

Semantics and Verification of Software

Lecture 6: Denotational Semantics of WHILE II (CCPOs and Continuous Functions)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw13/>

Summer Semester 2013

- 1 Recapitulation: Denotational Semantics of WHILE
- 2 Chain-Complete Partial Orders
- 3 Monotonic and Continuous Functions
- 4 The Fixpoint Theorem

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

$$\mathfrak{C}[\cdot] : Cmd \rightarrow (\Sigma \dashrightarrow \Sigma),$$

is given by:

$$\begin{aligned}\mathfrak{C}[\text{skip}] &:= \text{id}_\Sigma \\ \mathfrak{C}[x := a]\sigma &:= \sigma[x \mapsto \mathfrak{A}[a]\sigma] \\ \mathfrak{C}[c_1 ; c_2] &:= \mathfrak{C}[c_2] \circ \mathfrak{C}[c_1] \\ \mathfrak{C}[\text{if } b \text{ then } c_1 \text{ else } c_2] &:= \text{cond}(\mathfrak{B}[b], \mathfrak{C}[c_1], \mathfrak{C}[c_2]) \\ \mathfrak{C}[\text{while } b \text{ do } c] &:= \text{fix}(\Phi)\end{aligned}$$

where $\Phi : (\Sigma \dashrightarrow \Sigma) \rightarrow (\Sigma \dashrightarrow \Sigma) : f \mapsto \text{cond}(\mathfrak{B}[b], f \circ \mathfrak{C}[c], \text{id}_\Sigma)$

Characterization of $\text{fix}(\Phi)$ I

Now $\text{fix}(\Phi)$ can be characterized by:

- $\text{fix}(\Phi)$ is a **fixpoint** of Φ , i.e.,

$$\Phi(\text{fix}(\Phi)) = \text{fix}(\Phi)$$

- $\text{fix}(\Phi)$ is **minimal** with respect to \sqsubseteq , i.e., for every $f_0 : \Sigma \dashrightarrow \Sigma$ such that $\Phi(f_0) = f_0$,

$$\text{fix}(\Phi) \sqsubseteq f_0$$

(where $f \sqsubseteq g \iff \text{for every } \sigma, \sigma' \in \Sigma : f(\sigma) = \sigma' \Rightarrow g(\sigma) = \sigma'$)

Example

For `while true do skip` we obtain for every $f : \Sigma \dashrightarrow \Sigma$:

$$\Phi(f) = \text{cond}(\mathfrak{B}[\text{true}], f \circ \mathfrak{C}[\text{skip}], \text{id}_\Sigma) = f$$

$\Rightarrow \text{fix}(\Phi) = f_\emptyset$ where $f_\emptyset(\sigma) := \text{undefined}$ for every $\sigma \in \Sigma$
(that is, $\text{graph}(f_\emptyset) = \emptyset$)

Goals:

- Prove **existence** of $\text{fix}(\Phi)$ for $\Phi(f) = \text{cond}(\mathfrak{B}[\![b]\!], f \circ \mathfrak{C}[\![c]\!], \text{id}_\Sigma)$
- Show how it can be “computed” (more exactly: **approximated**)

Sufficient conditions:

on domain $\Sigma \dashrightarrow \Sigma$: **chain-complete partial order**

on function Φ : **continuity**

- 1 Recapitulation: Denotational Semantics of WHILE
- 2 Chain-Complete Partial Orders
- 3 Monotonic and Continuous Functions
- 4 The Fixpoint Theorem

Definition 6.1 (Partial order)

A **partial order (PO)** (D, \sqsubseteq) consists of a set D , called **domain**, and of a relation $\sqsubseteq \subseteq D \times D$ such that, for every $d_1, d_2, d_3 \in D$,

reflexivity: $d_1 \sqsubseteq d_1$

transitivity: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_3 \Rightarrow d_1 \sqsubseteq d_3$

antisymmetry: $d_1 \sqsubseteq d_2$ and $d_2 \sqsubseteq d_1 \Rightarrow d_1 = d_2$

It is called **total** if, in addition, always $d_1 \sqsubseteq d_2$ or $d_2 \sqsubseteq d_1$.

Example 6.2

- ① (\mathbb{N}, \leq) is a total partial order
- ② $(2^{\mathbb{N}}, \subseteq)$ is a (non-total) partial order
- ③ $(\mathbb{N}, <)$ is not a partial order (since not reflexive)

Lemma 6.3

$(\Sigma \dashrightarrow \Sigma, \sqsubseteq)$ is a partial order.

