
Semantics and Verification of Software
Lecture 7: Denotational Semantics of WHILE III

(The Fixpoint Theorem and Its Application)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/


Outline

1 Recapitulation: CCPOs and Continuous Functions

2 The Fixpoint Theorem

3 Application to fix(Φ)

4 Summary: Denotational Semantics

5 Equivalence of Operational and Denotational Semantics

Semantics and Verification of Software Summer Semester 2013 7.2



Characterization of fix(Φ)

Goals:

Prove existence of fix(Φ) for Φ(f ) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ 99K Σ: chain-complete partial order

on function Φ: continuity

Semantics and Verification of Software Summer Semester 2013 7.3



Chain Completeness

Definition (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

Lemma

(Σ 99K Σ,v) is a CCPO with least element f∅ where graph(f∅) = ∅.
In particular, for every chain S ⊆ Σ 99K Σ,

graph
(⊔

S
)

=
⋃
f ∈S

graph(f ).

Semantics and Verification of Software Summer Semester 2013 7.4



Monotonicity

Definition (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let F : D → D ′. F is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 ⇒ F (d1) v′ F (d2).

Interpretation: monotonic functions “preserve information”

Lemma

Let b ∈ BExp, c ∈ Cmd, and Φ : (Σ 99K Σ)→ (Σ 99K Σ) with
Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ is monotonic w.r.t.
(Σ 99K Σ,v).

Semantics and Verification of Software Summer Semester 2013 7.5



Continuity

A function F is continuous if the order of applying F and taking LUBs can
be reversed:

Definition (Continuity)

Let (D,v) and (D ′,v′) be CCPOs and F : D → D ′ monotonic. Then F is
called continuous (w.r.t. (D,v) and (D ′,v′)) if, for every non-empty
chain S ⊆ D,

F
(⊔

S
)

=
⊔

F (S).

Lemma

Let b ∈ BExp, c ∈ Cmd, and Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ
is continuous w.r.t. (Σ 99K Σ,v).

Semantics and Verification of Software Summer Semester 2013 7.6



Outline

1 Recapitulation: CCPOs and Continuous Functions

2 The Fixpoint Theorem

3 Application to fix(Φ)

4 Summary: Denotational Semantics

5 Equivalence of Operational and Denotational Semantics

Semantics and Verification of Software Summer Semester 2013 7.7



The Fixpoint Theorem

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem 7.1 (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔{

F n
(⊔
∅
)
| n ∈ N

}
is the least fixpoint of F where

F 0(d) := d and F n+1(d) := F (F n(d)).

Proof.

on the board

Semantics and Verification of Software Summer Semester 2013 7.8



The Fixpoint Theorem

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem 7.1 (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔{

F n
(⊔
∅
)
| n ∈ N

}
is the least fixpoint of F where

F 0(d) := d and F n+1(d) := F (F n(d)).

Proof.

on the board

Semantics and Verification of Software Summer Semester 2013 7.8



An Example

Example 7.2

Domain: (2N,⊆) (CCPO with
⊔

S =
⋃

N∈S N – see Ex. 6.7)

Function: F : 2N → 2N : N 7→ N ∪ A for some fixed A ⊆ N
F monotonic: M ⊆ N ⇒ F (M) = M ∪ A ⊆ N ∪ A = F (N)
F continuous: F (

⊔
S) = F

(⋃
N∈S N

)
=
(⋃

N∈S N
)
∪ A =⋃

N∈S (N ∪ A) =
⋃

N∈S F (N) =
⊔

F (S)

Fixpoint iteration: Nn := F n(
⊔
∅) where

⊔
∅ = ∅

N0 =
⊔
∅ = ∅

N1 = F (N0) = ∅ ∪ A = A
N2 = F (N1) = A ∪ A = A = Nn for every n ≥ 1

⇒ fix(F ) = A

Alternatively: F (N) := N ∩ A
⇒ fix(F ) = ∅

Semantics and Verification of Software Summer Semester 2013 7.9



An Example

Example 7.2

Domain: (2N,⊆) (CCPO with
⊔

S =
⋃

N∈S N – see Ex. 6.7)

Function: F : 2N → 2N : N 7→ N ∪ A for some fixed A ⊆ N
F monotonic: M ⊆ N ⇒ F (M) = M ∪ A ⊆ N ∪ A = F (N)
F continuous: F (

⊔
S) = F

(⋃
N∈S N

)
=
(⋃

N∈S N
)
∪ A =⋃

N∈S (N ∪ A) =
⋃

N∈S F (N) =
⊔

F (S)

