
Semantics and Verification of Software
Lecture 2: Operational Semantics of WHILE I

(Evaluation of Expressions)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Outline

1 Repetition: Syntax of WHILE

2 Operational Semantics of WHILE

3 Evaluation of Arithmetic Expressions

4 Excursus: Proof by Structural Induction

5 Evaluation of Boolean Expressions

Semantics and Verification of Software Summer Semester 2013 2.2

Syntactic Categories

WHILE: simple imperative programming language without procedures or
advanced data structures

Syntactic categories:

Category Domain Meta variable
Numbers Z = {0, 1,−1, . . .} z
Truth values B = {true, false} t
Variables Var = {x, y, . . .} x
Arithmetic expressions AExp (next slide) a
Boolean expressions BExp (next slide) b
Commands (statements) Cmd (next slide) c

Semantics and Verification of Software Summer Semester 2013 2.3

Syntax of WHILE Programs

Definition (Syntax of WHILE)

The syntax of WHILE Programs is defined by the following context-free
grammar:

a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp
b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Remarks: we assume that

the syntax of numbers, truth values and variables is predefined
(i.e., no “lexical analysis”)

the syntax of ambiguous constructs is uniquely determined
(by brackets, priorities, or indentation)

Semantics and Verification of Software Summer Semester 2013 2.4

Outline

1 Repetition: Syntax of WHILE

2 Operational Semantics of WHILE

3 Evaluation of Arithmetic Expressions

4 Excursus: Proof by Structural Induction

5 Evaluation of Boolean Expressions

Semantics and Verification of Software Summer Semester 2013 2.5

Operational Semantics of WHILE

Idea: define meaning of programs by specifying its behavior being
executed on an (abstract) machine

Here: evaluation/execution relation for program fragments
(expressions, statements)

Approach based on Structural Operational Semantics (SOS)

G.D. Plotkin: A structural approach to operational semantics, DAIMI
FN-19, Computer Science Department, Aarhus University, 1981

Employs derivation rules of the form

Name
Premise(s)

Conclusion

meaning: if every premise is fulfilled, then conclusion can be drawn
a rule with no premises is called an axiom

Derivation rules can be composed to form derivation trees with
axioms as leafs (formal definition later)

Semantics and Verification of Software Summer Semester 2013 2.6

Outline

1 Repetition: Syntax of WHILE

2 Operational Semantics of WHILE

3 Evaluation of Arithmetic Expressions

4 Excursus: Proof by Structural Induction

5 Evaluation of Boolean Expressions

Semantics and Verification of Software Summer Semester 2013 2.7

Program States

Meaning of expression = value (in the usual sense)

Depends on the values of the variables in the expression

Definition 2.1 (Program state)

A (program) state is an element of the set

Σ := {σ | σ : Var → Z},
called the state space.

Thus σ(x) denotes the value of x ∈ Var in state σ ∈ Σ.

Semantics and Verification of Software Summer Semester 2013 2.8

Evaluation of Arithmetic Expressions I

Remember: a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp

Definition 2.2 (Evaluation relation for arithmetic expressions)

If a ∈ AExp and σ ∈ Σ, then 〈a, σ〉 is called a configuration.

Expression a evaluates to z ∈ Z in state σ (notation: 〈a, σ〉 → z) if this
relationship is derivable by means of the following rules:

Axioms:
〈z , σ〉 → z 〈x , σ〉 → σ(x)

Rules:
〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1+a2, σ〉 → z
where z := z1 + z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1-a2, σ〉 → z
where z := z1 − z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1*a2, σ〉 → z
where z := z1 · z2

Semantics and Verification of Software Summer Semester 2013 2.9

Evaluation of Arithmetic Expressions II

Example 2.3

a = (x+3)*(y-2), σ(x) = 3, σ(y) = 9:

〈x, σ〉 → 3 〈3, σ〉 → 3

〈x+3, σ〉 → 6

〈y, σ〉 → 9 〈2, σ〉 → 2

〈y-2, σ〉 → 7

〈(x+3)*(y-2), σ〉 → 42

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1*a2, σ〉 → z
where z := z1·z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1+a2, σ〉 → z
where z := z1+z2 〈x , σ〉 → σ(x) 〈z , σ〉 → z

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1-a2, σ〉 → z
where z := z1−z2

Here: structure of derivation tree = structure of program fragment
(not generally true)

Semantics and Verification of Software Summer Semester 2013 2.10

Free Variables I

First formal result: value of an expression only depends on valuation of
variables which occur (freely) in the expression

Definition 2.4 (Free variables)

The set of free variables of an expression is given by the function

FV : AExp → 2Var

where
FV (z) := ∅ FV (a1+a2) := FV (a1) ∪ FV (a2)
FV (x) := {x} FV (a1-a2) := FV (a1) ∪ FV (a2)

FV (a1*a2) := FV (a1) ∪ FV (a2)

Result will be shown by structural induction on the expression

Semantics and Verification of Software Summer Semester 2013 2.11

Outline

1 Repetition: Syntax of WHILE

2 Operational Semantics of WHILE

3 Evaluation of Arithmetic Expressions

4 Excursus: Proof by Structural Induction

5 Evaluation of Boolean Expressions

Semantics and Verification of Software Summer Semester 2013 2.12

Excursus: Proof by Structural Induction I

Proof principle

Given: an inductive set, i.e., a set S whose elements are either

atomic or
obtained from atomic elements by (finite) application of
certain operations

To show: property P(s) applies to every s ∈ S

Proof: we verify:

Induction base: P(s) holds for every atomic element s
Induction hypothesis: assume that P(s1), P(s2) etc.
Induction step: then also P(f (s1, . . . , sn)) holds for every

operation f of arity n

Remark: structural induction is a special case of well-founded induction

Semantics and Verification of Software Summer Semester 2013 2.13

Excursus: Proof by Structural Induction II

Application: natural numbers (“mathematical induction”)

Definition: N is the least set which

contains 0 and
contains n + 1 whenever n ∈ N

Induction base: P(0) holds

Induction hypothesis: P(n) holds

Induction step: P(n + 1) holds

Generalization: complete (strong, course-of-values) induction

induction step: P(0),P(1), . . . ,P(n)⇒ P(n + 1)

corresponds to well-founded induction over natural numbers

Semantics and Verification of Software Summer Semester 2013 2.14

Excursus: Proof by Structural Induction III

Example 2.5 (Mathematical induction)

We prove that P(n) :
∑n

i=1 i = n(n+1)
2 holds for every n ∈ N.

P(0) holds:
∑0

i=1 i = 0 = 0(0+1)
2 X

Assume P(n):
∑n

i=1 i = n(n+1)
2

Show P(n + 1):
∑n+1

i=1 i =
∑n

i=1 i + (n + 1)

= n(n+1)
2 + (n + 1)

= n(n+1)
2 + 2(n+1)

2

= (n+2)(n+1)
2

= (n+1)((n+1)+1)
2 X

Semantics and Verification of Software Summer Semester 2013 2.15

Excursus: Proof by Structural Induction IV

Application: arithmetic expressions (Def. 1.2)

Definition: AExp is the least set which

contains all integers z ∈ Z and all variables x ∈ Var and
contains a1+a2, a1-a2 and a1*a2 whenever
a1, a2 ∈ AExp

Induction base: P(z) and P(x) holds (for every z ∈ Z and x ∈ Var)

Induction hypothesis: P(a1) and P(a2) holds

Induction step: P(a1+a2), P(a1-a2) and P(a1*a2) holds

Semantics and Verification of Software Summer Semester 2013 2.16

Free Variables II

Lemma 2.6

Let a ∈ AExp and σ, σ′ ∈ Σ such that σ(x) = σ′(x) for every x ∈ FV (a).
Then, for every z ∈ Z,

〈a, σ〉 → z ⇐⇒ 〈a, σ′〉 → z .

