
Semantics and Verification of Software
Lecture 20: Nondeterminism and Parallelism V

(Wrap-Up)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Online Registration for
Seminars and Practical Courses (Praktika)

in Winter Term 2013/14

Who?
Students of: ▪ Master Courses

▪ Bachelor Informatik (ProSeminar!)

Where?
www.graphics.rwth-aachen.de/apse

When?
05.07.2013 - 17.07.2013

Outline

1 Recapitulation: Calculus of Communicating Systems

2 Decidability of Strong Bisimulation

3 Definition of Weak Bisimulation

4 Summary: Nondeterminism and Concurrency

5 Further Topics in Formal Semantics

6 Miscellaneous

Semantics and Verification of Software Summer Semester 2013 20.3

Semantics of CCS I

Definition (Semantics of CCS)

A process definition (Ai (ai1, . . . , aini) = Pi | 1 ≤ i ≤ k) determines the
labeled transition system (LTS) (Prc ,Act,−→) whose transitions can be
inferred from the following rules (P,P ′,Q,Q ′ ∈ Prc, α ∈ Act, λ ∈ N ∪ N,
a, b ∈ N, A ∈ Pid):

(Act)
α.P

α−→ P
(Com)

P
λ−→ P ′ Q

λ−→ Q ′

P ‖ Q
τ−→ P ′ ‖ Q ′

(Sum1)
P

α−→ P ′

P + Q
α−→ P ′

(Sum2)
Q

α−→ Q ′

P + Q
α−→ Q ′

(Par1)
P

α−→ P ′

P ‖ Q
α−→ P ′ ‖ Q

(Par2)
Q

α−→ Q ′

P ‖ Q
α−→ P ‖ Q ′

(New)
P

α−→ P ′ (α /∈ {a, a})
new a P

α−→ new a P ′
(Call)

P[~a 7→ ~b]
α−→ P ′

A(~b)
α−→ P ′

if A(~a) = P

(Here P[~a 7→ ~b] denotes the replacement of every ai by bi in P.)

Semantics and Verification of Software Summer Semester 2013 20.4

Definition of Strong Bisimulation

Definition (Strong bisimulation)

A relation ρ ⊆ Prc ×Prc is called a strong bisimulation if PρQ implies, for
every α ∈ Act,

1 P
α−→ P ′ ⇒ ex. Q ′ ∈ Prc such that Q

α−→ Q ′ and P ′ρQ ′

2 Q
α−→ Q ′ ⇒ ex. P ′ ∈ Prc such that P

α−→ P ′ and P ′ρQ ′

P,Q ∈ Prc are called strongly bisimilar (notation: P ∼ Q) if there exists a
strong bisimulation ρ such that PρQ.

Theorem

∼ is an equivalence relation.

Proof.

omitted

Semantics and Verification of Software Summer Semester 2013 20.5

Outline

1 Recapitulation: Calculus of Communicating Systems

2 Decidability of Strong Bisimulation

3 Definition of Weak Bisimulation

4 Summary: Nondeterminism and Concurrency

5 Further Topics in Formal Semantics

6 Miscellaneous

Semantics and Verification of Software Summer Semester 2013 20.6

The Problem

We now show that the word problem for strong bisimulation

Problem (Word problem for strong bisimulation)

Given: P,Q ∈ Prc

Question: P ∼ Q?

is decidable for finite-state processes (i.e., for those with
|Prc(P)|, |Prc(Q)| <∞ where Prc(P) := {P ′ ∈ Prc | P −→ P ′})
(in general it is undecidable).

To this aim we give an algorithm which iteratively partitions the state set
of an LTS such that the single blocks correspond to the ∼-equivalence
classes.

Semantics and Verification of Software Summer Semester 2013 20.7

The Partitioning Algorithm I

Theorem 20.1 (Partitioning algorithm for ∼)

Input: LTS (S ,Act,−→) (S finite)

Procedure: 1 Start with initial partition Π := {S}
2 Let B ∈ Π be a block and α ∈ Act an action
3 For every P ∈ B, let

α(P) := {C ∈ Π | ex. P ′ ∈ C with P
α−→ P ′}

be the set of P’s α-successor blocks
4 Partition B =

⋃k
i=1 Bi such that

P,Q ∈ Bi ⇐⇒ α(P) = α(Q) for every α ∈ Act
5 Let Π := (Π \ {B}) ∪ {B1, . . . ,Bk}
6 Continue with (2) until Π becomes stable

Output: Partition Π̂ of S

Then, for every P,Q ∈ S,

P ∼ Q ⇐⇒ ex. B ∈ Π̂ with P,Q ∈ B

Semantics and Verification of Software Summer Semester 2013 20.8

The Partitioning Algorithm II

Remark: if states from two disjoint LTSs (S1,Act1,−→1) and
(S2,Act2,−→2) (where S1 ∩ S2 = ∅) are to be compared, their union
(S1 ∪ S2,Act1 ∪ Act2,−→1 ∪ −→2) is chosen as input (here usually
Act1 = Act2)

Example 20.2

Binary semaphore (on the board)

Semantics and Verification of Software Summer Semester 2013 20.9

Outline

1 Recapitulation: Calculus of Communicating Systems

2 Decidability of Strong Bisimulation

3 Definition of Weak Bisimulation

4 Summary: Nondeterminism and Concurrency

5 Further Topics in Formal Semantics

6 Miscellaneous

Semantics and Verification of Software Summer Semester 2013 20.10

Inadequacy of Strong Bisimulation

Observation: requirement of exact matching sometimes too strong

Example 20.3

Sequential and parallel two-place buffer:

B0(in, out) = in.B1(in, out)
B1(in, out) = out.B0(in, out)+

in.B2(in, out)
B2(in, out) = out.B1(in, out)

•
in ↓↑ out•
in ↓↑ out•

6∼

B‖(in, out) = new com (B(in, com) ‖
B(com, out))

B(in, out) = in.out.B(in, out)

•
in↙↖ out
• τ−→ •

out ↖↙ in•

Semantics and Verification of Software Summer Semester 2013 20.11

Definition of Weak Bisimulation I

Idea: abstract from silent actions

Definition 20.4

Given w ∈ Act∗, ŵ ∈ (N ∪ N)∗ denotes the sequence of
non-τ -actions in w (in particular, τ̂n = ε for every n ∈ N).

