
Semantics and Verification of Software
Lecture 6: Denotational Semantics of WHILE II

(CCPOs and Continuous Functions)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/


Outline

1 Recapitulation: Denotational Semantics of WHILE

2 Chain-Complete Partial Orders

3 Monotonic and Continuous Functions

4 The Fixpoint Theorem

Semantics and Verification of Software Summer Semester 2013 6.2



Semantics of Statements

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ 99K Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)

Semantics and Verification of Software Summer Semester 2013 6.3



Characterization of fix(Φ) I

Now fix(Φ) can be characterized by:

fix(Φ) is a fixpoint of Φ, i.e.,

Φ(fix(Φ)) = fix(Φ)

fix(Φ) is minimal with respect to v, i.e., for every f0 : Σ 99K Σ such
that Φ(f0) = f0,

fix(Φ) v f0

(where f v g ⇐⇒ for every σ, σ′ ∈ Σ : f (σ) = σ′ ⇒ g(σ) = σ′)

Example

For while true do skip we obtain for every f : Σ 99K Σ:

Φ(f ) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

⇒ fix(Φ) = f∅ where f∅(σ) := undefined for every σ ∈ Σ
(that is, graph(f∅) = ∅)

Semantics and Verification of Software Summer Semester 2013 6.4



Characterization of fix(Φ) II

Goals:

Prove existence of fix(Φ) for Φ(f ) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ 99K Σ: chain-complete partial order

on function Φ: continuity

Semantics and Verification of Software Summer Semester 2013 6.5



Outline

1 Recapitulation: Denotational Semantics of WHILE

2 Chain-Complete Partial Orders

3 Monotonic and Continuous Functions

4 The Fixpoint Theorem

Semantics and Verification of Software Summer Semester 2013 6.6



Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 ⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 ⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 6.2

1 (N,≤) is a total partial order

2 (2N,⊆) is a (non-total) partial order

3 (N, <) is not a partial order (since not reflexive)

Semantics and Verification of Software Summer Semester 2013 6.7



Application to fix(Φ)

Lemma 6.3

(Σ 99K Σ,v) is a partial order.

Proof.

using the equivalence f v g ⇐⇒ graph(f ) ⊆ graph(g) and the
partial-order property of ⊆

Semantics and Verification of Software Summer Semester 2013 6.8



Chains and Least Upper Bounds I

Definition 6.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S ,

s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s v d for every

s ∈ S (notation: S v d).
3 An upper bound d of S is called least upper bound (LUB) or

supremum of S if d v d ′ for every upper bound d ′ of S
(notation: d =

⊔
S).

Semantics and Verification of Software Summer Semester 2013 6.9



Chains and Least Upper Bounds II

Example 6.5

1 Every subset S ⊆ N is a chain in (N,≤).
It has a LUB (its greatest element) iff it is finite.

2 {∅, {0}, {0, 1}, . . .} is a chain in (2N,⊆) with LUB N.

3 Let x ∈ Var , and let fi : Σ 99K Σ for every i ∈ N be given by

fi (σ) :=

{
σ[x 7→ σ(x) + 1] if σ(x) ≤ i
undefined otherwise

Then {f0, f1, f2, . . .} is a chain in (Σ 99K Σ,v), since for every i ∈ N
and σ, σ′ ∈ Σ:

fi (σ) = σ′

⇒ σ(x) ≤ i , σ′ = σ[x 7→ σ(x) + 1]
⇒ σ(x) ≤ i + 1, σ′ = σ[x 7→ σ(x) + 1]
⇒ fi+1(σ) = σ′

⇒ fi v fi+1

Semantics and Verification of Software Summer Semester 2013 6.10



Chain Completeness

Definition 6.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

Example 6.7

1 (2N,⊆) is a CCPO with
⊔

S =
⋃

M∈S M for every chain S ⊆ 2N.

2 (N,≤) is not chain complete
(since, e.g., the chain N has no upper bound).

Semantics and Verification of Software Summer Semester 2013 6.11



Least Elements in CCPOs

Corollary 6.8

Every CCPO has a least element
⊔
∅.

Proof.

Let (D,v) be a CCPO.

By definition, ∅ is a chain in D.

By definition, every d ∈ D is an upper bound of ∅.
Thus

⊔
∅ exists and is the least element of D.

