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Semantics of Statements

Definition (Denotational semantics of statements)

The (denotational) semantic functional for statements,

CJ.K : Cmd → (Σ 99K Σ),

is given by:

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ)

where Φ : (Σ 99K Σ)→ (Σ 99K Σ) : f 7→ cond(BJbK, f ◦ CJcK, idΣ)
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Characterization of fix(Φ) I

Now fix(Φ) can be characterized by:

fix(Φ) is a fixpoint of Φ, i.e.,

Φ(fix(Φ)) = fix(Φ)

fix(Φ) is minimal with respect to v, i.e., for every f0 : Σ 99K Σ such
that Φ(f0) = f0,

fix(Φ) v f0

(where f v g ⇐⇒ for every σ, σ′ ∈ Σ : f (σ) = σ′ ⇒ g(σ) = σ′)

Example

For while true do skip we obtain for every f : Σ 99K Σ:

Φ(f ) = cond(BJtrueK, f ◦ CJskipK, idΣ) = f

⇒ fix(Φ) = f∅ where f∅(σ) := undefined for every σ ∈ Σ
(that is, graph(f∅) = ∅)
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Characterization of fix(Φ) II

Goals:

Prove existence of fix(Φ) for Φ(f ) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ 99K Σ: chain-complete partial order

on function Φ: continuity

Semantics and Verification of Software Summer Semester 2013 6.5



Outline

1 Recapitulation: Denotational Semantics of WHILE

2 Chain-Complete Partial Orders

3 Monotonic and Continuous Functions

4 The Fixpoint Theorem

Semantics and Verification of Software Summer Semester 2013 6.6



Partial Orders

Definition 6.1 (Partial order)

A partial order (PO) (D,v) consists of a set D, called domain, and of a
relation v ⊆ D × D such that, for every d1, d2, d3 ∈ D,

reflexivity: d1 v d1

transitivity: d1 v d2 and d2 v d3 ⇒ d1 v d3

antisymmetry: d1 v d2 and d2 v d1 ⇒ d1 = d2

It is called total if, in addition, always d1 v d2 or d2 v d1.

Example 6.2

1 (N,≤) is a total partial order

2 (2N,⊆) is a (non-total) partial order

3 (N, <) is not a partial order (since not reflexive)
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Application to fix(Φ)

Lemma 6.3

(Σ 99K Σ,v) is a partial order.

Proof.

using the equivalence f v g ⇐⇒ graph(f ) ⊆ graph(g) and the
partial-order property of ⊆

Semantics and Verification of Software Summer Semester 2013 6.8



Chains and Least Upper Bounds I

Definition 6.4 (Chain, (least) upper bound)

Let (D,v) be a partial order and S ⊆ D.

1 S is called a chain in D if, for every s1, s2 ∈ S ,

s1 v s2 or s2 v s1

(that is, S is a totally ordered subset of D).
2 An element d ∈ D is called an upper bound of S if s v d for every

s ∈ S (notation: S v d).
3 An upper bound d of S is called least upper bound (LUB) or

supremum of S if d v d ′ for every upper bound d ′ of S
(notation: d =

⊔
S).
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Chains and Least Upper Bounds II

Example 6.5

1 Every subset S ⊆ N is a chain in (N,≤).
It has a LUB (its greatest element) iff it is finite.

2 {∅, {0}, {0, 1}, . . .} is a chain in (2N,⊆) with LUB N.

3 Let x ∈ Var , and let fi : Σ 99K Σ for every i ∈ N be given by

fi (σ) :=

{
σ[x 7→ σ(x) + 1] if σ(x) ≤ i
undefined otherwise

Then {f0, f1, f2, . . .} is a chain in (Σ 99K Σ,v), since for every i ∈ N
and σ, σ′ ∈ Σ:

fi (σ) = σ′

⇒ σ(x) ≤ i , σ′ = σ[x 7→ σ(x) + 1]
⇒ σ(x) ≤ i + 1, σ′ = σ[x 7→ σ(x) + 1]
⇒ fi+1(σ) = σ′

⇒ fi v fi+1
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Chain Completeness

Definition 6.6 (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

Example 6.7

1 (2N,⊆) is a CCPO with
⊔

S =
⋃

M∈S M for every chain S ⊆ 2N.

