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Structural Induction

Inductive set: elements are either

atomic or
obtained from atomic elements by (finite) application of certain
operations

Structural induction on N: mathematical induction

induction step: P(n)⇒ P(n + 1)

Complete induction = well-founded induction on N
induction step: P(0),P(1), . . . ,P(n)⇒ P(n + 1)
also known as strong or course-of-values induction
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Evaluation of Arithmetic Expressions

Remember: a ::= z | x | a1+a2 | a1-a2 | a1*a2 ∈ AExp

Definition (Evaluation relation for arithmetic expressions)

If a ∈ AExp and σ ∈ Σ, then 〈a, σ〉 is called a configuration.

Expression a evaluates to z ∈ Z in state σ (notation: 〈a, σ〉 → z) if this
relationship is derivable by means of the following rules:

Axioms:
〈z , σ〉 → z 〈x , σ〉 → σ(x)

Rules:
〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1+a2, σ〉 → z
where z := z1 + z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1-a2, σ〉 → z
where z := z1 − z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1*a2, σ〉 → z
where z := z1 · z2
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Evaluation of Boolean Expressions

Remember: b ::= t | a1=a2 | a1>a2 | ¬b | b1 ∧ b2 | b1 ∨ b2 ∈ BExp

Definition (Evaluation relation for Boolean expressions)

For b ∈ BExp, σ ∈ Σ, and t ∈ B, the evaluation relation 〈b, σ〉 → t is defined by
the following rules:

〈t, σ〉 → t
〈a1, σ〉 → z 〈a2, σ〉 → z

〈a1=a2, σ〉 → true

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1=a2, σ〉 → false
if z1 6= z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1>a2, σ〉 → true
if z1 > z2

〈a1, σ〉 → z1 〈a2, σ〉 → z2

〈a1>a2, σ〉 → false
if z1 ≤ z2

〈b, σ〉 → false

〈¬b, σ〉 → true

〈b, σ〉 → true

〈¬b, σ〉 → false
〈b1, σ〉 → true 〈b2, σ〉 → true

〈b1 ∧ b2, σ〉 → true

〈b1, σ〉 → true 〈b2, σ〉 → false

〈b1 ∧ b2, σ〉 → false
〈b1, σ〉 → false 〈b2, σ〉 → true

〈b1 ∧ b2, σ〉 → false

〈b1, σ〉 → false 〈b2, σ〉 → false

〈b1 ∧ b2, σ〉 → false
(∨ analogously)
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Meaning of Statements

Effect of statement = modification of program state

Example 3.1

Goal: define execution relation → such that

〈x := 2+3, σ〉 → σ[x 7→ 5]

where for every σ ∈ Σ, x , y ∈ Var , and z ∈ Z:

σ[x 7→ z ](y) :=

{
z if y = x
σ(y) otherwise
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Execution of Statements

Remember:
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Definition 3.2 (Execution relation for statements)

For c ∈ Cmd and σ, σ′ ∈ Σ, the execution relation 〈c, σ〉 → σ′ is defined
by the following rules:

(skip)
〈skip, σ〉 → σ

(asgn)
〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z ]

(seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(if-t)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(wh-f)

〈b, σ〉 → false

〈while b do c , σ〉 → σ

(wh-t)
〈b, σ〉 → true 〈c , σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c , σ〉 → σ′′
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An Execution Example

Example 3.3

c := y := 1; while¬(x=1)︸ ︷︷ ︸
b

do y := y*x︸ ︷︷ ︸
c1

; x := x-1︸ ︷︷ ︸
c2︸ ︷︷ ︸

c0

Claim: 〈c , σ〉 → σ1,6 for every σ ∈ Σ with σ(x) = 3

Notation: σi ,j means σ(x) = i , σ(y) = j

Derivation tree: on the board
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Non-Terminating Statements

Corollary 3.4

The execution relation for statements is not total, i.e., there exist
c ∈ Cmd and σ ∈ Σ such that 〈c, σ〉 → σ′ for no σ′ ∈ Σ.

Proof.

Counterexample: c = while true do skip

(by contradiction; on the board)
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Determinism of Execution Relation I

This operational semantics is well defined in the following sense:

Theorem 3.5

The execution relation for statements is deterministic, i.e., whenever
c ∈ Cmd and σ, σ′, σ′′ ∈ Σ such that 〈c , σ〉 → σ′ and 〈c , σ〉 → σ′′, then
σ′ = σ′′.

The proof is based on the corresponding result for expressions.
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Determinism of Evaluation Relations

Lemma 3.6
1 For every a ∈ AExp, σ ∈ Σ, and z , z ′ ∈ Z:
〈a, σ〉 → z and 〈a, σ〉 → z ′ implies z = z ′.

2 For every b ∈ BExp, σ ∈ Σ, and t, t ′ ∈ B:
〈b, σ〉 → t and 〈b, σ〉 → t ′ implies t = t ′.

Remarks:

Lemma 3.6(1) is not implied by Lemma 2.6
(“σ|FV (a) = σ′|FV (a) ⇒ (〈a, σ〉 → z ⇐⇒ 〈a, σ′〉 → z)”)!

The latter just implies

{z ∈ Z | 〈a, σ〉 → z} = {z ∈ Z | 〈a, σ′〉 → z}
while Lemma 3.6(1) states that

|{z ∈ Z | 〈a, σ〉 → z}| ≤ 1.

