Semantics and Verification of Software

Lecture 6: Denotational Semantics of WHILE ||
(CCPOs and Continuous Functions)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-1i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

© Recapitulation: Denotational Semantics of WHILE

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Semantics of Statements

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,
C[.]: Cmd — (X --» X),

is given by:
¢[skip] := idx
C[x := aJo := o[x — A[a]o]
Cfec1;] = €lc] o €[c]

C[if b then c; else ;] := cond(B[b], €[c1], €[c2])
¢[while b do c] := fix(P)

where ® : (X --» X) = (X --» X) : f > cond(B[b], f o €[c],idy)

nwr"_“:l‘] ji Semantics and Verification of Software Summer Semester 2013 6.3

Characterization of fix(®) |

Now fix(®) can be characterized by:
o fix(®) is a fixpoint of ®, i.e.,
d(fix(P)) = fix(P)

o fix(®) is minimal with respect to C, i.e., for every fy : ¥ --+ ¥ such
that ®(fy) = fo,

fix(®) C o
(where f C g <= forevery o,/ € L:f(0) =0" = g(o) =0')

For while true do skip we obtain for every f : ¥ --» ¥

®(f) = cond(B[true], f o €[skip],ids) = f

= fix(®) = fy where fy(c) := undefined for every o € ¥
(that is, graph(fy) = 0)

nerAACHEN Semantics and Verification of Software Summer Semester 2013 6.4

Characterization of fix(®) Il

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c], idy)

@ Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain X --+» X: chain-complete partial order

on function ®: continuity

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

© Chain-Complete Partial Orders

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013

Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a
relation C C D x D such that, for every di, d», d3 € D,

reflexivity: di C dy
transitivity: di C dr and do C d3 = di C d3
antisymmetry: di C dr and db C d; = d1 = o>
It is called total if, in addition, always di C d» or d» C dj.

Semantics and Verification of Software Summer Semester 2013 6.7

Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a
relation C C D x D such that, for every di, d», d3 € D,

reflexivity: di C dy
transitivity: di C dr and do C d3 = di C d3
antisymmetry: di C dr and db C d; = d1 = o>
It is called total if, in addition, always di C d» or d» C dj.

Example 6.2
O (N, <) is a total partial order

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 6.7

Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a
relation C C D x D such that, for every di, d», d3 € D,

reflexivity: di C dy
transitivity: di C dr and do C d3 = di C d3
antisymmetry: di C dr and db C d; = d1 = o>
It is called total if, in addition, always di C d» or d» C dj.

Example 6.2
O (N, <) is a total partial order
@ (2%, C) is a (non-total) partial order

RWNTH HE Semantics and Verification of Software Summer Semester 2013 6.7

Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a
relation C C D x D such that, for every di, d», d3 € D,

reflexivity: di C dy
transitivity: di C dr and do C d3 = di C d3
antisymmetry: di C dr and db C d; = d1 = o>
It is called total if, in addition, always di C d» or d» C dj.

Example 6.2
O (N, <) is a total partial order
@ (2%, C) is a (non-total) partial order
@ (N, <) is not a partial order

RWNTH HE Semantics and Verification of Software Summer Semester 2013 6.7

Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D, C) consists of a set D, called domain, and of a
relation C C D x D such that, for every di, d», d3 € D,

reflexivity: di C dy
transitivity: di C dr and do C d3 = di C d3
antisymmetry: di C dr and db C d; = d1 = o>
It is called total if, in addition, always di C d» or d» C dj.

Example 6.2

O (N, <) is a total partial order
@ (2%, C) is a (non-total) partial order

@ (N, <) is not a partial order (since not reflexive)

RWNTH HE Semantics and Verification of Software Summer Semester 2013 6.7

Application to fix(®)

(X --» X,0C0) is a partial order.

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013

Application to fix(®)

(X --» X,0C0) is a partial order.

using the equivalence f C g <= graph(f) C graph(g) and the
partial-order property of C O

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 6.8

Chains and Least Upper Bounds |

Definition 6.4 (Chain, (least) upper bound)
Let (D,C) be a partial order and S C D.
© S is called a chain in D if, for every s1,s € S,

siEs20r L5
(that is, S is a totally ordered subset of D).

