approach: “true” concurrency
(Petri nets, event structures, ...)
Interaction:
o shared variables (ParWHILE)
o value-passing channels (CSP)
e synchronous handshaking (CCS)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

20.15

Summary: Nondeterminism and Concurrency

Requires precise formal description of parallelism and interaction

Classical “Input — Output” view not sufficient
(non-terminating/reactive behaviour)

Parallelism = nondeterminism + sequential execution (interleaving)
e alternative approach: “true” concurrency
(Petri nets, event structures, ...)
Interaction:
o shared variables (ParWHILE)
o value-passing channels (CSP)
e synchronous handshaking (CCS)

Requires new notions of program/process equivalence (bisimulation)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 20.15

© Further Topics in Formal Semantics

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 20.16

Semantics of Functional Languages |

@ Program = list of function definitions

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 20.17

Semantics of Functional Languages |

@ Program = list of function definitions

@ Simplest setting: first-order function definitions of the form
(X1, .., xp) =t

e function name f
o formal parameters xi, ..., X,
o term t over (base and defined) function calls and xi, ..., x,

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Semantics of Functional Languages |

@ Program = list of function definitions

@ Simplest setting: first-order function definitions of the form
(X1, .., xp) =t

e function name f
o formal parameters xi, ..., X,
o term t over (base and defined) function calls and xi, ..., x,

@ Operational semantics (only function calls)
o call-by-value case:

tt—=2z1 ... th— 2z, txa—2z1,..., X2y > 2
f(t,...,th) > 2

o call-by-name case:

t[X1'—>t1,...,an—>tn]—>Z

f(t,...,th) > 2

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Semantics of Functional Languages ||

@ Denotational semantics

program = equation system (for functions)

induces call-by-value and call-by-name functional
monotonic and continuous w.r.t. graph inclusion
semantics := least fixpoint (Tarski/Knaster Theorem)
coincides with operational semantics

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

Semantics of Functional Languages ||

@ Denotational semantics

program = equation system (for functions)

induces call-by-value and call-by-name functional
monotonic and continuous w.r.t. graph inclusion
semantics := least fixpoint (Tarski/Knaster Theorem)
coincides with operational semantics

@ Extensions: higher-order types, data types, ...

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Semantics of Functional Languages ||

@ Denotational semantics

program = equation system (for functions)

induces call-by-value and call-by-name functional
monotonic and continuous w.r.t. graph inclusion
semantics := least fixpoint (Tarski/Knaster Theorem)
coincides with operational semantics

@ Extensions: higher-order types, data types, ...
@ see [Winskel 1996, Sct. 9] and Functional Programming course [Giesl]

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 20.18

@ Miscellaneous

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 20.19

Miscellaneous

@ Remaining lectures:

o Wed 17 July: recap?
o Thu 18 July: exercise class

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 20.20

Miscellaneous

@ Remaining lectures:

o Wed 17 July: recap?

e Thu 18 July: exercise class
@ Oral exams:

e Mon 22 July — Fri 26 July
e Thu 15 August — Wed 21 August
o Wed 4 September — Fri 11 October

Just drop me a mail!

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

Miscellaneous

@ Remaining lectures:
o Wed 17 July: recap?
e Thu 18 July: exercise class
@ Oral exams:
e Mon 22 July — Fri 26 July
e Thu 15 August — Wed 21 August
o Wed 4 September — Fri 11 October

Just drop me a mail!

e Teaching in Winter 2013/14:

o Course Introduction to Model Checking [Katoen]
o Course Concurrency Theory [Katoen/Noll]
e Seminar Trends in Computer-Aided Verification [Katoen/Noll/NN]

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

	Recapitulation: Calculus of Communicating Systems
	Decidability of Strong Bisimulation
	Definition of Weak Bisimulation
	Summary: Nondeterminism and Concurrency
	Further Topics in Formal Semantics
	Miscellaneous

