Semantics and Verification of Software

Lecture 3: Operational Semantics of WHILE Il
(Execution of Statements)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-1i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

@ Recapitulation: Structural Induction & Evaluation Relations

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Structural Induction

@ Inductive set: elements are either

e atomic or
e obtained from atomic elements by (finite) application of certain
operations

@ Structural induction on N: mathematical induction
e induction step: P(n) = P(n+1)

@ Complete induction = well-founded induction on N
e induction step: P(0),P(1),...,P(n) = P(n+1)
e also known as strong or course-of-values induction

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Evaluation of Arithmetic Expressions

Remember: a::=z | x| ai+ap | a1-az | a1*xax € AExp

Definition (Evaluation relation for arithmetic expressions)

If a € AExp and o € ¥, then (a,0) is called a configuration.

Expression a evaluates to z € Z in state o (notation: (a,o) — z) if this
relationship is derivable by means of the following rules:

Axioms:
(z,0) = z (x,0) — o(x)
ai,o) = z1 (ap,0) — z
Rules: (a1, 1 {@2,0) 2 where z .= z1 + 2
31+82,0'> — Z
<31,0

where z .= 71 — 2z

aj—ap, (f> — Z

<31,0' — Z1 <32,0'> — 22

where z .= z1 - z»

)
(
) = z1 (a2,0) >
(
)
(

ai*ap, U> — Z

RWNTH Semantics and Verification of Software Summer Semester 2013 3.4

Evaluation of Boolean Expressions

Remember: b::=t|aj=ay | a1>ax | b | by A by | by V by € BExp

Definition (Evaluation relation for Boolean expressions)

For b € BExp, o € ¥, and t € B, the evaluation relation (b,c) — t is defined by
the following rules:
(t,o) — t
(a1,0) = z (ap,0) — z (a1,0) = 71 {(ap,0) — z» if 2 4 2
(a1=ay,0) — true (a1=ap, o) — false tre
(a1,0) = 71 {ap,0) = 25 . (a1,0) = 71 {ap,0) = z5 .
if z1 > 2 if z1 <2
(a1>ap, 0) — true (a1>ap,0) — false
(b,o) — false (b,o) — true
(=b,0) — true (—b,) — false
(b1,0) — true (by,0) — true (b1,0) — true (by,0) — false
(b1 A by, o) — true (b1 A\ by, o) — false
(b1, o) — false (by,) — true (by,0) — false (by, o) — false
(b1 A by, o) — false (b1 A by, o) — false
(V analogously)

RWNTH Semantics and Verification of Software Summer Semester 2013 3.5

© Execution of Statements

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

Meaning of Statements

Effect of statement = modification of program state

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Meaning of Statements

Effect of statement = modification of program state

Example 3.1
Goal: define execution relation — such that

(x 1= 2+3,0) — o[x — 5]
where for every 0 € ¥, x,y € Var, and z € Z:

olx — z](y) = {;(y) gtf:er:w)i(se

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 3.7

Execution of Statements

Remember:
cu=skip|x :=a|c;c | if b then ¢ else ¢; | while b do ¢ € Cmd

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Execution of Statements

Remember:
cu=skip|x :=a|c;c | if b then ¢ else ¢; | while b do ¢ € Cmd

Definition 3.2 (Execution relation for statements)

For c € Cmd and 0,0’ € ¥, the execution relation (c,o) — o’ is defined
by the following rules:

(skip) (asgn) \,0) = 2
(skip,0) — o (x 1= a,0) = o[x — 2]
(c1,0) = 0 (e,0'y =" (b,o) — true {(c1,0) — o’
(seq) (if-t) -
(c1;¢0,0) — o’ (if b then ¢ else ¢p,0) — o’
(i) (b,o) — false (cp,0) — o’ (whef (b,o) — false
IT- wn-

(if b then ¢ else ¢,0) — o’ (while b do c,0) — o
(b,c) — true (c,0) — o’ (while b do c,o’) — o”

(while b do c¢,0) — o”

(wh-t)

RWNTH Semantics and Verification of Software Summer Semester 2013 3.8

An Execution Example

Example 3.3

@ c:=y :=1; while—(x=1)doy := y*x;x := x-1
—_—— e T/

b c1 (=]

<0
e Claim: (c,0) — 016 for every o € ¥ with o(x) =3

e Notation: ¢;j means o(x) =i, o(y) =

@ Derivation tree: on the board

nerAACHEN Semantics and Verification of Software Summer Semester 2013 3.9

Non-Terminating Statements

Corollary 3.4

The execution relation for statements is not total, i.e., there exist
c € Cmd and o € ¥ such that (c,o) — ¢’ forno o’ € ¥.