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 6.9

Chains and Least Upper Bounds |

Definition 6.4 (Chain, (least) upper bound)
Let (D,C) be a partial order and S C D.
© S is called a chain in D if, for every s1,s € S,

st syors s

(that is, S is a totally ordered subset of D).
@ An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 6.9

Chains and Least Upper Bounds |

Definition 6.4 (Chain, (least) upper bound)
Let (D,C) be a partial order and S C D.
© S is called a chain in D if, for every s1,s € S,

st syors s

(that is, S is a totally ordered subset of D).

@ An element d € D is called an upper bound of S if s C d for every
s € S (notation: S C d).

© An upper bound d of S is called least upper bound (LUB) or
supremum of S if d C d’ for every upper bound d’ of S
(notation: d =] |S).

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 6.9

Chains and Least Upper Bounds Il

© Every subset S C N is a chain in (N, <).
It has a LUB (its greatest element) iff it is finite.

v

RWNTH HE Semantics and Verification of Software Summer Semester 2013 6.10

Chains and Least Upper Bounds Il

© Every subset S C N is a chain in (N, <).
It has a LUB (its greatest element) iff it is finite.

Q@ {0,{0},{0,1},...} is a chain in (2%, C) with LUB N.

v

RWNTH HE Semantics and Verification of Software Summer Semester 2013 6.10

Chains and Least Upper Bounds Il

© Every subset S C N is a chain in (N, <).
It has a LUB (its greatest element) iff it is finite.
Q@ {0,{0},{0,1},...} is a chain in (2%, C) with LUB N.
© Let x € Var, and let f; : ¥ --» X for every i € N be given by

o) = olx = a(x)+1] ifo(x)<i
i\oJ)-= undefined otherwise

Then {fy, 1, f,...} is a chain in (X --» X, C), since for every j € N

and 0,0’ € ¥:
fi(o) =o'
= o(x) <i,o’ =o[x— o(x)+1]
= o(x)<i+1l,0 =0[x— o(x)+1]
= fiy1(o) =0’
= fiCfi

v

RWNTH Semantics and Verification of Software Summer Semester 2013 6.10

Chain Completeness

Definition 6.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 6.11

Chain Completeness

Definition 6.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

Example 6.7
Q (2V,C) is a CCPO with | S = Upeg M for every chain S C 21

Semantics and Verification of Software Summer Semester 2013 6.11

Chain Completeness

Definition 6.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

Example 6.7
Q (2V,C) is a CCPO with | S = Upeg M for every chain S C 21
@ (N, <) is not chain complete

Semantics and Verification of Software Summer Semester 2013 6.11

Chain Completeness

Definition 6.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

Example 6.7

Q (2V,C) is a CCPO with | S = Upeg M for every chain S C 21

@ (N, <) is not chain complete
(since, e.g., the chain N has no upper bound).

Semantics and Verification of Software Summer Semester 2013 6.11

Least Elements in CCPOs

Corollary 6.8
Every CCPO has a least element | | 0.

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 6.12

Least Elements in CCPOs

Corollary 6.8
Every CCPO has a least element | | ().

Proof.
Let (D,C) be a CCPO.
e By definition, () is a chain in D.

nwr"_“ﬁ_l‘] ji Semantics and Verification of Software Summer Semester 2013 6.12

Least Elements in CCPOs

Corollary 6.8
Every CCPO has a least element | | ().

Proof.
Let (D,C) be a CCPO.
e By definition, () is a chain in D.

@ By definition, every d € D is an upper bound of ().

nwr"_“ﬁ_l‘] ji Semantics and Verification of Software Summer Semester 2013 6.12

Least Elements in CCPOs

Corollary 6.8
Every CCPO has a least element | | ().

Proof.
Let (D,C) be a CCPO.
e By definition, () is a chain in D.

@ By definition, every d € D is an upper bound of ().
@ Thus | | exists and is the least element of D.

nwr"_“:l‘] ji Semantics and Verification of Software Summer Semester 2013 6.12

Application to fix(®)

@ (X --»X,C) isa CCPO with least element fy where graph(fy) = 0.