Lemma 3.6 can be shown by induction on the structure of expressions.
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Excursus: Proof by Structural Induction V

Application: Boolean expressions (Def. 1.2)

Definition: BExp is the least set which

contains the truth values t ∈ B and, for every
a1, a2 ∈ AExp, a1=a2 and a1>a2, and
contains ¬b1, b1 ∧ b2 and b1 ∨ b2 whenever
b1, b2 ∈ BExp

Induction base: P(t), P(a1=a2) and P(a1>a2) holds
(for every t ∈ B, a1, a2 ∈ AExp)

Induction hypothesis: P(b1) and P(b2) holds

Induction step: P(¬b1), P(b1 ∧ b2) and P(b1 ∨ b2) holds

Proof (Lemma 3.6).

1 by structural induction on a (omitted)
2 by structural induction on b (omitted)
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Determinism of Execution Relation II

How to prove that 〈c , σ〉 → σ′ is deterministic (Theorem 3.5)?

Idea: use induction on the syntactic structure of c
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Excursus: Proof by Structural Induction VI

Application: syntax of WHILE statements (Def. 1.2)

Definition: Cmd is the least set which

contains skip and, for every x ∈ Var and a ∈ AExp,
x := a, and
contains c1;c2, if b then c1 else c2 and
while b do c1 whenever b ∈ BExp and c1, c2 ∈ Cmd

Induction base: P(skip) and P(x := a) holds
(for every x ∈ Var and a ∈ AExp)

Induction hypothesis: P(c1) and P(c2) holds

Induction step: P(c1;c2), P(if b then c1 else c2) and
P(while b do c1) holds
(for every b ∈ BExp)
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Determinism of Execution Relation III

But: proof of Theorem 3.5 fails!

Problematic case:

c = while b do c0 where 〈b, σ〉 → true

Here 〈c , σ〉 → σ′ and 〈c , σ〉 → σ′′ require existence of σ1, σ2 ∈ Σ
such that

(wh-t)
〈b, σ〉 → true 〈c0, σ〉 → σ1 〈c , σ1〉 → σ′

〈c , σ〉 → σ′

and

(wh-t)
〈b, σ〉 → true 〈c0, σ〉 → σ2 〈c , σ2〉 → σ′′

〈c , σ〉 → σ′′

c0 proper substatement of c
⇒ induction hypothesis yields σ1 = σ2

c not proper substatement of c ⇒ conclusion σ′ = σ′′ invalid!
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Excursus: Proof by Structural Induction VII

Application: derivation trees of execution relation (Def. 3.2)

(skip): for every σ ∈ Σ,
〈skip, σ〉 → σ

is a derivation tree for 〈skip, σ〉 → σ

(asgn): if s is a derivation tree for 〈a, σ〉 → z (Def. 2.2), then
s

〈x := a, σ〉 → σ[x 7→ z]
is a derivation tree for 〈x := a, σ〉 → σ[x 7→ z]

(seq): if s1 and s2 are derivation trees for 〈c1, σ〉 → σ′ and, respectively,

〈c2, σ
′〉 → σ′′, then

s1 s2

〈c1;c2, σ〉 → σ′′ is a derivation tree for 〈c1;c2, σ〉 → σ′′

(if-t): if s1 and s2 are derivation trees for 〈b, σ〉 → true (Def. 2.7) and, respectively,

〈c1, σ〉 → σ′, then
s1 s2

〈if b then c1 else c2, σ〉 → σ′ is a derivation tree for

〈if b then c1 else c2, σ〉 → σ′

(if-f): analogously
(wh-t): if s1, s2 and s3 are derivation trees for 〈b, σ〉 → true (Def. 2.7), 〈c, σ〉 → σ′

and 〈while b do c, σ′〉 → σ′′, respectively, then
s1 s2 s3

〈while b do c, σ〉 → σ′′ is a

derivation tree for 〈while b do c, σ〉 → σ′′

(wh-f): if s is a derivation tree for 〈b, σ〉 → false (Def. 2.7), then
s

〈while b do c, σ〉 → σ
is a derivation tree for 〈while b do c, σ〉 → σ
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Excursus: Proof by Structural Induction VIII

Application: derivation trees of execution relation (continued)

Induction base: P

(
〈skip, σ〉 → σ

)
holds for every σ ∈ Σ, and P(s) holds for every

derivation tree s for an arithmetic or Boolean expression.

Induction hypothesis: P(s1), P(s2) und P(s3) holds.

Induction step: it also holds that

(asgn): P

(
s1

〈x:=a, σ〉 → σ[x 7→ z]

)
(seq): P

(
s1 s2

〈c1;c2, σ〉 → σ′′

)
(if-t): P

(
s1 s2

〈if b then c1 else c2, σ〉 → σ′

)
(if-f): analogously

(wh-t): P

(
s1 s2 s3

〈while b do c, σ〉 → σ′′

)
(wh-f): P

(
s1

〈while b do c, σ〉 → σ

)
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Determinism of Execution Relation IV

Proof (Theorem 3.5).

To show:

〈c , σ〉 → σ′, 〈c , σ〉 → σ′′ ⇒ σ′ = σ′′

(by structural induction on derivation trees; on the board)
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