Semantics and Verification of Software

Lecture 5: Denotational Semantics of WHILE |
(Fixpoint Semantics)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-1i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

@ Recapitulation: The Denotational Approach

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Denotational Semantics of WHILE

@ Primary aspect of a program: its “effect”, i.e., input/output behavior
@ In operational semantics: indirect definition of semantic functional
O[] : Cmd = (X --» ¥)
by execution relation
@ Now: abstract from operational details

@ Denotational semanics: direct definition of program effect by
induction on its syntactic structure

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 583

Semantics of Arithmetic Expressions

Again: value of an expression determined by current state

Definition (Denotational semantics of arithmetic expressions)

The (denotational) semantic functional for arithmetic expressions,
A[] : AExp — (X — Z),
is given by:
AU[z]o = z Alar+az]o := Afa1]o + A[az]o
Alx]o == o(x) Alar-az]o = Afai]o — Afaz]o
A[ar*azx]o = Afai]lo - Aaz]o

Semantics and Verification of Software Summer Semester 2013 5.4

Semantics of Boolean Expressions

Definition (Denotational semantics of Boolean expressions)

The (denotational) semantic functional for Boolean expressions,
B[.] : BExp — (X — B),
is given by:
B[o = t
~ __ Jtrue if Afai]o = A[az]o
Blar=az]o := false otherwise
__ Jtrue if Afai]o > A[az]o
Blar>az]o = false otherwise
__ Jtrue if B[b]o = false
B[-b]o = false otherwise
_ [true if B[bi]o = B[by]o = true
B[b1 A b2l = false otherwise
_ [false if B[b1]o = B[by]o = false
B[b1 V b0 = true otherwise

v

RWNTH Semantics and Verification of Software Summer Semester 2013 5.5

© Denotational Semantics of Statements

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

The Goal

@ Now: semantic functional
Cl.]: Cmd — (X --» X)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

The Goal

@ Now: semantic functional
Cl.]: Cmd — (X --» X)

@ Same type as operational functional
O[] : Cmd = (X --» X)

(in fact, both will turn out to be the same
= equivalence of operational and denotational semantics)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Auxiliary Functions

Inductive definition of €[.] employs following auxiliary functions:

@ identity on states: idy 1 X --» X :0— 0

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

Auxiliary Functions

Inductive definition of €[.] employs following auxiliary functions:
@ identity on states: idy : X --» X 0+ 0
@ (strict) composition of partial state transformations:
ol (E-»E)x(X--»X)=(X--»X)
where, for every f,g: ¥ --» X and o € ¥,

F(o)) i f(o) defined
(gof)o) = {ﬁrgdgfi%)ed othgrv)visee)

nerAACHEN Semantics and Verification of Software Summer Semester 2013 5.8

Auxiliary Functions

Inductive definition of €[.] employs following auxiliary functions:
@ identity on states: idy : X --» X 0+ 0
@ (strict) composition of partial state transformations:
ol (E-»E)x(X--»X)=(X--»X)
where, for every f,g: ¥ --» X and o € ¥,

F(o)) i f(o) defined
(gof)o) = {ﬁrgdgfi%)ed othgrv)visee)

@ semantic conditional:
cond: (E—=B)x (Z--+X)x(XE--»X)=>(X--»X)
where, forevery p: X =B, f,g: X --+X, ando € X,

o0 = () afina™

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 5.8

Semantics of Statements |

Definition 5.1 (Denotational semantics of statements)

The (denotational) semantic functional for statements,
C[.]: Cmd — (X --» X),

is given by:
¢[skip] := idx
C[x := aJo := o[x — A[a]o]
Cfec1;] = €lc] o €[c]

C[if b then c; else ;] := cond(B[b], €[c1], €[c2])
¢[while b do c] := fix(P)

where ® : (X --» X) = (X --» X) : f > cond(B[b], f o €[c],idy)

nwr"_“:l‘] ji Semantics and Verification of Software Summer Semester 2013 5.9

Semantics of Statements Il

Remarks:
e Definition of €[c] given by induction on syntactic structure of
ce Cmd

e in particular, ¢[while b do c] only refers to B[b] and €[c]
(and not to €while b do c] again)
e note difference to O[c]:

(b,o) — true {c,0) — ¢’ (while b do c,o’) — o”

(wh-t)

