Semantics and Verification of Software

Lecture 7: Denotational Semantics of WHILE |11
(The Fixpoint Theorem and Its Application)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTHAACHEN
UNIVERSITY

http://www-1i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

© Recapitulation: CCPOs and Continuous Functions

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013



Characterization of fix(®)

Goals:
@ Prove existence of fix(®) for ®(f) = cond(B[b], f o €[c], idy)

@ Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:
on domain X --+» X: chain-complete partial order

on function ®: continuity

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013



Chain Completeness

Definition (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

@ (X --»X,C) is a CCPO with least element fj where graph(fy) = 0.

@ In particular, for every chain S C ¥ --» ¥,

graph <|_| 5> = U graph(f).

fes

nwr"_“ﬁ;; ] ji Semantics and Verification of Software Summer Semester 2013 7.4



Monotonicity

Definition (Monotonicity)

Let (D,C) and (D’,C') be partial orders, and let F : D — D’. F is called
monotonic (w.r.t. (D,C) and (D’,C")) if, for every di,d> € D,

dl C d2 = F(dl) E/ F(dz)

Interpretation: monotonic functions “preserve information”

Let b€ BExp, c € Cmd, and ® : (X --» ¥) — (X --» X) with
®(f) := cond(B[b], f o €[c],ids). Then ® is monotonic w.r.t.
(Z - za E)

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 7.5



Continuity

A function F is continuous if the order of applying F and taking LUBs can
be reversed:

Definition (Continuity)

Let (D,C) and (D’,C) be CCPOs and F : D — D’ monotonic. Then F is
called continuous (w.r.t. (D,C) and (D', ")) if, for every non-empty

chain S C D,
F(LS) =LIF®).

Let b € BExp, ¢ € Cmd, and ®(f) := cond(B[b], f o €[c],idy). Then ¢
is continuous w.r.t. (X --» X, C).

RWNTH HE Semantics and Verification of Software Summer Semester 2013 7.6



© The Fixpoint Theorem

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013



The Fixpoint Theorem

Alfred Tarski (1901-1983)

Bronislaw Knaster (1893-1990)

Theorem 7.1 (Fixpoint Theorem by Tarski and Knaster)
Let (D,C) be a CCPO and F : D — D continuous. Then

fix(F) := | | {F" (| |0) | ne N}

is the least fixpoint of F where
FO(d) := d and F""1(d) := F(F"(d)).

Semantics and Verification of Software Summer Semester 2013 7.8



The Fixpoint Theorem

Alfred Tarski (1901-1983)

Bronislaw Knaster (1893-1990)

Theorem 7.1 (Fixpoint Theorem by Tarski and Knaster)

Let (D,C) be a CCPO and F : D — D continuous. Then

fix(F) := | | {F" (| |0) | ne N}

is the least fixpoint of F where
FO(d) := d and F""1(d) := F(F"(d)).

on the board ]

RWNTH HE Semantics and Verification of Software Summer Semester 2013 7.8



An Example
Example 7.2

e Domain: (2, C) (CCPO with | |S = [Jyes N — see Ex. 6.7)

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 7.9



An Example
Example 7.2

e Domain: (2, C) (CCPO with | |S = [Jyes N — see Ex. 6.7)

@ Function: F : 2N — 2N N/ N U A for some fixed A C N
e F monotonic: MC N = F(M)=MUACNUA=F(N)
o F continuous: F(||S) =F (UyesN) = (Unes N) UA=
UNes(NUA) = UNeS F(N) = |_|F(5)

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 7.9



An Example
Example 7.2

e Domain: (2, C) (CCPO with | |S = [Jyes N — see Ex. 6.7)