@ In particular, for every chain S C ¥ --» ¥,

graph (l_l 5) = U graph(f).

fes

nerAACHEN Semantics and Verification of Software Summer Semester 2013

Application to fix(®)

Lemma 6.9

e (X --» X,C) is a CCPO with least element fy where graph(fy) = ().

@ In particular, for every chain S C ¥ --» ¥,

graph (l_l 5) = U graph(f).

fes

on the board] l

Semantics and Verification of Software Summer Semester 2013 6.13

Application to fix(®)

Lemma 6.9
@ (X --»X,C) isa CCPO with least element fy where graph(fy) = 0.

@ In particular, for every chain S C ¥ --» ¥,

graph (l_l 5) = U graph(f).

on the board

Example 6.10 (cf. Example 6.5(3
Let x € Var, and let f; : ¥ --» X for every i € N be given by

(o) = olx—o(x)+1] ifo(x)<i
i\%) *= Y undefined otherwise

Then S := {fy, fi, f>,...} is a chain (Example 6.5(3)) with | | S = f where
f:X—=Y:0—ox—o(x)+1]

v

RWNTH Semantics and Verification of Software Summer Semester 2013 6.13

© Monotonic and Continuous Functions

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 6.14

Monotonicity |

Definition 6.11 (Monotonicity)

Let (D,C) and (D’,C’) be partial orders, and let F : D — D’. F is called
monotonic (w.r.t. (D,C) and (D', ")) if, for every di,d» € D,

d]_ C d2 = F(dl) E/ F(dz)

nerAACHEN Semantics and Verification of Software Summer Semester 2013 6.15

Monotonicity |

Definition 6.11 (Monotonicity)

Let (D,C) and (D’,C’) be partial orders, and let F : D — D’. F is called
monotonic (w.r.t. (D,C) and (D', ")) if, for every di,d» € D,

d]_ C d2 = F(dl) E/ F(dz)

Interpretation: monotonic functions “preserve information”

nerAACHEN Semantics and Verification of Software Summer Semester 2013 6.15

Monotonicity |

Definition 6.11 (Monotonicity)

Let (D,C) and (D’,C’) be partial orders, and let F : D — D’. F is called
monotonic (w.r.t. (D,C) and (D', ")) if, for every di,d» € D,

dl C d2 = F(dl) E/ F(dz)

Interpretation: monotonic functions “preserve information”

Example 6.12

Q Let T:={SCN|Sfinite}. Then F; : T = N:S5—= 3 _snis
monotonic w.r.t. (2, C) and (N, <).

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 6.15

Monotonicity |

Definition 6.11 (Monotonicity)

Let (D,C) and (D’,C’) be partial orders, and let F : D — D’. F is called
monotonic (w.r.t. (D,C) and (D', ")) if, for every di,d» € D,

dl C d2 = F(dl) E/ F(dz)

Interpretation: monotonic functions “preserve information”

Example 6.12

Q Let T:={SCN|Sfinite}. Then F; : T = N:S5—= 3 _snis
monotonic w.r.t. (2, C) and (N, <).

Q@ F: 2N =2V : S+3 N\ S is not monotonic w.r.t. (21, C)
(since, e.g., ® C N but F(0) =N ¢ F(N) =0).

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 6.15

Application to fix(®)

Let b € BExp, c € Cmd, and ® : (X --» ¥) — (X --» X) with
®(f) := cond(B[b], f o €[c],idx). Then & is monotonic w.r.t.
(X --»%,0).

nerAACHEN Semantics and Verification of Software Summer Semester 2013 6.16

Application to fix(®)

Let b € BExp, c € Cmd, and ® : (X --» ¥) — (X --» X) with
®(f) := cond(B[b], f o €[c],idx). Then & is monotonic w.r.t.
(X --»%,0).

on the board OJ \

nerAACHEN Semantics and Verification of Software Summer Semester 2013 6.16

Monotonicity Il

The following lemma states how chains behave under monotonic functions.

Lemma 6.14

Let (D,C) and (D',C") be CCPOs, F : D — D' monotonic, and S C D a
chain in D. Then:

Q@ F(S):={F(d)|de S} isachaininD'.
@ [IF(S) T F(US).