(while b do c,0) — o”

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

Semantics of Statements Il

Remarks:
e Definition of €[c] given by induction on syntactic structure of
ce Cmd

e in particular, ¢[while b do c] only refers to B[b] and €[c]
(and not to €while b do c] again)
e note difference to O[c]:
(b,o) — true {c,0) — ¢’ (while b do c,o’) — o”

(while b do c,0) — o”

(wh-t)

o In €fcy;] := €[] o €[c1], function composition o has to be strict
since non-termination of ¢; implies non-termination of ¢;; ¢

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.10

Semantics of Statements Il

Remarks:
e Definition of €[c] given by induction on syntactic structure of
ce Cmd
o in particular, €[while b do c] only refers to B[b] and €[c]
(and not to €while b do c] again)
e note difference to O[c]:

(b,o) — true {c,0) — ¢’ (while b do c,o’) — o”

(while b do c,0) — o”

(wh-t)

o In €fcy;] := €[] o €[c1], function composition o has to be strict
since non-termination of ¢; implies non-termination of ¢;; ¢

e In €[while b do c] := fix(®P), fix denotes a fixpoint operator
(which remains to be defined)
= "fixpoint semantics”

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.10

Semantics of Statements Il

Remarks:
e Definition of €[c] given by induction on syntactic structure of
ce Cmd
o in particular, €[while b do c] only refers to B[b] and €[c]
(and not to €while b do c] again)
e note difference to O[c]:

(b,o) — true {c,0) — ¢’ (while b do c,o’) — o”

(while b do c,0) — o”

(wh-t)

o In €fcy;] := €[] o €[c1], function composition o has to be strict
since non-termination of ¢; implies non-termination of ¢;; ¢

e In €[while b do c] := fix(®P), fix denotes a fixpoint operator
(which remains to be defined)
= "fixpoint semantics”

But: why fixpoints?

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.10

Why Fixpoints?

@ Goal: preserve validity of equivalence
¢[while b do] © C[if b then (c;while b do c) else skip]
(cf. Lemma 4.3)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.11

Why Fixpoints?

@ Goal: preserve validity of equivalence
¢[while b do] © C[if b then (c;while b do c) else skip]

(cf. Lemma 4.3)
@ Using the known parts of Def. 5.1, we obtain:

¢[while b do c]

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.11

Why Fixpoints?

@ Goal: preserve validity of equivalence
¢[while b do] © C[if b then (c;while b do c) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 5.1, we obtain:
¢[while b do c]

© C[if b then (c;while b do c) else skip]

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.11

Why Fixpoints?

@ Goal: preserve validity of equivalence
¢[while b do] © C[if b then (c;while b do c) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 5.1, we obtain:
¢[while b do c]

© C[if b then (c;while b do c) else skip]

Def. 5.1

cond(B[b], €[c;while b do c], €[skip])

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.11

Why Fixpoints?

@ Goal: preserve validity of equivalence
¢[while b do] © C[if b then (c;while b do c) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 5.1, we obtain:
¢[while b do c]

© C[if b then (c;while b do c) else skip]

PeL31 cond(B[b], €[c;while b do c], €[skip])
Def. 5.1

cond(B[b], €[while b do c] o €[c],idy)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Why Fixpoints?

@ Goal: preserve validity of equivalence
¢[while b do] © C[if b then (c;while b do c) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 5.1, we obtain:
¢[while b do c]

© C[if b then (c;while b do c) else skip]

PeL31 cond(B[b], €[c;while b do c], €[skip])
Def. 5.1

cond(B[b], €[while b do c] o €[c],idy)
@ Abbreviating f := €[while b do c] this yields:
f = cond(B[b], f o €[c],idy)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Why Fixpoints?

@ Goal: preserve validity of equivalence
¢[while b do] © C[if b then (c;while b do c) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 5.1, we obtain:
¢[while b do c]

© C[if b then (c;while b do c) else skip]

PeL31 cond(B[b], €[c;while b do c], €[skip])
cond(B[b], €[while b do c] o €[c],idy)
@ Abbreviating f := €[while b do c] this yields:

f = cond(B[b], f o €[c],idy)

@ Hence f must be a solution of this recursive equation

Def. 5.1

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Why Fixpoints?