@ Function: F : 2N — 2N - N s N U A for some fixed A C N
e F monotonic: MCN:>F(M) MUACNUA=F(N)

o F continuous: F(||S) =F (UyesN) = (Unes N) UA=
Unes (NUA) = Upes FIN) = LIF(S)
e Fixpoint iteration: N, := F"(| |0) where | |0 =0

o No=]0=0

o Ni=F(Ng)=0UA=A

o b =F(Ny)=AUA=A=N, forevery n> 1
= fix(F)=A

RWNTH HE Semantics and Verification of Software Summer Semester 2013 7.9



An Example
Example 7.2

e Domain: (2, C) (CCPO with | |S = [Jyes N — see Ex. 6.7)

e Function: F : 2% — 2. N N U A for some fixed A C N
e F monotonic: MCN:>F(M) MUACNUA=F(N)
o F continuous: F(||S) =F (UyesN) = (Unes N) UA=

Unes (NUA) = Upes FIN) = LIF(S)

e Fixpoint iteration: N, := F"(| |0) where | |0 =0
o No=[0=0
o Ny=F(No)=0UA=A
o b =F(Ny)=AUA=A=N, forevery n> 1

= fix(F) = A
o Alternatively: F(N) :=NNA
= fix(F) =

RWNTH HE Semantics and Verification of Software Summer Semester 2013 7.9



e Application to fix(®)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 7.10



Application to fix(®)

Altogether this completes the definition of €[.]. In particular, for the
while statement we obtain:

Let b € BExp, c € Cmd, and ®(f) := cond(B[b], f o €[c],idx). Then

graph(fix(®)) = | J graph(¢"(f))
neN

nerAACHEN Semantics and Verification of Software Summer Semester 2013 7.11



Application to fix(®)

Altogether this completes the definition of €[.]. In particular, for the
while statement we obtain:

Let b € BExp, c € Cmd, and ®(f) := cond(B[b], f o €[c],idx). Then

graph(fix(®)) = | J graph(¢"(f))
neN

Proof.
Using
@ Lemma 6.9

o (X --» X,C) CCPO with least element fj
e LUB = union of graphs

@ Lemma 6.16 (¢ continuous)
@ Theorem 7.1 (Fixpoint Theorem) O

v

RWNTH Semantics and Verification of Software Summer Semester 2013 7.11



Denotational Semantics of Factorial Program |

Example 7.4 (Factorial program)

o Let c € Cmd be given by
y:=1; while —(x=1) do (y:=y*x; x:=x-1)

v

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 7.12



Denotational Semantics of Factorial Program |

Example 7.4 (Factorial program)

o Let ¢ € Cmd be given by
y:=1; while —(x=1) do (y:=y*x; x:=x-1)

o For every initial state og € ¥, Def. 5.1 yields:
€[c](o0) = fix(®)(01)
where 01 := og[y — 1] and, forevery f : ¥ --» X and 0 € L,
®(f)(0) = cond(B[—~(x=1)], f o €[y :=y*x; x:=x-1],idx)(0)
_Jo if o(x)=1
~ | f(¢') otherwise

with o’ := oy — o(y) * o(x),x — o(x) — 1].

v

RWNTH HE Semantics and Verification of Software Summer Semester 2013 7.12



Denotational Semantics of Factorial Program |

Example 7.4 (Factorial program)

o Let ¢ € Cmd be given by
y:=1; while —(x=1) do (y:=y*x; x:=x-1)

o For every initial state og € ¥, Def. 5.1 yields:
¢[c](o0) = fix(®)(o1)
where 01 := og[y — 1] and, forevery f : ¥ --» X and 0 € L,
®(f)(0) = cond(B[—~(x=1)], f o €[y :=y*x; x:=x-1],idx)(0)
_Jo if o(x)=1
~ | f(¢') otherwise
with o’ := oy — o(y) * o(x),x — o(x) — 1].
@ Approximations of least fixpoint of ® according to Theorem 7.1:
fix(®) = | _[{®"(f) | n € N}
(where graph(f;) = 0)

v

RWNTH Semantics and Verification of Software Summer Semester 2013 av;



Denotational Semantics of Factorial Program |l

o(f)(o) = {?(01) gtge(fv?/is:e L o =oly—o(y) *xo(x),x— o(x) — 1]

Example 7.4 (Factorial program; continued)