Fixpoint iteration: Nn := F n(
⊔
∅) where

⊔
∅ = ∅

N0 =
⊔
∅ = ∅

N1 = F (N0) = ∅ ∪ A = A
N2 = F (N1) = A ∪ A = A = Nn for every n ≥ 1

⇒ fix(F ) = A

Alternatively: F (N) := N ∩ A
⇒ fix(F ) = ∅

Semantics and Verification of Software Summer Semester 2013 7.9



An Example

Example 7.2

Domain: (2N,⊆) (CCPO with
⊔

S =
⋃

N∈S N – see Ex. 6.7)

Function: F : 2N → 2N : N 7→ N ∪ A for some fixed A ⊆ N
F monotonic: M ⊆ N ⇒ F (M) = M ∪ A ⊆ N ∪ A = F (N)
F continuous: F (

⊔
S) = F

(⋃
N∈S N

)
=
(⋃

N∈S N
)
∪ A =⋃

N∈S (N ∪ A) =
⋃

N∈S F (N) =
⊔

F (S)

Fixpoint iteration: Nn := F n(
⊔
∅) where

⊔
∅ = ∅

N0 =
⊔
∅ = ∅

N1 = F (N0) = ∅ ∪ A = A
N2 = F (N1) = A ∪ A = A = Nn for every n ≥ 1

⇒ fix(F ) = A

Alternatively: F (N) := N ∩ A
⇒ fix(F ) = ∅

Semantics and Verification of Software Summer Semester 2013 7.9



An Example

Example 7.2

Domain: (2N,⊆) (CCPO with
⊔

S =
⋃

N∈S N – see Ex. 6.7)

Function: F : 2N → 2N : N 7→ N ∪ A for some fixed A ⊆ N
F monotonic: M ⊆ N ⇒ F (M) = M ∪ A ⊆ N ∪ A = F (N)
F continuous: F (

⊔
S) = F

(⋃
N∈S N

)
=
(⋃

N∈S N
)
∪ A =⋃

N∈S (N ∪ A) =
⋃

N∈S F (N) =
⊔

F (S)

Fixpoint iteration: Nn := F n(
⊔
∅) where

⊔
∅ = ∅

N0 =
⊔
∅ = ∅

N1 = F (N0) = ∅ ∪ A = A
N2 = F (N1) = A ∪ A = A = Nn for every n ≥ 1

⇒ fix(F ) = A

Alternatively: F (N) := N ∩ A
⇒ fix(F ) = ∅

Semantics and Verification of Software Summer Semester 2013 7.9



Outline

1 Recapitulation: CCPOs and Continuous Functions

2 The Fixpoint Theorem

3 Application to fix(Φ)

4 Summary: Denotational Semantics

5 Equivalence of Operational and Denotational Semantics

Semantics and Verification of Software Summer Semester 2013 7.10



Application to fix(Φ)

Altogether this completes the definition of CJ.K. In particular, for the
while statement we obtain:

Corollary 7.3

Let b ∈ BExp, c ∈ Cmd, and Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then

graph(fix(Φ)) =
⋃
n∈N

graph(Φn(f∅))

Proof.

Using

Lemma 6.9

(Σ 99K Σ,v) CCPO with least element f∅
LUB = union of graphs

Lemma 6.16 (Φ continuous)
Theorem 7.1 (Fixpoint Theorem)

Semantics and Verification of Software Summer Semester 2013 7.11



Application to fix(Φ)

Altogether this completes the definition of CJ.K. In particular, for the
while statement we obtain:

Corollary 7.3

Let b ∈ BExp, c ∈ Cmd, and Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then

graph(fix(Φ)) =
⋃
n∈N

graph(Φn(f∅))

Proof.

Using

Lemma 6.9

(Σ 99K Σ,v) CCPO with least element f∅
LUB = union of graphs

Lemma 6.16 (Φ continuous)
Theorem 7.1 (Fixpoint Theorem)

Semantics and Verification of Software Summer Semester 2013 7.11



Denotational Semantics of Factorial Program I

Example 7.4 (Factorial program)

Let c ∈ Cmd be given by

y:=1; while ¬(x=1) do (y:=y*x; x:=x-1)

For every initial state σ0 ∈ Σ, Def. 5.1 yields:

CJcK(σ0) = fix(Φ)(σ1)

where σ1 := σ0[y 7→ 1] and, for every f : Σ 99K Σ and σ ∈ Σ,

Φ(f )(σ) = cond(BJ¬(x=1)K, f ◦ CJy:=y*x; x:=x-1K, idΣ)(σ)

=

{
σ if σ(x) = 1
f (σ′) otherwise

with σ′ := σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x)− 1].