@ Goal: preserve validity of equivalence
¢[while b do] © C[if b then (c;while b do c) else skip]
(cf. Lemma 4.3)
@ Using the known parts of Def. 5.1, we obtain:
¢[while b do c]

© C[if b then (c;while b do c) else skip]

PeL31 cond(B[b], €[c;while b do c], €[skip])
cond(B[b], €[while b do c] o €[c],idyx)
@ Abbreviating f := €[while b do c] this yields:
f = cond(B[b], f o €[c],idyx)
@ Hence f must be a solution of this recursive equation
@ In other words: f must be a fixpoint of the mapping
d:(X--»X) = (X --»X):f+ cond(B[b], f o €[c],ids)
(since the equation can be stated as f = ®(f))
RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Def. 5.1

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 5.12

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:
Existence: there does not need to exist any fixpoint. Examples:
Q@ ¢1:N—N:n+— n+1 has no fixpoint

Q ¢1:(Z——+Z)—>(Z——+Z):f|—>{g1 if f = g

g» otherwise

(where g1 # g») has no fixpoint

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:
Existence: there does not need to exist any fixpoint. Examples:
Q@ ¢1:N—N:n+— n+1 has no fixpoint

Q ¢1:(Z——+Z)—>(Z——+Z):f|—>{g1 if f = g

g» otherwise

(where g1 # g») has no fixpoint
Solution: in our setting, fixpoints always exist

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:
Existence: there does not need to exist any fixpoint. Examples:
Q@ ¢1:N—N:n+— n+1 has no fixpoint

' B -] g1 If f = 82
Q@O :(X-»X)>(X-»X):fr {g2 otherwise

(where g1 # g») has no fixpoint
Solution: in our setting, fixpoints always exist
Uniqueness: there might exist several fixpoints. Examples:
@ ¢ : N — N:nw n? has fixpoints {0,1}
@ every state transformation f is a fixpoint of
O (E-2Y)=>(E--X):ff

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

Well-Definedness of Fixpoint Semantics

But: fixpoint property not sufficient to obtain a well-defined semantics

Potential problems:
Existence: there does not need to exist any fixpoint. Examples:
Q@ ¢1:N—N:n+— n+1 has no fixpoint

' B -] g1 If f = 82
Q@O :(X-»X)>(X-»X):fr {g2 otherwise

(where g1 # g») has no fixpoint
Solution: in our setting, fixpoints always exist
Uniqueness: there might exist several fixpoints. Examples:
@ ¢ : N — N:nw n? has fixpoints {0,1}
@ every state transformation f is a fixpoint of
O (E-2Y)=>(E--X):ff

Solution: uniqueness guaranteed by choosing a special fixpoint

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

© Characterization of fix(®)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.13

Characterization of fix(®)

@ Let b€ BExp and c € Cmd

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.14

Characterization of fix(®)

@ Let b€ BExp and c € Cmd
o Let ®(f) := cond(B[b], f o €[c],idx)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.14

Characterization of fix(®)

@ Let b€ BExp and c € Cmd
o Let ®(f) := cond(B[b], f o €[c],idx)
o Let fy : ¥ --» X be a fixpoint of @, i.e.,, ®(fH) =1

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.14

Characterization of fix(®)

Let b € BExp and ¢ € Cmd
Let &(f) := cond(B[b], f o €[c],idx)
Let fp : ¥ --» ¥ be a fixpoint of ®, i.e., P(fp) =1
Given some initial state og € ¥, we will distinguish the following
cases:
@ loop while b do ¢ terminates after n iterations (n € N)
@ body c diverges in the nth iteration

(since it contains a non-terminating while statement)
© loop while b do c itself diverges

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Case 1: Termination of Loop

@ Loop while b do c terminates after n iterations (n € N)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 5.15

Case 1: Termination of Loop

@ Loop while b do c terminates after n iterations (n € N)

o Formally: there exist 01,...,0, € ¥ such that
true if0O<i<n
Blblo; = {false if i=n and
Clcloi = oi1 forevery 0 <i<n

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.15

Case 1: Termination of Loop

@ Loop while b do c terminates after n iterations (n € N)
o Formally: there exist 01,...,0, € ¥ such that

true if0O<i<n
Bb]o; = false ifi=n and

C[c]oi = git1 forevery 0 <i<n
o Now the definition ®(f) := cond(B[b], f o €[c],idx)
implies, for every 0 < j < n,
®(fo)(oi) = (foo€[c])(oi) since B[b]o; = true