= ®°(fy)(o)
= fy(o)
— undefined

fo(o) :

v

Summer Semester 2013 7.13

Semantics and Verification of Software




Denotational Semantics of Factorial Program |l

o(f)(o) = {?(01) gtge(fv?/is:e L o =oly—o(y) *xo(x),x— o(x) — 1]

Example 7.4 (Factorial program; continued)

= ®°(fy)(o)
= fy(o)
— undefined

fo(o) :

fo(c’) otherwise
if o(x)=1
undefined otherwise

o}
o}
_ io if o(x) =1

v

Summer Semester 2013 7.13

Semantics and Verification of Software



Denotational Semantics of Factorial Program |l

o(f)(o) = {?(01) gtge(fv?/is:e 1 o =oly—o(y) *xo(x),x— o(x) — 1]
Example 7.4 (Factorial program; continued)
h(o) = %(fy)(0)
e — o(h)(0)
fo(o) := ®°(fy)(0) o if o(x) =1
= fy(o) - {fl(o’) otherwise
= undefined o if o(x) = 1
= {o” ' if o(x) # 1 and o’(x) = 1
f(0) = 1 (5)(0) ;ndeflned :; ggg i i and o’(x) # 1
= &(fo)(0) = {J’ if o(x) =2
_Jo ifo(x) =1 undefined if o(x) # 1 and o(x) # 2
fo(c’) otherwise o if o(x) =1
o if o(x)=1 oly = 2x0(y), ifo(x)=2
undefined otherwise = x — 1]
undefined if o(x) #1
and o(x) #2

nwr"_“:l‘ ] ji Semantics and Verification of Software Summer Semester 2013 7.13



Denotational Semantics of Factorial Program Il

o(F)(0) = {?(U,) Fol) =1 o oy o oly)  o(x), x = o(x) — 1]

Example 7.4 (Factorial program; continued)

fi(0) = ®3(fy)(0)
= O(%)(o

0’ if o(x) =1

f2( ") otherwise

o if o(x) =1

o’ if o(x) #1and o'(x) =1
o'ly = 2x0'(y),x— 1] ifo(x) #1and o’(x) =2

undefined if o(x) #1 and o/(x) # 1 and o/(x) # 2

o if o(x) =1

o if o(x) =2
o'ly »2x0'(y),x—1] ifo(x)=3

undefined if o(x) ¢ {1,2,3}

o ifo(x) =1

oly = 2xo(y), x — 1] if o(x) =2

oly—=3x2x0(y),x—1] ifo(x)=3

undefined if o(x) ¢ {1,2,3}

v

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 7.14



Denotational Semantics of Factorial Program IV

o(F)(0) = {?(U,) Fol) =1 o oy o oly)  o(x), x = o(x) — 1]

Example 7.4 (Factorial program; continued)

@ n-th approximation:

‘D (fo)(o
U[y»—>o x(o(x)=1)*...%2x%x0(y), ifl<o(x)<n
= x — 1]
undeflned if o(x) ¢{1,...,n}
_Joly= (@) *o(y),x — 1] iflga(x)gn
- undeflned if o(x) ¢{1,...,n}

v

nwr"_“ﬁ_l‘ ] ji Semantics and Verification of Software Summer Semester 2013 7.15




Denotational Semantics of Factorial Program IV

o(F)(0) = {?(U,) Fol) =1 o oy o oly)  o(x), x = o(x) — 1]

Example 7.4 (Factorial program; continued)

@ n-th approximation:

‘D (fo)(o
{J[y — O' x(o(x)=1)*...%2x%x0(y), ifl<o(x)<n
= X 1]
undeflned if o(x) ¢{1,...,n}
_ {o[yr—> ) xo(y),x+— 1] iflga(x)gn
~ | undefined if o(x) ¢{1,...,n}
@ Fixpoint:

elelon) = fix(@)(ox) = { e GOV = 1 ot0.2

v

nwr"_“ﬁ;; ] ji Semantics and Verification of Software Summer Semester 2013 7.15




@ Summary: Denotational Semantics

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 7.16



Summary: Denotational Semantics

o Semantic model: partial state transformations (X --» X)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013 7.17