For w = α1 . . . αn ∈ Act∗ and P,Q ∈ Prc , we let

P
w

=⇒ Q ⇐⇒ P (
τ−→)∗

α1−→ (
τ−→)∗ . . . (

τ−→)∗
αn−→ (

τ−→)∗ Q

(and hence:
ε

=⇒ = (
τ−→)∗).

A relation ρ ⊆ Prc ×Prc is called a weak bisimulation if PρQ implies,
for every α ∈ Act,

1 P
α−→ P ′ ⇒ ex. Q ′ ∈ Prc such that Q

α̂
=⇒ Q ′ and P ′ρQ ′

2 Q
α−→ Q ′ ⇒ ex. P ′ ∈ Prc such that P

α̂
=⇒ P ′ and P ′ρQ ′

P,Q ∈ Prc are called weakly bisimilar (notation: P ≈ Q) if there
exists a weak bisimulation ρ such that PρQ.

Semantics and Verification of Software Summer Semester 2013 20.12

Definition of Weak Bisimulation II

Remark: each of the two clauses in the definition of weak bisimulation
subsumes two cases:

P
α−→ P ′ where α 6= τ

⇒ ex. Q ′ ∈ Prc such that Q (
τ−→)∗

α−→ (
τ−→)∗ Q ′ and P ′ρQ ′

P
τ−→ P ′

⇒ ex. Q ′ ∈ Prc such that Q (
τ−→)∗ Q ′ and P ′ρQ ′

(where Q ′ = Q is admissible)

Example 20.5

Sequential and parallel two-place buffer (on the board)

Semantics and Verification of Software Summer Semester 2013 20.13

Outline

1 Recapitulation: Calculus of Communicating Systems

2 Decidability of Strong Bisimulation

3 Definition of Weak Bisimulation

4 Summary: Nondeterminism and Concurrency

5 Further Topics in Formal Semantics

6 Miscellaneous

Semantics and Verification of Software Summer Semester 2013 20.14

Summary: Nondeterminism and Concurrency

Requires precise formal description of parallelism and interaction

Classical “Input → Output” view not sufficient
(non-terminating/reactive behaviour)

Parallelism = nondeterminism + sequential execution (interleaving)

alternative approach: “true” concurrency
(Petri nets, event structures, ...)

Interaction:

shared variables (ParWHILE)
value-passing channels (CSP)
synchronous handshaking (CCS)

Requires new notions of program/process equivalence (bisimulation)

Semantics and Verification of Software Summer Semester 2013 20.15

Outline

1 Recapitulation: Calculus of Communicating Systems

2 Decidability of Strong Bisimulation

3 Definition of Weak Bisimulation

4 Summary: Nondeterminism and Concurrency

5 Further Topics in Formal Semantics

6 Miscellaneous

Semantics and Verification of Software Summer Semester 2013 20.16

Semantics of Functional Languages I

Program = list of function definitions

Simplest setting: first-order function definitions of the form
f (x1, . . . , xn) = t

function name f
formal parameters x1, . . . , xn
term t over (base and defined) function calls and x1, . . . , xn

Operational semantics (only function calls)
call-by-value case:

t1 → z1 . . . tn → zn t[x1 7→ z1, . . . , xn 7→ zn]→ z

f (t1, . . . , tn)→ z

call-by-name case:

t[x1 7→ t1, . . . , xn 7→ tn]→ z

f (t1, . . . , tn)→ z

Semantics and Verification of Software Summer Semester 2013 20.17

Semantics of Functional Languages II

Denotational semantics

program = equation system (for functions)
induces call-by-value and call-by-name functional
monotonic and continuous w.r.t. graph inclusion
semantics := least fixpoint (Tarski/Knaster Theorem)
coincides with operational semantics

Extensions: higher-order types, data types, ...

see [Winskel 1996, Sct. 9] and Functional Programming course [Giesl]

Semantics and Verification of Software Summer Semester 2013 20.18

Outline

1 Recapitulation: Calculus of Communicating Systems

2 Decidability of Strong Bisimulation

3 Definition of Weak Bisimulation

4 Summary: Nondeterminism and Concurrency

5 Further Topics in Formal Semantics

6 Miscellaneous

Semantics and Verification of Software Summer Semester 2013 20.19

Miscellaneous

Remaining lectures:

Wed 17 July: recap?
Thu 18 July: exercise class

Oral exams:

Mon 22 July – Fri 26 July
Thu 15 August – Wed 21 August
Wed 4 September – Fri 11 October

Just drop me a mail!

Teaching in Winter 2013/14:

Course Introduction to Model Checking [Katoen]
Course Concurrency Theory [Katoen/Noll]
Seminar Trends in Computer-Aided Verification [Katoen/Noll/NN]

Semantics and Verification of Software Summer Semester 2013 20.20

	Recapitulation: Calculus of Communicating Systems
	Decidability of Strong Bisimulation
	Definition of Weak Bisimulation
	Summary: Nondeterminism and Concurrency
	Further Topics in Formal Semantics
	Miscellaneous