Proof.

using the equivalence $f \sqsubseteq g \iff \text{graph}(f) \subseteq \text{graph}(g)$ and the partial-order property of \subseteq

□

Definition 6.4 (Chain, (least) upper bound)

Let (D, \sqsubseteq) be a partial order and $S \subseteq D$.

- ① S is called a **chain** in D if, for every $s_1, s_2 \in S$,

$$s_1 \sqsubseteq s_2 \text{ or } s_2 \sqsubseteq s_1$$

(that is, S is a totally ordered subset of D).

- ② An element $d \in D$ is called an **upper bound** of S if $s \sqsubseteq d$ for every $s \in S$ (notation: $S \sqsubseteq d$).
- ③ An upper bound d of S is called **least upper bound (LUB)** or **supremum** of S if $d \sqsubseteq d'$ for every upper bound d' of S (notation: $d = \sqcup S$).

Example 6.5

- ① Every subset $S \subseteq \mathbb{N}$ is a chain in (\mathbb{N}, \leq) .
It has a LUB (its greatest element) iff it is finite.
- ② $\{\emptyset, \{0\}, \{0, 1\}, \dots\}$ is a chain in $(2^{\mathbb{N}}, \subseteq)$ with LUB \mathbb{N} .
- ③ Let $x \in \text{Var}$, and let $f_i : \Sigma \rightarrow \Sigma$ for every $i \in \mathbb{N}$ be given by

$$f_i(\sigma) := \begin{cases} \sigma[x \mapsto \sigma(x) + 1] & \text{if } \sigma(x) \leq i \\ \text{undefined} & \text{otherwise} \end{cases}$$

Then $\{f_0, f_1, f_2, \dots\}$ is a chain in $(\Sigma \rightarrow \Sigma, \sqsubseteq)$, since for every $i \in \mathbb{N}$ and $\sigma, \sigma' \in \Sigma$:

$$\begin{aligned} f_i(\sigma) &= \sigma' \\ \Rightarrow \sigma(x) &\leq i, \sigma' = \sigma[x \mapsto \sigma(x) + 1] \\ \Rightarrow \sigma(x) &\leq i + 1, \sigma' = \sigma[x \mapsto \sigma(x) + 1] \\ \Rightarrow f_{i+1}(\sigma) &= \sigma' \\ \Rightarrow f_i &\sqsubseteq f_{i+1} \end{aligned}$$

Definition 6.6 (Chain completeness)

A partial order is called **chain complete (CCPO)** if every of its chains has a least upper bound.

Example 6.7

- ① $(2^{\mathbb{N}}, \subseteq)$ is a CCPO with $\bigsqcup S = \bigcup_{M \in S} M$ for every chain $S \subseteq 2^{\mathbb{N}}$.
- ② (\mathbb{N}, \leq) is not chain complete
(since, e.g., the chain \mathbb{N} has no upper bound).

Corollary 6.8

Every CPO has a least element $\sqcup \emptyset$.

Proof.

Let (D, \sqsubseteq) be a CPO.

- By definition, \emptyset is a chain in D .
- By definition, every $d \in D$ is an upper bound of \emptyset .
- Thus $\sqcup \emptyset$ exists and is the least element of D .

Application to $\text{fix}(\Phi)$

Lemma 6.9

- $(\Sigma \dashrightarrow \Sigma, \sqsubseteq)$ is a CCPo with least element f_\emptyset where $\text{graph}(f_\emptyset) = \emptyset$.
- In particular, for every chain $S \subseteq \Sigma \dashrightarrow \Sigma$,

$$\text{graph}(\bigsqcup S) = \bigcup_{f \in S} \text{graph}(f).$$

Proof.

on the board □

Example 6.10 (cf. Example 6.5(3))

Let $x \in \text{Var}$, and let $f_i : \Sigma \dashrightarrow \Sigma$ for every $i \in \mathbb{N}$ be given by

$$f_i(\sigma) := \begin{cases} \sigma[x \mapsto \sigma(x) + 1] & \text{if } \sigma(x) \leq i \\ \text{undefined} & \text{otherwise} \end{cases}$$

Then $S := \{f_0, f_1, f_2, \dots\}$ is a chain (Example 6.5(3)) with $\bigsqcup S = f$ where

$$f : \Sigma \rightarrow \Sigma : \sigma \mapsto \sigma[x \mapsto \sigma(x) + 1]$$

- 1 Recapitulation: Denotational Semantics of WHILE
- 2 Chain-Complete Partial Orders
- 3 Monotonic and Continuous Functions
- 4 The Fixpoint Theorem

