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Characterization of fix(Φ)

Goals:

Prove existence of fix(Φ) for Φ(f ) = cond(BJbK, f ◦ CJcK, idΣ)

Show how it can be “computed” (more exactly: approximated)

Sufficient conditions:

on domain Σ 99K Σ: chain-complete partial order

on function Φ: continuity
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Chain Completeness

Definition (Chain completeness)

A partial order is called chain complete (CCPO) if every of its chains has a
least upper bound.

Lemma

(Σ 99K Σ,v) is a CCPO with least element f∅ where graph(f∅) = ∅.
In particular, for every chain S ⊆ Σ 99K Σ,

graph
(⊔

S
)

=
⋃
f ∈S

graph(f ).
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Monotonicity

Definition (Monotonicity)

Let (D,v) and (D ′,v′) be partial orders, and let F : D → D ′. F is called
monotonic (w.r.t. (D,v) and (D ′,v′)) if, for every d1, d2 ∈ D,

d1 v d2 ⇒ F (d1) v′ F (d2).

Interpretation: monotonic functions “preserve information”

Lemma

Let b ∈ BExp, c ∈ Cmd, and Φ : (Σ 99K Σ)→ (Σ 99K Σ) with
Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ is monotonic w.r.t.
(Σ 99K Σ,v).
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Continuity

A function F is continuous if the order of applying F and taking LUBs can
be reversed:

Definition (Continuity)

Let (D,v) and (D ′,v′) be CCPOs and F : D → D ′ monotonic. Then F is
called continuous (w.r.t. (D,v) and (D ′,v′)) if, for every non-empty
chain S ⊆ D,

F
(⊔

S
)

=
⊔

F (S).

Lemma

Let b ∈ BExp, c ∈ Cmd, and Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then Φ
is continuous w.r.t. (Σ 99K Σ,v).
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The Fixpoint Theorem

Alfred Tarski (1901–1983)

Bronislaw Knaster (1893–1990)

Theorem 7.1 (Fixpoint Theorem by Tarski and Knaster)

Let (D,v) be a CCPO and F : D → D continuous. Then

fix(F ) :=
⊔{

F n
(⊔
∅
)
| n ∈ N

}
is the least fixpoint of F where

F 0(d) := d and F n+1(d) := F (F n(d)).

Proof.

on the board
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An Example

Example 7.2

Domain: (2N,⊆) (CCPO with
⊔

S =
⋃

N∈S N – see Ex. 6.7)

Function: F : 2N → 2N : N 7→ N ∪ A for some fixed A ⊆ N
F monotonic: M ⊆ N ⇒ F (M) = M ∪ A ⊆ N ∪ A = F (N)
F continuous: F (

⊔
S) = F

(⋃
N∈S N

)
=
(⋃

N∈S N
)
∪ A =⋃

N∈S (N ∪ A) =
⋃

N∈S F (N) =
⊔

F (S)

Fixpoint iteration: Nn := F n(
⊔
∅) where

⊔
∅ = ∅

N0 =
⊔
∅ = ∅

N1 = F (N0) = ∅ ∪ A = A
N2 = F (N1) = A ∪ A = A = Nn for every n ≥ 1

⇒ fix(F ) = A

Alternatively: F (N) := N ∩ A
⇒ fix(F ) = ∅
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Application to fix(Φ)

Altogether this completes the definition of CJ.K. In particular, for the
while statement we obtain:

Corollary 7.3

Let b ∈ BExp, c ∈ Cmd, and Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ). Then

graph(fix(Φ)) =
⋃
n∈N

graph(Φn(f∅))

Proof.

Using

Lemma 6.9

(Σ 99K Σ,v) CCPO with least element f∅
LUB = union of graphs

Lemma 6.16 (Φ continuous)
Theorem 7.1 (Fixpoint Theorem)
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Denotational Semantics of Factorial Program I

Example 7.4 (Factorial program)

Let c ∈ Cmd be given by

y:=1; while ¬(x=1) do (y:=y*x; x:=x-1)

For every initial state σ0 ∈ Σ, Def. 5.1 yields:

CJcK(σ0) = fix(Φ)(σ1)

where σ1 := σ0[y 7→ 1] and, for every f : Σ 99K Σ and σ ∈ Σ,

Φ(f )(σ) = cond(BJ¬(x=1)K, f ◦ CJy:=y*x; x:=x-1K, idΣ)(σ)

=

{
σ if σ(x) = 1
f (σ′) otherwise

with σ′ := σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x)− 1].

