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Execution of Statements

Remember:
cu=skip|x :=a|c;c | if b then ¢ else ¢; | while b do ¢ € Cmd

Definition (Execution relation for statements)

For c € Cmd and 0,0’ € ¥, the execution relation (c,o) — o’ is defined
by the following rules:

(skip) (asgn) \,0) = 2
(skip,0) — o (x 1= a,0) = o[x — 2]
(c1,0) = 0 (e,0'y =" (b,o) — true {(c1,0) — o’
(seq) (if-t) -
(c1;¢0,0) — o’ (if b then ¢ else ¢p,0) — o’
(i) (b,o) — false (cp,0) — o’ (whef (b,o) — false
IT- wn-

(if b then ¢ else ¢,0) — o’ (while b do c,0) — o
(b,c) — true (c,0) — o’ (while b do c,o’) — o”

(while b do c¢,0) — o”

(wh-t)
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Determinism of Execution Relation |

This operational semantics is well defined in the following sense:

The execution relation for statements is deterministic, i.e., whenever

c € Cmd and 0,0, 0" € ¥ such that (c,o) — o’ and (c,0) — o”, then
/ 7

o' =o".

@ How to prove this theorem?
@ ldea:

e employ corresponding result for expressions (Lemma 3.6)
e use induction on the syntactic structure of ¢ 4

@ Instead: structural induction on derivation trees
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Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.5) justifies the
following definition:

Definition 4.1 (Operational functional)

The functional of the operational semantics,
O[] : Cmd — (X --» X),

assigns to every statement ¢ € Cmd a partial state transformation
Ofc] : X --» £, which is defined as follows:

e if (c,0) — o' for some o/ € ¥
Ole]o = {undeﬁned otherwise

Remark: O[c]o can indeed be undefined
(consider e.g. ¢ = while true do skip; see Corollary 3.4)
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Equivalence of Statements

Underlying principle: two (syntactic) objects are considered
(semantically) equivalent if they have the same “meaning”

o finite automata: A; ~ Ay iff L(A1) = L(A2)
@ context-free grammars: Gy ~ Gy iff L(G1) = L(Gp)
@ Turing machines: Ty ~ T iff both compute same function

Definition 4.2 (Operational equivalence)

Two statements cj, ¢ € Cmd are called (operationally) equivalent
(notation: ¢ ~ ¢p) iff

D[[Cl]] = D[[Cz]].

Thus:
e ¢ ~ ¢ iff Ofci]o = Ofez]o for every o € &
o In particular, O[ci]o is undefined iff O[cz]o is undefined
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“Unwinding” of Loops

Simple application of statement equivalence: test of execution condition in
a while loop can be represented by an if statement

For every b € BExp and c € Cmd,
while b do ¢ ~ if b then (c;while b do c) else skip.

on the board
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Summary: Operational Semantics

e Formalized by evaluation/execution relations

@ Inductively defined by derivation trees using structural operational
rules

@ Enables proofs about operational behavior of programs using
structural induction on derivation trees

e Semantic functional characterizes complete input/output behavior of
programs
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e The Denotational Approach
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Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output behavior

@ In operational semantics: indirect definition of semantic functional
O[.] : Cmd — (X --» ¥) by execution relation

@ Now: abstract from operational details

@ Denotational semanics: direct definition of program effect by
induction on its syntactic structure
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© Denotational Semantics of Expressions
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Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition 4.4 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,
A[] : AExp — (X — Z),
is given by:
AU[z]o = z Alar+az]o := Afa1]o + A[az]o
Alx]o == o(x) Alar-az]o = Afai]o — Afaz]o
A[ar*azx]o = Afai]lo - Aaz]o
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Semantics of Boolean Expressions

Definition 4.5 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions,
B[.] : BExp — (X — B),
is given by:
B[o = t
~ __ Jtrue if Afai]o = A[az]o
Blar=az]o := false otherwise
__ Jtrue if Afai]o > A[az]o
Blar>az]o = false otherwise
__ Jtrue if B[b]o = false
B[-b]o = false otherwise
_ [true if B[bi]o = B[by]o = true
B[b1 A b2l = false otherwise
_ [false if B[b1]o = B[by]o = false
B[b1 V b0 = true  otherwise

v
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