
Semantics and Verification of Software
Lecture 4: Operational vs. Denotational Semantics of WHILE

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Outline

1 Recapitulation: Execution of Statements

2 Functional of the Operational Semantics

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

Semantics and Verification of Software Summer Semester 2013 4.2

Execution of Statements

Remember:
c ::= skip | x := a | c1;c2 | if b then c1 else c2 | while b do c ∈ Cmd

Definition (Execution relation for statements)

For c ∈ Cmd and σ, σ′ ∈ Σ, the execution relation 〈c, σ〉 → σ′ is defined
by the following rules:

(skip)
〈skip, σ〉 → σ

(asgn)
〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]

(seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′
(if-t)

〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′
(wh-f)

〈b, σ〉 → false

〈while b do c , σ〉 → σ

(wh-t)
〈b, σ〉 → true 〈c , σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c , σ〉 → σ′′

Semantics and Verification of Software Summer Semester 2013 4.3

Determinism of Execution Relation I

This operational semantics is well defined in the following sense:

Theorem

The execution relation for statements is deterministic, i.e., whenever
c ∈ Cmd and σ, σ′, σ′′ ∈ Σ such that 〈c , σ〉 → σ′ and 〈c , σ〉 → σ′′, then
σ′ = σ′′.

How to prove this theorem?

Idea:

employ corresponding result for expressions (Lemma 3.6)
use induction on the syntactic structure of c

Instead: structural induction on derivation trees

Semantics and Verification of Software Summer Semester 2013 4.4

Outline

1 Recapitulation: Execution of Statements

2 Functional of the Operational Semantics

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

Semantics and Verification of Software Summer Semester 2013 4.5

Functional of the Operational Semantics

The determinism of the execution relation (Theorem 3.5) justifies the
following definition:

Definition 4.1 (Operational functional)

The functional of the operational semantics,

OJ.K : Cmd → (Σ 99K Σ),

assigns to every statement c ∈ Cmd a partial state transformation
OJcK : Σ 99K Σ, which is defined as follows:

OJcKσ :=

{
σ′ if 〈c, σ〉 → σ′ for some σ′ ∈ Σ
undefined otherwise

Remark: OJcKσ can indeed be undefined
(consider e.g. c = while true do skip; see Corollary 3.4)

Semantics and Verification of Software Summer Semester 2013 4.6

Equivalence of Statements

Underlying principle: two (syntactic) objects are considered
(semantically) equivalent if they have the same “meaning”

finite automata: A1 ∼ A2 iff L(A1) = L(A2)

context-free grammars: G1 ∼ G2 iff L(G1) = L(G2)

Turing machines: T1 ∼ T2 iff both compute same function

Definition 4.2 (Operational equivalence)

Two statements c1, c2 ∈ Cmd are called (operationally) equivalent
(notation: c1 ∼ c2) iff

OJc1K = OJc2K.

Thus:

c1 ∼ c2 iff OJc1Kσ = OJc2Kσ for every σ ∈ Σ

In particular, OJc1Kσ is undefined iff OJc2Kσ is undefined

Semantics and Verification of Software Summer Semester 2013 4.7

“Unwinding” of Loops

Simple application of statement equivalence: test of execution condition in
a while loop can be represented by an if statement

Lemma 4.3

For every b ∈ BExp and c ∈ Cmd,

while b do c ∼ if b then (c;while b do c) else skip.

Proof.

on the board

Semantics and Verification of Software Summer Semester 2013 4.8

Outline

1 Recapitulation: Execution of Statements

2 Functional of the Operational Semantics

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

Semantics and Verification of Software Summer Semester 2013 4.9

Summary: Operational Semantics

Formalized by evaluation/execution relations

Inductively defined by derivation trees using structural operational
rules

Enables proofs about operational behavior of programs using
structural induction on derivation trees

Semantic functional characterizes complete input/output behavior of
programs

Semantics and Verification of Software Summer Semester 2013 4.10

Outline

1 Recapitulation: Execution of Statements

2 Functional of the Operational Semantics

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

Semantics and Verification of Software Summer Semester 2013 4.11

Denotational Semantics of WHILE

Primary aspect of a program: its “effect”, i.e., input/output behavior

In operational semantics: indirect definition of semantic functional
OJ.K : Cmd → (Σ 99K Σ) by execution relation

Now: abstract from operational details

Denotational semanics: direct definition of program effect by
induction on its syntactic structure

Semantics and Verification of Software Summer Semester 2013 4.12

Outline

1 Recapitulation: Execution of Statements

2 Functional of the Operational Semantics

3 Summary: Operational Semantics

4 The Denotational Approach

5 Denotational Semantics of Expressions

Semantics and Verification of Software Summer Semester 2013 4.13

Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition 4.4 (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,

AJ.K : AExp → (Σ→ Z),

is given by:

AJzKσ := z AJa1+a2Kσ := AJa1Kσ + AJa2Kσ
AJxKσ := σ(x) AJa1-a2Kσ := AJa1Kσ − AJa2Kσ

AJa1*a2Kσ := AJa1Kσ · AJa2Kσ

Semantics and Verification of Software Summer Semester 2013 4.14

Semantics of Boolean Expressions

Definition 4.5 (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions,

BJ.K : BExp → (Σ→ B),

is given by:

BJtKσ := t

BJa1=a2Kσ :=

{
true if AJa1Kσ = AJa2Kσ
false otherwise

BJa1>a2Kσ :=

{
true if AJa1Kσ > AJa2Kσ
false otherwise

BJ¬bKσ :=

{
true if BJbKσ = false
false otherwise

BJb1 ∧ b2Kσ :=

{
true if BJb1Kσ = BJb2Kσ = true
false otherwise

BJb1 ∨ b2Kσ :=

{
false if BJb1Kσ = BJb2Kσ = false
true otherwise

Semantics and Verification of Software Summer Semester 2013 4.15

	Recapitulation: Execution of Statements
	Functional of the Operational Semantics
	Summary: Operational Semantics
	The Denotational Approach
	Denotational Semantics of Expressions