2 (N,≤) is not chain complete
(since, e.g., the chain N has no upper bound).
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Least Elements in CCPOs

Corollary 6.8

Every CCPO has a least element
⊔
∅.

Proof.

Let (D,v) be a CCPO.

By definition, ∅ is a chain in D.

By definition, every d ∈ D is an upper bound of ∅.
Thus

⊔
∅ exists and is the least element of D.
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Application to fix(Φ)

Lemma 6.9

(Σ 99K Σ,v) is a CCPO with least element f∅ where graph(f∅) = ∅.
In particular, for every chain S ⊆ Σ 99K Σ,

graph
(⊔

S
)

=
⋃
f ∈S

graph(f ).

Proof.

on the board

Example 6.10 (cf. Example 6.5(3))

Let x ∈ Var , and let fi : Σ 99K Σ for every i ∈ N be given by

fi (σ) :=

{
σ[x 7→ σ(x) + 1] if σ(x) ≤ i
undefined otherwise

Then S := {f0, f1, f2, . . .} is a chain (Example 6.5(3)) with
⊔

S = f where

f : Σ→ Σ : σ 7→ σ[x 7→ σ(x) + 1]
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Monotonicity I

Definition 6.11 (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let F : D → D ′. F is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 ⇒ F (d1) v′ F (d2).

Interpretation: monotonic functions “preserve information”

Example 6.12

1 Let T := {S ⊆ N | S finite}. Then F1 : T → N : S 7→
∑

n∈S n is
monotonic w.r.t. (2N,⊆) and (N,≤).

2 F2 : 2N → 2N : S 7→ N \ S is not monotonic w.r.t. (2N,⊆)
(since, e.g., ∅ ⊆ N but F2(∅) = N 6⊆ F2(N) = ∅).
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Application to fix(Φ)

Lemma 6.13

Let b ∈ BExp, c ∈ Cmd, and Φ : (Σ 99K Σ)→ (Σ 99K Σ) with
Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ is monotonic w.r.t.
(Σ 99K Σ,v).

Proof.

on the board
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Monotonicity II

The following lemma states how chains behave under monotonic functions.

Lemma 6.14

Let (D,v) and (D ′,v′) be CCPOs, F : D → D ′ monotonic, and S ⊆ D a
chain in D. Then:

1 F (S) := {F (d) | d ∈ S} is a chain in D ′.

2
⊔

F (S) v′ F (
⊔

S).

Proof.

on the board
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Continuity

A function F is continuous if the order of applying F and taking LUBs can
be reversed:

Definition 6.15 (Continuity)

Let (D,v) and (D ′,v′) be CCPOs and F : D → D ′ monotonic. Then F is
called continuous (w.r.t. (D,v) and (D ′,v′)) if, for every non-empty
chain S ⊆ D,

F
(⊔

S
)

=
⊔

F (S).

Lemma 6.16

Let b ∈ BExp, c ∈ Cmd, and Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ
is continuous w.r.t. (Σ 99K Σ,v).

Proof.

omitted
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The Fixpoint Theorem

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem 6.17 (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔{

F n
(⊔
∅
)
| n ∈ N

}
is the least fixpoint of F where

F 0(d) := d and F n+1(d) := F (F n(d)).

Proof.

on the board
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Application to fix(Φ)

Altogether this completes the definition of CJ.K. In particular, for the
while statement we obtain:

Corollary 6.18

Let b ∈ BExp, c ∈ Cmd, and Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then

graph(fix(Φ)) =
⋃
n∈N

graph(Φn(f∅))

Proof.

Using

Lemma 6.9

(Σ 99K Σ,v) CCPO with least element f∅
LUB = union of graphs

Lemma 6.16 (Φ continuous)
Theorem 6.17 (Fixpoint Theorem)
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