Semantics and Verification of Software Summer Semester 2013 6.12



Application to fix(Φ)

Lemma 6.9

(Σ 99K Σ,v) is a CCPO with least element f∅ where graph(f∅) = ∅.
In particular, for every chain S ⊆ Σ 99K Σ,

graph
(⊔

S
)

=
⋃
f ∈S

graph(f ).

Proof.

on the board

Example 6.10 (cf. Example 6.5(3))

Let x ∈ Var , and let fi : Σ 99K Σ for every i ∈ N be given by

fi (σ) :=

{
σ[x 7→ σ(x) + 1] if σ(x) ≤ i
undefined otherwise

Then S := {f0, f1, f2, . . .} is a chain (Example 6.5(3)) with
⊔

S = f where

f : Σ→ Σ : σ 7→ σ[x 7→ σ(x) + 1]

Semantics and Verification of Software Summer Semester 2013 6.13



Outline

1 Recapitulation: Denotational Semantics of WHILE

2 Chain-Complete Partial Orders

3 Monotonic and Continuous Functions

4 The Fixpoint Theorem

Semantics and Verification of Software Summer Semester 2013 6.14



Monotonicity I

Definition 6.11 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let F : D → D ′. F is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 ⇒ F (d1) v′ F (d2).

Interpretation: monotonic functions “preserve information”

Example 6.12

1 Let T := {S ⊆ N | S finite}. Then F1 : T → N : S 7→
∑

n∈S n is
monotonic w.r.t. (2N,⊆) and (N,≤).

2 F2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but F2(∅) = N 6⊆ F2(N) = ∅).

Semantics and Verification of Software Summer Semester 2013 6.15



Application to fix(Φ)

Lemma 6.13

Let b ∈ BExp, c ∈ Cmd, and Φ : (Σ 99K Σ)→ (Σ 99K Σ) with
Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ is monotonic w.r.t.
(Σ 99K Σ,v).

Proof.

on the board

Semantics and Verification of Software Summer Semester 2013 6.16



Monotonicity II

The following lemma states how chains behave under monotonic functions.

Lemma 6.14

Let (D,v) and (D ′,v′) be CCPOs, F : D → D ′ monotonic, and S ⊆ D a
chain in D. Then:

1 F (S) := {F (d) | d ∈ S} is a chain in D ′.

2
⊔

F (S) v′ F (
⊔

S).

Proof.

on the board

Semantics and Verification of Software Summer Semester 2013 6.17



Continuity

A function F is continuous if the order of applying F and taking LUBs can
be reversed:

Definition 6.15 (Continuity)

Let (D,v) and (D ′,v′) be CCPOs and F : D → D ′ monotonic. Then F is
called continuous (w.r.t. (D,v) and (D ′,v′)) if, for every non-empty
chain S ⊆ D,

F
(⊔

S
)

=
⊔

F (S).

Lemma 6.16

Let b ∈ BExp, c ∈ Cmd, and Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ
is continuous w.r.t. (Σ 99K Σ,v).

Proof.

omitted

Semantics and Verification of Software Summer Semester 2013 6.18



Outline

1 Recapitulation: Denotational Semantics of WHILE

2 Chain-Complete Partial Orders

3 Monotonic and Continuous Functions

4 The Fixpoint Theorem

Semantics and Verification of Software Summer Semester 2013 6.19



The Fixpoint Theorem

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem 6.17 (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔{

F n
(⊔
∅
)
| n ∈ N

}
is the least fixpoint of F where

F 0(d) := d and F n+1(d) := F (F n(d)).

Proof.

on the board

Semantics and Verification of Software Summer Semester 2013 6.20



Application to fix(Φ)

Altogether this completes the definition of CJ.K. In particular, for the
while statement we obtain:

Corollary 6.18

Let b ∈ BExp, c ∈ Cmd, and Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then

graph(fix(Φ)) =
⋃
n∈N

graph(Φn(f∅))

Proof.

Using

Lemma 6.9

(Σ 99K Σ,v) CCPO with least element f∅
LUB = union of graphs

Lemma 6.16 (Φ continuous)
Theorem 6.17 (Fixpoint Theorem)

Semantics and Verification of Software Summer Semester 2013 6.21


	Recapitulation: Denotational Semantics of WHILE
	Chain-Complete Partial Orders
	Monotonic and Continuous Functions
	The Fixpoint Theorem