Proof.

by structural induction on a (on the board)

Semantics and Verification of Software Summer Semester 2013 2.17

Outline

1 Repetition: Syntax of WHILE

2 Operational Semantics of WHILE

3 Evaluation of Arithmetic Expressions

4 Excursus: Proof by Structural Induction

5 Evaluation of Boolean Expressions

Semantics and Verification of Software Summer Semester 2013 2.18

Evaluation of Boolean Expressions I

Remember: b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp

Definition 2.7 (Evaluation relation for Boolean expressions)

For b ∈ BExp, σ ∈ Σ, and t ∈ B, the evaluation relation 〈b, σ〉 → t is defined by
the following rules:

〈t, σ〉 → t
〈a1, σ〉 → z 〈a2, σ〉 → z

〈a1=a2, σ〉 → true

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1=a2, σ〉 → false
if z1 6= z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1>a2, σ〉 → true
if z1 > z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1>a2, σ〉 → false
if z1 ≤ z2

〈b, σ〉 → false

〈¬b, σ〉 → true

〈b, σ〉 → true

〈¬b, σ〉 → false
〈b1, σ〉 → true 〈b2, σ〉 → true

〈b1 ∧ b2, σ〉 → true

〈b1, σ〉 → true 〈b2, σ〉 → false

〈b1 ∧ b2, σ〉 → false
〈b1, σ〉 → false 〈b2, σ〉 → true

〈b1 ∧ b2, σ〉 → false

〈b1, σ〉 → false 〈b2, σ〉 → false

〈b1 ∧ b2, σ〉 → false
(∨ analogously)

Semantics and Verification of Software Summer Semester 2013 2.19

Evaluation of Boolean Expressions II

Remarks:

Binary Boolean operators ∧ and ∨ are interpreted as strict, i.e.,
always evaluate both arguments.

Important in situations like

while p <> nil and p^.key < val do ...!

(see following slides for alternatives)

FV : BExp → 2Var can be defined in analogy to Def. 2.4.

Lemma 2.6 holds analogously for Boolean expressions, i.e., the value
of b ∈ BExp does not depend on variables in Var \ FV (b).

Semantics and Verification of Software Summer Semester 2013 2.20

Evaluation of Boolean Expressions III

Definition 2.8 (Sequential evaluation of Boolean expressions)

For b ∈ BExp, σ ∈ Σ, and t ∈ B, the sequential evaluation relation
〈b, σ〉 → t is defined by the following rules:

...

〈b1, σ〉 → false

〈b1 ∧ b2, σ〉 → false

〈b1, σ〉 → true 〈b2, σ〉 → t

〈b1 ∧ b2, σ〉 → t

〈b1, σ〉 → true

〈b1 ∨ b2, σ〉 → true

〈b1, σ〉 → false 〈b2, σ〉 → t

〈b1 ∨ b2, σ〉 → t

Semantics and Verification of Software Summer Semester 2013 2.21

Evaluation of Boolean Expressions IV

Definition 2.9 (Parallel evaluation of Boolean expressions)

For b ∈ BExp, σ ∈ Σ, and t ∈ B, the parallel evaluation relation
〈b, σ〉 → t is defined by the following rules:

...

〈b1, σ〉 → false

〈b1 ∧ b2, σ〉 → false

〈b2, σ〉 → false

〈b1 ∧ b2, σ〉 → false

〈b1, σ〉 → true 〈b2, σ〉 → true

〈b1 ∧ b2, σ〉 → true

〈b1, σ〉 → true

〈b1 ∨ b2, σ〉 → true

〈b2, σ〉 → true

〈b1 ∨ b2, σ〉 → true

〈b1, σ〉 → false 〈b2, σ〉 → false

〈b1 ∨ b2, σ〉 → false

Semantics and Verification of Software Summer Semester 2013 2.22

	Repetition: Syntax of WHILE
	Operational Semantics of WHILE
	Evaluation of Arithmetic Expressions
	Excursus: Proof by Structural Induction
	Evaluation of Boolean Expressions

