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Equivalence of Semantics |

Remember: in Def. 4.1, O[.] : Cmd — (X --» X) was given by
Olc](o) =0’ < (c,0) =o'

Theorem (Coincidence Theorem)

For every c € Cmd,
Olc] = €[],
ie., (c,o) = o iff €[c](c) = o', and thus O[.] = €[.].
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Equivalence of Semantics Il

The proof of Theorem 7.5 employs the following auxiliary propositions:

Lemma

Q Foreveryac AExp, o € X, and z € 7Z:
(a,0) = z <— A[a](0) = z.

© Foreverybe BExp, 0 € 2, and t € B:
(b,o) -t < B[b](c) =t.

@ structural induction on a

@ structural induction on b
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Equivalence of Semantics Il

Proof (Theorem 7.5).
We have to show that

(c,0) =0 < €[c](c) =0’

/

= by structural induction over the derivation tree of (c,0) — o

< by structural induction over ¢ (with a nested complete
induction over fixpoint index n)

(on the board) O
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Overview: Operational/Denotational Semantics

Definition (3.2; Execution relation for statements)

(a,0) = z
X :=a,0) = o[x — 2]

(skip) (asgn) <

(skip,0) — o
{c1,0) = 0’ (c2,0") = o (b,0) — true {c1,0) — o’

(seq) (if-t)

(if b then ¢ else ¢,0) — o’

(wh-f)

(b,a) — true (c,0) — o’ (while b do c,o’) — o”

(cr;0,0) = o
(b,a) — false (c2,0) — o’ (b,o) — false

(while b do c,0) = o

(if-f)

(if b then ¢ else ¢,0) — o’

(Wh_t) "
(while b do c,0) = o

Definition (5.1; Denotational semantics of statements)

C[skip] := ids
Clx := ao := o[x — Aa]o]
Cle; ] = €] o €fc]
C[if b then ¢ else ] := cond(B[b], €[ci], €[c])
C[while b do c] := fix(®) where ®(f) := cond(B[b], f o €[c],idx)
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© The Axiomatic Approach
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The Axiomatic Approach |

Example 8.1

o Let ¢ € Cmd be given by

s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)
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The Axiomatic Approach |

Example 8.1

o Let ¢ € Cmd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

@ How to show that, after termination of c,

o(N)
o(s) = Z k 7
k=1
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The Axiomatic Approach |

Example 8.1

o Let ¢ € Cmd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

@ How to show that, after termination of c,

o(N)
o(s) = Z k 7
k=1

@ “Running” ¢ according to the operational semantics in insufficient:
every change of o(N) requires a new proof
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The Axiomatic Approach |

Example 8.1

o Let ¢ € Cmd be given by
s:=0; n:=1; while —(n>N) do (s:=s+n; n:=n+1)

@ How to show that, after termination of c,

o(N)
o(s) = Z k 7
k=1

@ “Running” ¢ according to the operational semantics in insufficient:
every change of o(N) requires a new proof

@ Wanted: a more abstract, “symbolic” way of reasoning
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The Axiomatic Approach Il

Example 8.1 (continued)
Obviously c satisfies the following assertions (after execution of the
respective statement):

s:=0;

{s = 0}

n:=1;

{s=0An=1}

while —(n>N) do (s:=s+n; n:=n+1)
{s:zl,\lzlk/\n>N}

where, e.g., “s = 0" means “o(s) = 0 in the current state o € X"
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The Axiomatic Approach Il

How to prove the validity of assertions?

@ Assertions following assignments are evident (“s = 0")
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The Axiomatic Approach Il

How to prove the validity of assertions?
@ Assertions following assignments are evident (“s = 0")

@ Also, “n > N" follows directly from the loop’s execution condition
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The Axiomatic Approach Il

How to prove the validity of assertions?
@ Assertions following assignments are evident (“s = 0")
@ Also, “n > N" follows directly from the loop’s execution condition

@ But how to obtain the final value of s7?
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The Axiomatic Approach Il

How to prove the validity of assertions?
@ Assertions following assignments are evident (“s = 0")
@ Also, “n > N" follows directly from the loop’s execution condition
@ But how to obtain the final value of s7
@ Answer: after every loop iteration, the invariant s = 22;11 k is
satisfied
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The Axiomatic Approach Il

How to prove the validity of assertions?

