Semantics and Verification of Software

Lecture 4: Operational vs. Denotational Semantics of WHILE

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

© Recapitulation: Execution of Statements

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

Execution of Statements

Remember:
cu=skip|x :=a|c;c | if b then ¢ else ¢; | while b do ¢ € Cmd

Definition (Execution relation for statements)

For c € Cmd and 0,0’ € ¥, the execution relation (c,o) — o’ is defined
by the following rules:

(skip) (asgn) \,0) = 2
(skip,0) — o (x 1= a,0) = o[x — 2]
(c1,0) = 0 (e,0'y =" (b,o) — true {(c1,0) — o’
(seq) (if-t) -
(c1;¢0,0) — o’ (if b then ¢ else ¢p,0) — o’
(i) (b,o) — false (cp,0) — o’ (whef (b,o) — false
IT- wn-

(if b then ¢ else ¢,0) — o’ (while b do c,0) — o
(b,c) — true (c,0) — o’ (while b do c,o’) — o”

(while b do c¢,0) — o”

(wh-t)

RWNTH Semantics and Verification of Software Summer Semester 2013 4.3

Determinism of Execution Relation |

This operational semantics is well defined in the following sense:

The execution relation for statements is deterministic, i.e., whenever

c € Cmd and 0,0, 0" € ¥ such that (c,o) — o’ and (c,0) — o”, then
/ 7

o' =o".

@ How to prove this theorem?
@ ldea:

e employ corresponding result for expressions (Lemma 3.6)
e use induction on the syntactic structure of ¢ 4

@ Instead: structural induction on derivation trees

nerAACHEN Semantics and Verification of Software Summer Semester 2013 4.4

© Functional of the Operational Semantics

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.5) justifies the
following definition:

Definition 4.1 (Operational functional)

The functional of the operational semantics,
O[] : Cmd — (X --» X),

assigns to every statement ¢ € Cmd a partial state transformation
Ofc] : X --» £, which is defined as follows:

e if (c,0) — o' for some o/ € ¥
Ole]o = {undeﬁned otherwise

Remark: O[c]o can indeed be undefined
(consider e.g. ¢ = while true do skip; see Corollary 3.4)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 4.6

Equivalence of Statements

Underlying principle: two (syntactic) objects are considered
(semantically) equivalent if they have the same “meaning”

o finite automata: A; ~ Ay iff L(A1) = L(A2)
@ context-free grammars: Gy ~ Gy iff L(G1) = L(Gp)
@ Turing machines: Ty ~ T iff both compute same function

Definition 4.2 (Operational equivalence)

Two statements cj, ¢ € Cmd are called (operationally) equivalent
(notation: ¢ ~ ¢p) iff

D[[Cl]] = D[[Cz]].

Thus:
e ¢ ~ ¢ iff Ofci]o = Ofez]o for every o € &
o In particular, O[ci]o is undefined iff O[cz]o is undefined

nwr" iEN Semantics and Verification of Software Summer Semester 2013 4.7

“Unwinding” of Loops

Simple application of statement equivalence: test of execution condition in
a while loop can be represented by an if statement

For every b € BExp and c € Cmd,
while b do ¢ ~ if b then (c;while b do c) else skip.

on the board

Semantics and Verification of Software Summer Semester 2013 4.8

© Summary: Operational Semantics

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Summary: Operational Semantics

e Formalized by evaluation/execution relations

@ Inductively defined by derivation trees using structural operational
rules

@ Enables proofs about operational behavior of programs using
structural induction on derivation trees

e Semantic functional characterizes complete input/output behavior of
programs

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 4.10

e The Denotational Approach

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 4.11

Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output behavior

@ In operational semantics: indirect definition of semantic functional
O[.] : Cmd — (X --» ¥) by execution relation

@ Now: abstract from operational details

@ Denotational semanics: direct definition of program effect by
induction on its syntactic structure

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 4.12

© Denotational Semantics of Expressions

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 4.13

Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition 4.4 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,
A[] : AExp — (X — Z),
is given by:
AU[z]o = z Alar+az]o := Afa1]o + A[az]o
Alx]o == o(x) Alar-az]o = Afai]o — Afaz]o
A[ar*azx]o = Afai]lo - Aaz]o

Semantics and Verification of Software Summer Semester 2013 4.14

Semantics of Boolean Expressions

Definition 4.5 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions,
B[.] : BExp — (X — B),
is given by:
B[o = t
~ __ Jtrue if Afai]o = A[az]o
Blar=az]o := false otherwise
__ Jtrue if Afai]o > A[az]o
Blar>az]o = false otherwise
__ Jtrue if B[b]o = false
B[-b]o = false otherwise
_ [true if B[bi]o = B[by]o = true
B[b1 A b2l = false otherwise
_ [false if B[b1]o = B[by]o = false
B[b1 V b0 = true otherwise

v

RWNTH Semantics and Verification of Software Summer Semester 2013 4.15

	Recapitulation: Execution of Statements
	Functional of the Operational Semantics
	Summary: Operational Semantics
	The Denotational Approach
	Denotational Semantics of Expressions