Approximations of least fixpoint of Φ according to Theorem 7.1:

fix(Φ) =
⊔
{Φn(f∅) | n ∈ N}

(where graph(f∅) = ∅)

Semantics and Verification of Software Summer Semester 2013 7.12



Denotational Semantics of Factorial Program I

Example 7.4 (Factorial program)

Let c ∈ Cmd be given by

y:=1; while ¬(x=1) do (y:=y*x; x:=x-1)

For every initial state σ0 ∈ Σ, Def. 5.1 yields:

CJcK(σ0) = fix(Φ)(σ1)

where σ1 := σ0[y 7→ 1] and, for every f : Σ 99K Σ and σ ∈ Σ,

Φ(f )(σ) = cond(BJ¬(x=1)K, f ◦ CJy:=y*x; x:=x-1K, idΣ)(σ)

=

{
σ if σ(x) = 1
f (σ′) otherwise

with σ′ := σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x)− 1].

Approximations of least fixpoint of Φ according to Theorem 7.1:

fix(Φ) =
⊔
{Φn(f∅) | n ∈ N}

(where graph(f∅) = ∅)

Semantics and Verification of Software Summer Semester 2013 7.12



Denotational Semantics of Factorial Program I

Example 7.4 (Factorial program)

Let c ∈ Cmd be given by

y:=1; while ¬(x=1) do (y:=y*x; x:=x-1)

For every initial state σ0 ∈ Σ, Def. 5.1 yields:

CJcK(σ0) = fix(Φ)(σ1)

where σ1 := σ0[y 7→ 1] and, for every f : Σ 99K Σ and σ ∈ Σ,

Φ(f )(σ) = cond(BJ¬(x=1)K, f ◦ CJy:=y*x; x:=x-1K, idΣ)(σ)

=

{
σ if σ(x) = 1
f (σ′) otherwise

with σ′ := σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x)− 1].

Approximations of least fixpoint of Φ according to Theorem 7.1:

fix(Φ) =
⊔
{Φn(f∅) | n ∈ N}

(where graph(f∅) = ∅)

Semantics and Verification of Software Summer Semester 2013 7.12



Denotational Semantics of Factorial Program II

Φ(f )(σ) =

{
σ if σ(x) = 1
f (σ′) otherwise

σ′ = σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x)− 1]

Example 7.4 (Factorial program; continued)

f0(σ) := Φ0(f∅)(σ)
= f∅(σ)
= undefined

f1(σ) := Φ1(f∅)(σ)
= Φ(f0)(σ)

=

{
σ if σ(x) = 1
f0(σ′) otherwise

=

{
σ if σ(x) = 1
undefined otherwise

f2(σ) := Φ2(f∅)(σ)
= Φ(f1)(σ)

=

{
σ if σ(x) = 1
f1(σ′) otherwise

=

{
σ if σ(x) = 1
σ′ if σ(x) 6= 1 and σ′(x) = 1
undefined if σ(x) 6= 1 and σ′(x) 6= 1

=

{
σ if σ(x) = 1
σ′ if σ(x) = 2
undefined if σ(x) 6= 1 and σ(x) 6= 2

=


σ if σ(x) = 1
σ[y 7→ 2 ∗ σ(y),
x 7→ 1]

if σ(x) = 2

undefined if σ(x) 6= 1
and σ(x) 6= 2

Semantics and Verification of Software Summer Semester 2013 7.13



Denotational Semantics of Factorial Program II

Φ(f )(σ) =

{
σ if σ(x) = 1
f (σ′) otherwise

σ′ = σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x)− 1]

Example 7.4 (Factorial program; continued)

f0(σ) := Φ0(f∅)(σ)
= f∅(σ)
= undefined

f1(σ) := Φ1(f∅)(σ)
= Φ(f0)(σ)

=

{
σ if σ(x) = 1
f0(σ′) otherwise

=

{
σ if σ(x) = 1
undefined otherwise

f2(σ) := Φ2(f∅)(σ)
= Φ(f1)(σ)

=

{
σ if σ(x) = 1
f1(σ′) otherwise

=

{
σ if σ(x) = 1
σ′ if σ(x) 6= 1 and σ′(x) = 1
undefined if σ(x) 6= 1 and σ′(x) 6= 1