Approximations of least fixpoint of Φ according to Theorem 7.1:

fix(Φ) =
⊔
{Φn(f∅) | n ∈ N}

(where graph(f∅) = ∅)
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Denotational Semantics of Factorial Program II

Φ(f )(σ) =

{
σ if σ(x) = 1
f (σ′) otherwise

σ′ = σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x)− 1]

Example 7.4 (Factorial program; continued)

f0(σ) := Φ0(f∅)(σ)
= f∅(σ)
= undefined

f1(σ) := Φ1(f∅)(σ)
= Φ(f0)(σ)

=

{
σ if σ(x) = 1
f0(σ′) otherwise

=

{
σ if σ(x) = 1
undefined otherwise

f2(σ) := Φ2(f∅)(σ)
= Φ(f1)(σ)

=

{
σ if σ(x) = 1
f1(σ′) otherwise

=

{
σ if σ(x) = 1
σ′ if σ(x) 6= 1 and σ′(x) = 1
undefined if σ(x) 6= 1 and σ′(x) 6= 1

=

{
σ if σ(x) = 1
σ′ if σ(x) = 2
undefined if σ(x) 6= 1 and σ(x) 6= 2

=


σ if σ(x) = 1
σ[y 7→ 2 ∗ σ(y),
x 7→ 1]

if σ(x) = 2

undefined if σ(x) 6= 1
and σ(x) 6= 2
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Denotational Semantics of Factorial Program III

Φ(f )(σ) =

{
σ if σ(x) = 1
f (σ′) otherwise

σ′ = σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x)− 1]

Example 7.4 (Factorial program; continued)

f3(σ) := Φ3(f∅)(σ)
= Φ(f2)(σ)

=

{
σ if σ(x) = 1
f2(σ′) otherwise

=


σ if σ(x) = 1
σ′ if σ(x) 6= 1 and σ′(x) = 1
σ′[y 7→ 2 ∗ σ′(y), x 7→ 1] if σ(x) 6= 1 and σ′(x) = 2
undefined if σ(x) 6= 1 and σ′(x) 6= 1 and σ′(x) 6= 2

=


σ if σ(x) = 1
σ′ if σ(x) = 2
σ′[y 7→ 2 ∗ σ′(y), x 7→ 1] if σ(x) = 3
undefined if σ(x) /∈ {1, 2, 3}

=


σ if σ(x) = 1
σ[y 7→ 2 ∗ σ(y), x 7→ 1] if σ(x) = 2
σ[y 7→ 3 ∗ 2 ∗ σ(y), x 7→ 1] if σ(x) = 3
undefined if σ(x) /∈ {1, 2, 3}
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Denotational Semantics of Factorial Program IV

Φ(f )(σ) =

{
σ if σ(x) = 1
f (σ′) otherwise

σ′ = σ[y 7→ σ(y) ∗ σ(x), x 7→ σ(x)− 1]

Example 7.4 (Factorial program; continued)

n-th approximation:

fn(σ)
:= Φn(f∅)(σ)

=

{
σ[y 7→ σ(x) ∗ (σ(x)− 1) ∗ . . . ∗ 2 ∗ σ(y),
x 7→ 1]

if 1 ≤ σ(x) ≤ n

undefined if σ(x) /∈ {1, . . . , n}

=

{
σ[y 7→ (σ(x))! ∗ σ(y), x 7→ 1] if 1 ≤ σ(x) ≤ n
undefined if σ(x) /∈ {1, . . . , n}

Fixpoint:

CJcK(σ0) = fix(Φ)(σ1) =

{
σ[y 7→ (σ(x))!, x 7→ 1] if σ(x) ≥ 1
undefined otherwise
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Summary: Denotational Semantics

Semantic model: partial state transformations (Σ 99K Σ)

Compositional definition of functional CJ.K : Cmd → (Σ 99K Σ)

Capturing the recursive nature of loops by a fixpoint definition
(for a continuous function on a CCPO)

Approximation by fixpoint iteration
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Equivalence of Semantics I

Remember: in Def. 4.1, OJ.K : Cmd → (Σ 99K Σ) was given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Theorem 7.5 (Coincidence Theorem)

For every c ∈ Cmd,

OJcK = CJcK,

i.e., 〈c , σ〉 → σ′ iff CJcK(σ) = σ′, and thus OJ.K = CJ.K.
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Equivalence of Semantics II

The proof of Theorem 7.5 employs the following auxiliary propositions:

Lemma 7.6
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z .

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Proof.
1 structural induction on a

2 structural induction on b
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Equivalence of Semantics III

Proof (Theorem 7.5).

We have to show that

〈c, σ〉 → σ′ ⇐⇒ CJcK(σ) = σ′

⇒ by structural induction over the derivation tree of 〈c , σ〉 → σ′

⇐ by structural induction over c (with a nested complete
induction over fixpoint index n)

(on the board)
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Overview: Operational/Denotational Semantics

Definition (3.2; Execution relation for statements)

(skip)
〈skip, σ〉 → σ

(asgn)
〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]

(seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′ (if-t)
〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′ (wh-f)
〈b, σ〉 → false

〈while b do c, σ〉 → σ

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

Definition (5.1; Denotational semantics of statements)

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ) where Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ)
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