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 3.10

Non-Terminating Statements

Corollary 3.4

The execution relation for statements is not total, i.e., there exist
c € Cmd and o € ¥ such that (c,o) — ¢’ forno o’ € ¥.

Counterexample: ¢ = while true do skip
(by contradiction; on the board) O

Semantics and Verification of Software Summer Semester 2013 3.10

© Determinism of Evaluation/Execution

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 3.11

Determinism of Execution Relation |

This operational semantics is well defined in the following sense:

The execution relation for statements is deterministic, i.e., whenever

c € Cmd and 0,0, 0" € ¥ such that (c,o) — o’ and (c,0) — o”, then
/ 7

o' =o".

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 3.12

Determinism of Execution Relation |

This operational semantics is well defined in the following sense:

The execution relation for statements is deterministic, i.e., whenever

c € Cmd and 0,0, 0" € ¥ such that (c,o) — o’ and (c,0) — o”, then
/ 7

o' =o".

The proof is based on the corresponding result for expressions.

nerAACHEN Semantics and Verification of Software Summer Semester 2013 3.12

Determinism of Evaluation Relations

Q Foreveryac AExp, 0 € ¥, and z,Z' € Z:
(a,0) = z and (a,0) — Z' implies z = Z'.
Q Foreverybe BExp, c € X, and t, t' € B:
(b,o) — t and (b,o) — t' implies t = t'.

nerAACHEN Semantics and Verification of Software Summer Semester 2013 3.13

Determinism of Evaluation Relations

Q Foreveryac AExp, 0 € ¥, and z,Z' € Z:
(a,0) = z and (a,0) — Z' implies z = Z'.
Q Foreverybe BExp, c € X, and t, t' € B:
(b,o) — t and (b,o) — t' implies t = t'.

Remarks:
e Lemma 3.6(1) is not implied by Lemma 2.6

(“olrvia) = o'lFva) = ((a,0) = z <= (a,0) — 2)")!
The latter just implies
{zeZ|{a,o0) >z} ={z€Z]|(a,0') — z}
while Lemma 3.6(1) states that
{ze€Z|(ao)— z}| <1.

@ Lemma 3.6 can be shown by induction on the structure of expressions.

nerAACHEN Semantics and Verification of Software Summer Semester 2013 3.13

Excursus: Proof by Structural Induction V

Application: Boolean expressions (Def. 1.2)
Definition: BExp is the least set which

@ contains the truth values t € B and, for every
a1, ap € AExp, aj=a» and a;>ap, and
@ contains —by, by A by and b; V by whenever
b1, by € BExp
Induction base: P(t), P(ai=a2) and P(a;>az) holds
(for every t € B, a1, a» € AExp)
Induction hypothesis: P(b1) and P(b;) holds

Induction step: P(—b1), P(b1 A by) and P(b; V by) holds

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 3.14

Excursus: Proof by Structural Induction V

Application: Boolean expressions (Def. 1.2)
Definition: BExp is the least set which

@ contains the truth values t € B and, for every
a1, ap € AExp, aj=a» and a;>ap, and
@ contains —by, by A by and b; V by whenever
b1, by € BExp
Induction base: P(t), P(ai=a2) and P(a;>az) holds
(for every t € B, a1, a» € AExp)
Induction hypothesis: P(b1) and P(b;) holds

Induction step: P(—b1), P(b1 A by) and P(b; V by) holds

Proof (Lemma 3.6).

© by structural induction on a (omitted)
@ by structural induction on b (omitted)

RWNTH Semantics and Verification of Software Summer Semester 2013

Determinism of Execution Relation Il

e How to prove that (c,o) — ¢’ is deterministic (Theorem 3.5)?

@ Idea: use induction on the syntactic structure of ¢

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 3.15

Excursus: Proof by Structural Induction VI

Application: syntax of WHILE statements (Def. 1.2)
Definition: Cmd is the least set which
@ contains skip and, for every x € Var and a € AExp,
x := a, and
@ contains ¢1; ¢, if b then ¢; else ¢ and
while b do ¢; whenever b € BExp and c¢;, ¢, € Cmd
Induction base: P(skip) and P(x := a) holds
(for every x € Var and a € AExp)
Induction hypothesis: P(c1) and P(c) holds
Induction step: P(ci;c2), P(if b then ¢; else ¢) and
P(while b do ci) holds
(for every b € BExp)

RWNTH HE Semantics and Verification of Software Summer Semester 2013

3.16

Determinism of Execution Relation 111

@ But: proof of Theorem 3.5 fails!