=

{
σ if σ(x) = 1
σ′ if σ(x) = 2
undefined if σ(x) 6= 1 and σ(x) 6= 2

=


σ if σ(x) = 1
σ[y 7→ 2 ∗ σ(y),
x 7→ 1]

if σ(x) = 2

undefined if σ(x) 6= 1
and σ(x) 6= 2

Semantics and Verification of Software Summer Semester 2013 7.13



Denotational Semantics of Factorial Program II

Φ(f )(σ) =

{
σ if σ(x) = 1
f (σ′) otherwise

σ′ = σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x)− 1]

Example 7.4 (Factorial program; continued)

f0(σ) := Φ0(f∅)(σ)
= f∅(σ)
= undefined

f1(σ) := Φ1(f∅)(σ)
= Φ(f0)(σ)

=

{
σ if σ(x) = 1
f0(σ′) otherwise

=

{
σ if σ(x) = 1
undefined otherwise

f2(σ) := Φ2(f∅)(σ)
= Φ(f1)(σ)

=

{
σ if σ(x) = 1
f1(σ′) otherwise

=

{
σ if σ(x) = 1
σ′ if σ(x) 6= 1 and σ′(x) = 1
undefined if σ(x) 6= 1 and σ′(x) 6= 1

=

{
σ if σ(x) = 1
σ′ if σ(x) = 2
undefined if σ(x) 6= 1 and σ(x) 6= 2

=


σ if σ(x) = 1
σ[y 7→ 2 ∗ σ(y),
x 7→ 1]

if σ(x) = 2

undefined if σ(x) 6= 1
and σ(x) 6= 2

Semantics and Verification of Software Summer Semester 2013 7.13



Denotational Semantics of Factorial Program III

Φ(f )(σ) =

{
σ if σ(x) = 1
f (σ′) otherwise

σ′ = σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x)− 1]

Example 7.4 (Factorial program; continued)

f3(σ) := Φ3(f∅)(σ)
= Φ(f2)(σ)

=

{
σ if σ(x) = 1
f2(σ′) otherwise

=


σ if σ(x) = 1
σ′ if σ(x) 6= 1 and σ′(x) = 1
σ′[y 7→ 2 ∗ σ′(y), x 7→ 1] if σ(x) 6= 1 and σ′(x) = 2
undefined if σ(x) 6= 1 and σ′(x) 6= 1 and σ′(x) 6= 2

=


σ if σ(x) = 1
σ′ if σ(x) = 2
σ′[y 7→ 2 ∗ σ′(y), x 7→ 1] if σ(x) = 3
undefined if σ(x) /∈ {1, 2, 3}

=


σ if σ(x) = 1
σ[y 7→ 2 ∗ σ(y), x 7→ 1] if σ(x) = 2
σ[y 7→ 3 ∗ 2 ∗ σ(y), x 7→ 1] if σ(x) = 3
undefined if σ(x) /∈ {1, 2, 3}

Semantics and Verification of Software Summer Semester 2013 7.14



Denotational Semantics of Factorial Program IV

Φ(f )(σ) =

{
σ if σ(x) = 1
f (σ′) otherwise

σ′ = σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x)− 1]

Example 7.4 (Factorial program; continued)

n-th approximation:

fn(σ)
:= Φn(f∅)(σ)

=

{
σ[y 7→ σ(x) ∗ (σ(x)− 1) ∗ . . . ∗ 2 ∗ σ(y),
x 7→ 1]

if 1 ≤ σ(x) ≤ n

undefined if σ(x) /∈ {1, . . . , n}

=

{
σ[y 7→ (σ(x))! ∗ σ(y), x 7→ 1] if 1 ≤ σ(x) ≤ n
undefined if σ(x) /∈ {1, . . . , n}

Fixpoint:

CJcK(σ0) = fix(Φ)(σ1) =

{
σ[y 7→ (σ(x))!, x 7→ 1] if σ(x) ≥ 1
undefined otherwise

Semantics and Verification of Software Summer Semester 2013 7.15



Denotational Semantics of Factorial Program IV

Φ(f )(σ) =

{
σ if σ(x) = 1
f (σ′) otherwise

σ′ = σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x)− 1]

Example 7.4 (Factorial program; continued)

n-th approximation:

fn(σ)
:= Φn(f∅)(σ)

=

{
σ[y 7→ σ(x) ∗ (σ(x)− 1) ∗ . . . ∗ 2 ∗ σ(y),
x 7→ 1]

if 1 ≤ σ(x) ≤ n

undefined if σ(x) /∈ {1, . . . , n}

=

{
σ[y 7→ (σ(x))! ∗ σ(y), x 7→ 1] if 1 ≤ σ(x) ≤ n
undefined if σ(x) /∈ {1, . . . , n}