Summary: Denotational Semantics

o Semantic model: partial state transformations (X --» X)
e Compositional definition of functional €[.] : Cmd — (X --» X)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013



Summary: Denotational Semantics

o Semantic model: partial state transformations (X --» X)
e Compositional definition of functional €[.] : Cmd — (X --» X)

@ Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013



Summary: Denotational Semantics

Semantic model: partial state transformations (X --» ¥)
Compositional definition of functional €[.] : Cmd — (X --» X)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

@ Approximation by fixpoint iteration

RWTHAACHEN Semantics and Verification of Software Summer Semester 2013



© Equivalence of Operational and Denotational Semantics

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 7.18



Equivalence of Semantics |

Remember: in Def. 4.1, O[.] : Cmd — (X --» X) was given by
Olc](o) =0’ < (c,0) =o'

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 7.19



Equivalence of Semantics |

Remember: in Def. 4.1, O[.] : Cmd — (X --» X) was given by
Olc](o) =0’ < (c,0) =o'

Theorem 7.5 (Coincidence Theorem)

For every c € Cmd,
Olc] = €[],
ie., (c,o) = o iff €[c](c) = o', and thus O[.] = €[.].

nerAACHEN Semantics and Verification of Software Summer Semester 2013 7.19



Equivalence of Semantics Il

The proof of Theorem 7.5 employs the following auxiliary propositions:

Lemma 7.6
Q Foreveryac AExp, o € X, and z € 7Z:

(a,0) = z <— A[a](0) = z.

Semantics and Verification of Software Summer Semester 2013 7.20



Equivalence of Semantics Il

The proof of Theorem 7.5 employs the following auxiliary propositions:

Lemma 7.6
Q Foreveryac AExp, o € X, and z € 7Z:
(a,0) = z <— A[a](0) = z.
© Foreverybe BExp, c € X, and t € B:
(b,o) -t < B[b](c) =t.

Semantics and Verification of Software Summer Semester 2013 7.20



Equivalence of Semantics Il

The proof of Theorem 7.5 employs the following auxiliary propositions:

Lemma 7.6
Q Foreveryac AExp, o € X, and z € 7Z:

(a,0) = z <— A[a](0) = z.

© Foreverybe BExp, 0 € 2, and t € B:
(b,o) -t < B[b](c) =t.

@ structural induction on a

@ structural induction on b

RWNTH HE Semantics and Verification of Software Summer Semester 2013 7.20



Equivalence of Semantics Il

Proof (Theorem 7.5).
We have to show that

(c,0) =0 < €[c](c) =0’

/

= by structural induction over the derivation tree of (c,0) — o

< by structural induction over ¢ (with a nested complete
induction over fixpoint index n)

(on the board) O

nwr"_“:l‘ ] ji Semantics and Verification of Software Summer Semester 2013 7.21



Overview: Operational/Denotational Semantics

Definition (3.2; Execution relation for statements)

(a,0) = z
X :=a,0) = o[x — 2]

(skip) (asgn) <

(skip,0) — o
{c1,0) = 0’ (c2,0") = o (b,0) — true {c1,0) — o’

(seq) (if-t)

(if b then ¢ else ¢,0) — o’

(wh-f)

(b,a) — true (c,0) — o’ (while b do c,o’) — o”

(cr;0,0) = o
(b,a) — false (c2,0) — o’ (b,o) — false

(while b do c,0) = o

(if-f)

(if b then ¢ else ¢,0) — o’

(Wh_t) "
(while b do c,0) = o

Definition (5.1; Denotational semantics of statements)

C[skip] := ids
Clx := ao := o[x — Aa]o]
Cle; ] = €] o €fc]
C[if b then ¢ else ] := cond(B[b], €[ci], €[c])
C[while b do c] := fix(®) where ®(f) := cond(B[b], f o €[c],idx)

RWNTH Semantics and Verification of Software Summer Semester 2013 7.22



	Recapitulation: CCPOs and Continuous Functions
	The Fixpoint Theorem
	Application to fix()
	Summary: Denotational Semantics
	Equivalence of Operational and Denotational Semantics