Semantics and Verification of Software Summer Semester 2013 6.17

Monotonicity Il

The following lemma states how chains behave under monotonic functions.

Lemma 6.14

Let (D,C) and (D',C") be CCPOs, F : D — D' monotonic, and S C D a
chain in D. Then:

Q F(S):={F(d)|de S} isa chainin D'
@ [IF(S) T F(US).

on the board

Semantics and Verification of Software Summer Semester 2013 6.17

Continuity

A function F is continuous if the order of applying F and taking LUBs can
be reversed:

Definition 6.15 (Continuity)

Let (D,C) and (D’,C’) be CCPOs and F : D — D’ monotonic. Then F is
called continuous (w.r.t. (D,C) and (D’,)) if, for every non-empty

chain S C D,

F(Ls) =LIFs).

Semantics and Verification of Software Summer Semester 2013 6.18

Continuity

A function F is continuous if the order of applying F and taking LUBs can
be reversed:

Definition 6.15 (Continuity)

Let (D,C) and (D’,C’) be CCPOs and F : D — D’ monotonic. Then F is
called continuous (w.r.t. (D,C) and (D’,)) if, for every non-empty

chain S C D,

F(Ls) =LIFs).

Lemma 6.16

Let b € BExp, c € Cmd, and ®(f) := cond(B[b], f o €[c],ids). Then ¢
is continuous w.r.t. (¥ --» X, C).

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 6.18

Continuity

A function F is continuous if the order of applying F and taking LUBs can
be reversed:

Definition 6.15 (Continuity)

Let (D,C) and (D’,C’) be CCPOs and F : D — D’ monotonic. Then F is
called continuous (w.r.t. (D,C) and (D’,)) if, for every non-empty

chain S C D,

F(Ls) =LIFs).

Lemma 6.16

Let b € BExp, c € Cmd, and ®(f) := cond(B[b], f o €[c],idy). Then ®
is continuous w.r.t. (X --» X, C).

omitted OJ

RWNTH Semantics and Verification of Software Summer Semester 2013 6.18

@ The Fixpoint Theorem

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 6.19

The Fixpoint Theorem

Alfred Tarski (1901-1983)

Bronislaw Knaster (1893-1990)

Theorem 6.17 (Fixpoint Theorem by Tarski and Knaster)
Let (D,C) be a CCPO and F : D — D continuous. Then

fix(F) := | | {F" (| |0) | ne N}

is the least fixpoint of F where
FO(d) := d and F""1(d) := F(F"(d)).

Semantics and Verification of Software Summer Semester 2013 6.20

The Fixpoint Theorem

Alfred Tarski (1901-1983)

Bronislaw Knaster (1893-1990)

Theorem 6.17 (Fixpoint Theorem by Tarski and Knaster)
Let (D,C) be a CCPO and F : D — D continuous. Then
fix(F) := | | {F" (| |0) | ne N}
is the least fixpoint of F where
FO(d) := d and F""(d) := F(F"(d)).

on the board]

RWNTH HE Semantics and Verification of Software Summer Semester 2013 6.20

Application to fix(®)

Altogether this completes the definition of €[.]. In particular, for the
while statement we obtain:

Corollary 6.18

Let b € BExp, c € Cmd, and ®(f) := cond(B[b], f o €[c],idx). Then

graph(fix(®)) = | J graph(¢"(f))
neN

nerAACHEN Semantics and Verification of Software Summer Semester 2013 6.21

Application to fix(®)

Altogether this completes the definition of €[.]. In particular, for the
while statement we obtain:

Corollary 6.18

Let b € BExp, c € Cmd, and ®(f) := cond(B[b], f o €[c],idx). Then

graph(fix(®)) = | J graph(¢"(f))
neN

Proof.
Using

@ Lemma 6.9
o (X --»X,C) CCPO with least element f
e LUB = union of graphs
@ Lemma 6.16 (¢ continuous)
@ Theorem 6.17 (Fixpoint Theorem) O

v

RWNTH Semantics and Verification of Software Summer Semester 2013 6.21

	Recapitulation: Denotational Semantics of WHILE
	Chain-Complete Partial Orders
	Monotonic and Continuous Functions
	The Fixpoint Theorem