Fixpoint:

CJcK(σ0) = fix(Φ)(σ1) =

{
σ[y 7→ (σ(x))!, x 7→ 1] if σ(x) ≥ 1
undefined otherwise

Semantics and Verification of Software Summer Semester 2013 7.15



Outline

1 Recapitulation: CCPOs and Continuous Functions

2 The Fixpoint Theorem

3 Application to fix(Φ)

4 Summary: Denotational Semantics

5 Equivalence of Operational and Denotational Semantics

Semantics and Verification of Software Summer Semester 2013 7.16



Summary: Denotational Semantics

Semantic model: partial state transformations (Σ 99K Σ)

Compositional definition of functional CJ.K : Cmd → (Σ 99K Σ)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Approximation by fixpoint iteration

Semantics and Verification of Software Summer Semester 2013 7.17



Summary: Denotational Semantics

Semantic model: partial state transformations (Σ 99K Σ)

Compositional definition of functional CJ.K : Cmd → (Σ 99K Σ)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Approximation by fixpoint iteration

Semantics and Verification of Software Summer Semester 2013 7.17



Summary: Denotational Semantics

Semantic model: partial state transformations (Σ 99K Σ)

Compositional definition of functional CJ.K : Cmd → (Σ 99K Σ)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Approximation by fixpoint iteration

Semantics and Verification of Software Summer Semester 2013 7.17



Summary: Denotational Semantics

Semantic model: partial state transformations (Σ 99K Σ)

Compositional definition of functional CJ.K : Cmd → (Σ 99K Σ)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Approximation by fixpoint iteration

Semantics and Verification of Software Summer Semester 2013 7.17



Outline

1 Recapitulation: CCPOs and Continuous Functions

2 The Fixpoint Theorem

3 Application to fix(Φ)

4 Summary: Denotational Semantics

5 Equivalence of Operational and Denotational Semantics

Semantics and Verification of Software Summer Semester 2013 7.18



Equivalence of Semantics I

Remember: in Def. 4.1, OJ.K : Cmd → (Σ 99K Σ) was given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Theorem 7.5 (Coincidence Theorem)

For every c ∈ Cmd,

OJcK = CJcK,

i.e., 〈c , σ〉 → σ′ iff CJcK(σ) = σ′, and thus OJ.K = CJ.K.

Semantics and Verification of Software Summer Semester 2013 7.19



Equivalence of Semantics I

Remember: in Def. 4.1, OJ.K : Cmd → (Σ 99K Σ) was given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Theorem 7.5 (Coincidence Theorem)

For every c ∈ Cmd,

OJcK = CJcK,

i.e., 〈c , σ〉 → σ′ iff CJcK(σ) = σ′, and thus OJ.K = CJ.K.

Semantics and Verification of Software Summer Semester 2013 7.19



Equivalence of Semantics II

The proof of Theorem 7.5 employs the following auxiliary propositions:

Lemma 7.6
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z .

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Proof.
1 structural induction on a

2 structural induction on b

Semantics and Verification of Software Summer Semester 2013 7.20



Equivalence of Semantics II

The proof of Theorem 7.5 employs the following auxiliary propositions:

Lemma 7.6
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z .

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Proof.
1 structural induction on a

2 structural induction on b

Semantics and Verification of Software Summer Semester 2013 7.20



Equivalence of Semantics II

The proof of Theorem 7.5 employs the following auxiliary propositions:

Lemma 7.6
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z .

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Proof.
1 structural induction on a

2 structural induction on b

Semantics and Verification of Software Summer Semester 2013 7.20



Equivalence of Semantics III

Proof (Theorem 7.5).

We have to show that

〈c, σ〉 → σ′ ⇐⇒ CJcK(σ) = σ′

⇒ by structural induction over the derivation tree of 〈c , σ〉 → σ′

⇐ by structural induction over c (with a nested complete
induction over fixpoint index n)

(on the board)

Semantics and Verification of Software Summer Semester 2013 7.21



Overview: Operational/Denotational Semantics

Definition (3.2; Execution relation for statements)

(skip)
〈skip, σ〉 → σ

(asgn)
〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]

(seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′ (if-t)
〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′ (wh-f)
〈b, σ〉 → false

〈while b do c, σ〉 → σ

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

Definition (5.1; Denotational semantics of statements)

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ) where Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ)

Semantics and Verification of Software Summer Semester 2013 7.22


	Recapitulation: CCPOs and Continuous Functions
	The Fixpoint Theorem
	Application to fix()
	Summary: Denotational Semantics
	Equivalence of Operational and Denotational Semantics