Definition 6.11 (Monotonicity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be partial orders, and let $F : D \rightarrow D'$. F is called **monotonic** (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every $d_1, d_2 \in D$,

$$d_1 \sqsubseteq d_2 \Rightarrow F(d_1) \sqsubseteq' F(d_2).$$

Interpretation: monotonic functions “preserve information”

Example 6.12

- ① Let $T := \{S \subseteq \mathbb{N} \mid S \text{ finite}\}$. Then $F_1 : T \rightarrow \mathbb{N} : S \mapsto \sum_{n \in S} n$ is monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ and (\mathbb{N}, \leq) .
- ② $F_2 : 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}} : S \mapsto \mathbb{N} \setminus S$ is not monotonic w.r.t. $(2^{\mathbb{N}}, \subseteq)$ (since, e.g., $\emptyset \subseteq \mathbb{N}$ but $F_2(\emptyset) = \mathbb{N} \not\subseteq F_2(\mathbb{N}) = \emptyset$).

Lemma 6.13

Let $b \in BExp$, $c \in Cmd$, and $\Phi : (\Sigma \dashrightarrow \Sigma) \rightarrow (\Sigma \dashrightarrow \Sigma)$ with $\Phi(f) := \text{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \text{id}_\Sigma)$. Then Φ is monotonic w.r.t. $(\Sigma \dashrightarrow \Sigma, \sqsubseteq)$.

Proof.

on the board

The following lemma states how chains behave under monotonic functions.

Lemma 6.14

Let (D, \sqsubseteq) and (D', \sqsubseteq') be CCPOs, $F : D \rightarrow D'$ monotonic, and $S \subseteq D$ a chain in D . Then:

- ① $F(S) := \{F(d) \mid d \in S\}$ is a chain in D' .
- ② $\sqcup F(S) \sqsubseteq' F(\sqcup S)$.

Proof.

on the board

Continuity

A function F is continuous if the order of applying F and taking LUBs can be reversed:

Definition 6.15 (Continuity)

Let (D, \sqsubseteq) and (D', \sqsubseteq') be CCPs and $F : D \rightarrow D'$ monotonic. Then F is called **continuous** (w.r.t. (D, \sqsubseteq) and (D', \sqsubseteq')) if, for every non-empty chain $S \subseteq D$,

$$F\left(\bigsqcup S\right) = \bigsqcup F(S).$$

Lemma 6.16

Let $b \in BExp$, $c \in Cmd$, and $\Phi(f) := \text{cond}(\mathfrak{B}\llbracket b \rrbracket, f \circ \mathfrak{C}\llbracket c \rrbracket, \text{id}_\Sigma)$. Then Φ is continuous w.r.t. $(\Sigma \dashrightarrow \Sigma, \sqsubseteq)$.

Proof.

omitted

- 1 Recapitulation: Denotational Semantics of WHILE
- 2 Chain-Complete Partial Orders
- 3 Monotonic and Continuous Functions
- 4 The Fixpoint Theorem

The Fixpoint Theorem

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem 6.17 (Fixpoint Theorem by Tarski and Knaster)

Let (D, \sqsubseteq) be a CCPO and $F : D \rightarrow D$ continuous. Then

$$\text{fix}(F) := \bigsqcup \left\{ F^n \left(\bigsqcup \emptyset \right) \mid n \in \mathbb{N} \right\}$$

is the least fixpoint of F where

$$F^0(d) := d \text{ and } F^{n+1}(d) := F(F^n(d)).$$

Proof.

on the board

Application to $\text{fix}(\Phi)$

Altogether this completes the definition of $\mathfrak{C}[\![\cdot]\!]$. In particular, for the `while` statement we obtain:

Corollary 6.18

Let $b \in BExp$, $c \in Cmd$, and $\Phi(f) := \text{cond}(\mathfrak{B}[\![b]\!], f \circ \mathfrak{C}[\![c]\!], \text{id}_\Sigma)$. Then

$$\text{graph}(\text{fix}(\Phi)) = \bigcup_{n \in \mathbb{N}} \text{graph}(\Phi^n(f_\emptyset))$$

Proof.

Using

- Lemma 6.9
 - $(\Sigma \dashrightarrow \Sigma, \sqsubseteq)$ CCPo with least element f_\emptyset
 - LUB = union of graphs
- Lemma 6.16 (Φ continuous)
- Theorem 6.17 (Fixpoint Theorem)

□