= fO(O'iJrl) and
®(fo)(on) = on since B[b]o, = false

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Case 1: Termination of Loop

@ Loop while b do c terminates after n iterations (n € N)
o Formally: there exist 01,...,0, € ¥ such that

true if0O<i<n
Bb]o; = false ifi=n and

C[c]oi = git1 forevery 0 <i<n
o Now the definition ®(f) := cond(B[b], f o €[c],idx)
implies, for every 0 < j < n,
®(fo)(oi) = (foo€[c])(oi) since B[b]o; = true

= fO(O'iJrl) and
®(fo)(on) = on since B[b]o, = false

e Since ®(fy) = fy it follows that

fo(oi if0<i<n
fO(Ui):{UOn(+1) if i = n

and hence

f(00) = fo(01) = ... o) = o

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Case 1: Termination of Loop

@ Loop while b do c terminates after n iterations (n € N)
o Formally: there exist 01,...,0, € ¥ such that

true if0O<i<n
Bb]o; = false ifi=n and

C[c]oi = git1 forevery 0 <i<n
o Now the definition ®(f) := cond(B[b], f o €[c],idx)
implies, for every 0 < j < n,
®(fo)(oi) = (foo€[c])(oi) since B[b]o; = true

= fO(O'iJrl) and
®(fo)(on) = on since B[b]o, = false

e Since ®(fy) = fy it follows that
fo(07) = {ﬂ)(a;+1) if0<i<n

On if i =n

and hence
ﬁ)(JO) = fb(O’l) = ... fO(O-n) = O0n

= All fixpoints fy coincide on og (with result o,)!

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.16

Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)
@ Formally: there exist 01,...,0,-1 € X such that
B[blo; = true for every 0 </ < n and

o ifo<i<n-2
Ce]oi = {undefined ifi=n—-1

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.16

Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)
@ Formally: there exist 01,...,0,-1 € X such that
B[blo; = true for every 0 </ < n and

o ifo<i<n-2
Ce]oi = {undefined ifi=n—-1

@ Just as in the previous case (setting o, := undefined) it follows that
fo(o0) = undefined

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.16

Case 2: Divergence of Body

@ Body c diverges in the nth iteration
(since it contains a non-terminating while statement)

@ Formally: there exist 01,...,0,-1 € X such that
B[blo; = true for every 0 </ < n and
o ifo<i<n-2
Clcloi = {undefined ifi=n—1
@ Just as in the previous case (setting o, := undefined) it follows that

fo(o0) = undefined

= Again all fixpoints fy coincide on oo (with undefined result)!

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.16

Case 3: Divergence of Loop

@ Loop while b do c diverges

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.17

Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist 01,02,... € X such that

B[b]o; = true and
C[clo; = oj41 forevery i € N

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.17

Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist 01,02,... € X such that

B[b]o; = true and
C[clo; = oj41 forevery i € N

@ Here only derivable:

fo(oo) = fo(oi) for every i € N

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Case 3: Divergence of Loop

@ Loop while b do c diverges

@ Formally: there exist 01,02,... € X such that

B[b]o; = true and
C[clo; = oj41 forevery i € N

@ Here only derivable:

fo(oo) = fo(oi) for every i € N

= Value of fy(og) not determined!

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

For ®(fy) = fo and initial state og € X, case distinction yields:
© Loop while b do ¢ terminates after n iterations (n € N)
= fO(UO) = 0On
© Body c diverges in the nth iteration
= fo(0o) = undefined
© Loop while b do c diverges
= no condition on fy (only fy(oo) = fo(o;) for every i € N)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

For ®(fy) = fo and initial state og € X, case distinction yields:

© Loop while b do ¢ terminates after n iterations (n € N)
= fO(UO) = 0On

© Body c diverges in the nth iteration
= fo(0o) = undefined

© Loop while b do c diverges
= no condition on fy (only fy(oo) = fo(o;) for every i € N)

@ Not surprising since, e.g., for the loop while true do skip every
f:¥X --» X is a fixpoint:

®(f) = cond(B[true], f o €[skip],idy) = f

I(““ IIIAACHEN Semantics and Verification of Software S S

For ®(fy) = fo and initial state og € ¥, case distinction yields:

o

Loop while b do c terminates after n iterations (n € N)
= fO(UO) = 0On

Body c diverges in the nth iteration

= fo(0o) = undefined

Loop while b do c diverges

= no condition on fy (only fy(oo) = fo(o;) for every i € N)

Not surprising since, e.g., for the loop while true do skip every
f:¥X --» X is a fixpoint:

®(f) = cond(Btrue], f o €[skip],idy) = f
On the other hand, our operational understanding requires, for every

oo € X, .
0 ¢[while true do skip]og = undefined

nerAACHEN Semantics and Verification of Software Summer Semester 2013 5.18

For ®(fy) = fo and initial state og € ¥, case distinction yields:

o

fix(®) is the least defined fixpoint of ®.

Loop while b do c terminates after n iterations (n € N)
= fO(UO) = 0On

Body c diverges in the nth iteration

= fo(0o) = undefined

Loop while b do c diverges

= no condition on fy (only fy(oo) = fo(o;) for every i € N)

Not surprising since, e.g., for the loop while true do skip every
f:¥X --» X is a fixpoint:

®(f) = cond(Btrue], f o €[skip],idy) = f
On the other hand, our operational understanding requires, for every

oo € X, .
0 ¢[while true do skip]og = undefined

nerAACHEN Semantics and Verification of Software Summer Semester 2013 5.18

@ Making It Precise

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.19

Making It Precise |

To use fixpoint theory, the notion of “least defined” has to be made
precise.

o Given f,g: X --» X, let

!/

fCg < foreveryo,0’ €X:f(o)=0"=g(o)=0
(g is “at least as defined” as f)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

Making It Precise |

To use fixpoint theory, the notion of “least defined” has to be made
precise.

o Given f,g: X --» X, let
fCg < foreveryo,0' €X:f(oc)=0"=g(o)=10
(g is “at least as defined” as f)
e Equivalent to requiring
graph(f) C graph(g)
where
graph(h) := {(0,0") | 0 € £,0" = h(0) defined} C¥ x ¥
forevery h: ¥ --» ¥

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Making It Precise Il

Example 5.2

Let x € Var be fixed and let fo, f1, 2, f3: X --» X be given by

:= undefined
if o(x) even
undeflned otherwise
(o) if o(x) odd
undeflned otherwise
(0) =0

Semantics and Verification of Software Summer Semester 2013 5.21

Making It Precise Il

Example 5.2

Let x € Var be fixed, and let fy, f1,f>,f3 : ¥ --» ¥ be given by
fo(o) := undefined

o if o(x) even
fi(o) = undefined otherwise

_Jo if O'(X) odd
f(0) = undefined otherwise
(o) =0

Thisimpliess h CAC f, Hh CHhC R, AL hH and Hh Z

Semantics and Verification of Software Summer Semester 2013 5.21

Characterization of fix(®) |

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,
d(fix(P)) = fix(P)

o fix(®) is minimal with respect to C, i.e., for every fy : ¥ --+ ¥ such
that ®(fy) = fo,

fix(®) C f

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.22

Characterization of fix(®) |

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,
d(fix(P)) = fix(P)

o fix(®) is minimal with respect to C, i.e., for every fy : ¥ --+ ¥ such
that ®(fy) = fo,

fix(®) C f

For while true do skip we obtain for every f : ¥ --» ¥
&(f) = cond(Btrue], f o €[skip],ids) = f

nerAACHEN Semantics and Verification of Software Summer Semester 2013 5.22

Characterization of fix(®) |

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,
d(fix(P)) = fix(P)

o fix(®) is minimal with respect to C, i.e., for every fy : ¥ --+ ¥ such
that ®(fy) = fo,

fix(®) C f

For while true do skip we obtain for every f : ¥ --» ¥

(f) = cond(B[true], f o €[skip],ids) = f

= fix(®) = fy where fy(c) := undefined for every o € ¥
(that is, graph(fy) = 0)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Characterization of fix(®) Il

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c], idy)

@ Show how it can be “computed” (more exactly: approximated)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.23

Characterization of fix(®) Il

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c], idy)

@ Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain X --+ X: chain-complete partial order

on function ®: continuity

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 5.23

	Recapitulation: The Denotational Approach
	Denotational Semantics of Statements
	Characterization of fix()
	Making It Precise