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 3.17

Determinism of Execution Relation 111

@ But: proof of Theorem 3.5 fails!

@ Problematic case:

c =while bdo ¢y where (b,o) — true

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 3.17

Determinism of Execution Relation 111

@ But: proof of Theorem 3.5 fails!
@ Problematic case:

c =while bdo ¢y where (b,o) — true

@ Here (c,0) — ¢’ and (c,o) — ¢” require existence of 01,00 € X

such that

(b,c) — true (cy,0) = o1 {(c,01) = o’

(c,o0) = o’

(wh-t)

and

(b,c) — true (cp,0) — 02 {(c,02) — o”

(wh-t)

(c,o) — o

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Determinism of Execution Relation 111

@ But: proof of Theorem 3.5 fails!
@ Problematic case:

¢ =while bdo ¢g where (b,o) — true

@ Here (c,0) — ¢’ and (c,o) — ¢” require existence of 01,00 € X
such that

(b,c) — true (cy,0) = o1 {(c,01) = o’

(wh-t) (c,o0) = o’

and

(b,c) — true (cp,0) — 02 {(c,00) — o”

(wh-t) (c,o) — o

@ (p proper substatement of ¢
= induction hypothesis yields o1 = 0>

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Determinism of Execution Relation 111

@ But: proof of Theorem 3.5 fails!
@ Problematic case:

¢ =while bdo ¢g where (b,o) — true

@ Here (c,0) — ¢’ and (c,o) — ¢” require existence of 01,00 € X

such that

(b,c) — true (cp,0) = o1 {(c,01) = o’

(wh-t)

(c,o0) = o’
and

(b,c) — true (cp,0) — 02 {(c,02) — o”

(wh-t) (c.0) = o

@ (p proper substatement of ¢
= induction hypothesis yields o1 = 0>

@ c not proper substatement of ¢ = conclusion ¢’ = ¢’ invalid!

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Excursus: Proof by Structural Induction VII

Application: derivation trees of execution relation (Def. 3.2)

(skip): for every o € X, is a derivation tree for (skip,o) — o

(skip,0) — o
(asgn): if s is a derivation tree for (a,o) — z (Def. 2.2), then

= is a derivation tree for (x := a,0) — o[x — Z]

(x :==a,0) = o[x — Z]

(seq): if s; and s, are derivation trees for (ci,0) — o’ and, respectively,
S1 2

(c2,0’) — &, then —————————; is a derivation tree for (a1;¢,0) — o
(a;0,0) >0

(if-t): if s; and sy are derivation trees for (b, o) — true (Def. 2.7) and, respectively,
s1 S

(c1,0) — o', then is a derivation tree for

(if b then cj else c,0) — o’

(if b then ¢ else o,0) — o’
(if-f): analogously
(wh-t): if s1, s» and s3 are derivation trees for (b, o) — true (Def. 2.7), (c,0) — o’
. 51 8 S .
and (while b do c,0’) — o'/, respectively, then B2 - isa
(while b do c¢,0) — o’

derivation tree for (while b do c,o) — o’/
(wh-f): if s is a derivation tree for (b, o) — false (Def. 2.7), then

- g is a derivation tree for (while b do c,0) — o
(while b do c,0) — o

RWNTH Semantics and Verification of Software Summer Semester 2013 3.18

Excursus: Proof by Structural Induction VIII

Application: derivation trees of execution relation (continued)

Induction base: P ——————— | holds for every o € ¥, and P(s) holds for every
(skip,0) — o

derivation tree s for an arithmetic or Boolean expression.
Induction hypothesis: P(s1), P(s2) und P(s3) holds.
Induction step: it also holds that

(asgn): P ((x:=2,0) . olx > 7])
p 51 S

(a;c,0) = o

(if-t): P(512)
(if b then ¢ else ©,0) — 0

(if-f): analogously

(wh-t): P 5122 55)
' (while b do c,0) — o”

h-f): P oL
(wh-f) ((while b do c,o)%o)

(seq):

RWNTH Semantics and Verification of Software Summer Semester 2013

3.19

Determinism of Execution Relation IV

Proof (Theorem 3.5).

To show:
(c,0) = ' {c,0) =" = o =0"

(by structural induction on derivation trees; on the board) O]

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 3.20

	Recapitulation: Structural Induction & Evaluation Relations
	Execution of Statements
	Determinism of Evaluation/Execution