@ Assertions following assignments are evident (“s = 0")

@ Also, “n > N" follows directly from the loop’s execution condition
@ But how to obtain the final value of s7
°

Answer: after every loop iteration, the invariant s = 22;11 k is
satisfied

@ Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A, B and ¢ € Cmd
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The Axiomatic Approach Il

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0")

@ Also, “n > N" follows directly from the loop’s execution condition
@ But how to obtain the final value of s7
°

Answer: after every loop iteration, the invariant s = 22;11 k is
satisfied

Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A, B and ¢ € Cmd

@ Interpretation:

Validity of partial correctness property

{A} c{B} is valid iff for all states o € ¥ which satisfy A:
if the execution of ¢ in o terminates in o’ € ¥, then o’ satisfies B.
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The Axiomatic Approach Il

How to prove the validity of assertions?
@ Assertions following assignments are evident (“s = 0")
@ Also, “n > N" follows directly from the loop’s execution condition
@ But how to obtain the final value of s7

@ Answer: after every loop iteration, the invariant s = 22;11 k is
satisfied

@ Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A, B and ¢ € Cmd

@ Interpretation:

Validity of partial correctness property

{A} c{B} is valid iff for all states o € ¥ which satisfy A:
if the execution of ¢ in o terminates in o’ € ¥, then o’ satisfies B.

@ “Partial” means that nothing is said about c if it fails to terminate
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The Axiomatic Approach Il

How to prove the validity of assertions?
@ Assertions following assignments are evident (“s = 0")
@ Also, “n > N" follows directly from the loop’s execution condition
@ But how to obtain the final value of s7

@ Answer: after every loop iteration, the invariant s = 22;11 k is
satisfied

@ Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A, B and ¢ € Cmd

@ Interpretation:

Validity of partial correctness property

{A} c{B} is valid iff for all states o € ¥ which satisfy A:
if the execution of ¢ in o terminates in o’ € ¥, then o’ satisfies B.

o “Partial” means that nothing is said about c if it fails to terminate
@ In particular, {true} while true do skip {false} is a valid property
RWNTH
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© The Assertion Language
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Syntax of Assertion Language |

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)
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Syntax of Assertion Language |

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain  Meta variable(s)
Logical variables LVar i
Arithmetic expressions
with logical variables LExp a
Assertions Assn A B,C
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Syntax of Assertion Language ||

Definition 8.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

an=z|x|i|a+ay|ai-ay | axax € LExp
An=t|a=ay | ai>ax | "A| AL ANAy | ALV Ay | VilA € Assn

nerAACHEN Semantics and Verification of Software Summer Semester 2013



Syntax of Assertion Language ||

Definition 8.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

an=z|x|i|a+ay|ai-ay | axax € LExp
An=t|a=ay | ai>ax | "A| AL ANAy | ALV Ay | VilA € Assn

o Thus: AExp C LExp, BExp C Assn
@ The following (and other) abbreviations will be employed:

A1 = Ay = A1 VA
di.A = ﬂ(Vi.—\A)
a; > ap» ;= a;>ax V aj=ar
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@ Semantics of Assertions
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Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of LExp)

An interpretation is an element of the set Int := {I/ | | : LVar — Z}. The
value of an arithmetic expressions with logical variables is given by the
functional

L[] : LExp — (Int — (X — Z))

where
S[[Z]]/U = Z S[[al+32]]/0' = 2[[31]]/0 -+ S[[BQ]]/U
Llx]lo = a(x) Llai-az]lo := L[ai]lo — L[az]lo
Llille = 1(i) Llar*az]lo := Llai]lo - L]az]lo
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Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of LExp)

An interpretation is an element of the set Int := {I/ | | : LVar — Z}. The
value of an arithmetic expressions with logical variables is given by the
functional

L[] : LExp — (Int — (X — Z))

where
S[[Z]]/U = Z S[[al+32]]/0' = Sﬂalﬂla -+ S[[az]]la
Llx]lo = a(x) Llai-az]lo := L[ai]lo — L[az]lo
Llille = 1(i) Llar*az]lo := Llai]lo - L]az]lo

Def. 4.4 (denotational semantics of arithmetic expressions) implies:

Corollary 8.4

For every a € AExp (without logical variables), | € Int, and o € ¥:
Lla]lo = A[a]o.
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Semantics of Assertions |

@ Formalized by a satisfaction relation of the form

cEA

(where 0 € ¥ and A € Assn)

RWIHAACHEN Semantics and Verification of Software Summer Semester 2013 8.16



Semantics of Assertions |

@ Formalized by a satisfaction relation of the form

cEA

(where 0 € ¥ and A € Assn)

@ Non-terminating computations captured by undefined state 1:
2, =2xU {J_}
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Semantics of Assertions |

@ Formalized by a satisfaction relation of the form
cEA
(where 0 € ¥ and A € Assn)
@ Non-terminating computations captured by undefined state 1:
Y, =Yu{l}

e Modification of interpretations (in analogy to program states):

Ii— 2](j) == {7(1') gt{ue:rvviise
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Semantics of Assertions |l

Reminder: A ::=t|aj=ay | a1>ax | "A| AL AN Ay | ALV Ay | Vi.A € Assn

Definition 8.5 (Semantics of assertions)

Let A€ Assn, 0 € ¥ |, and | € Int. The relation “o satisfies A in ["
(notation: o =/ A) is inductively defined by:

o = true

o ):l di=apz if 2[[31]]/0‘ = 2[[32]]/0

o =l ap>ap if £[a1]lo > Llas]lo

o= -A if not o =/ A

o ):I AiLNAy ifo ):I A1 and o ):I A>

o= AIVA, ifolE AloroE A

o E'Vi.A if o =22 A for every z € Z

LEA
Furthermore o satisfies A (o |= A) if o |=! A for every interpretation
I € Int, and A is called valid (= A) if o |= A for every state o € ¥.

v
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Semantics of Assertions Il

Example 8.6

The following assertion expresses that, in the current state o € ¥, o(y) is
the greatest divisor of o(x):

(3i.i > 1Aixy =x)AVjVk.(j > 1 Ajxk =x = k < y)
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Semantics of Assertions Il

Example 8.6

The following assertion expresses that, in the current state o € ¥, o(y) is
the greatest divisor of o(x):

(3i.i > 1Aixy =x)AVjVk.(j > 1 Ajxk =x = k < y)

In analogy to Corollary 8.4, Def. 4.5 (denotational semantics of Boolean
expressions) yields:

Corollary 8.7

For every b € BExp (without logical variables), | € Int, and o € ¥.:
o ='b «— B[bJo = true.
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Semantics of Assertions IV

Definition 8.8 (Extension)
Let A € Assn and | € Int. The extension of A with respect to / is given by
Al.={ocex,|okE A}

Note that, for every A € Assn and | € Int, L € A’
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Semantics of Assertions IV

Definition 8.8 (Extension)
Let A € Assn and | € Int. The extension of A with respect to / is given by
Al.={ocex,|okE A}

Note that, for every A € Assn and | € Int, L € A’

Example 8.9

For A := (3i.i*xi = x) and every | € Int,
Al={1}u{seX]|o(x)€{0,1,4,9,...}}
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© Partial Correctness Properties
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Partial Correctness Properties

Definition 8.10 (Partial correctness properties)
Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} ¢ {B} is called a partial correctness
property with precondition A and postcondition B.
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Partial Correctness Properties

Definition 8.10 (Partial correctness properties)
Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} ¢ {B} is called a partial correctness
property with precondition A and postcondition B.

@ Given o € X | and I € Int, we let
o ' {A}c{B}
if o = A implies ¢[c]o ' B
(or equivalently: o € Al = €[c]o € B).
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Partial Correctness Properties

Definition 8.10 (Partial correctness properties)
Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} ¢ {B} is called a partial correctness
property with precondition A and postcondition B.

@ Given o € X | and I € Int, we let
o = {A} c{B}
if o = A implies ¢[c]o ' B
(or equivalently: o € Al = €[c]o € B).
o {A} c{B} is called valid in | (notation: |=' {A} c {B}) if
o = {A} c{B} for every 0 € ¥ (or equivalently: €[c]A’ C B').
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Partial Correctness Properties

Definition 8.10 (Partial correctness properties)
Let A, B € Assn and ¢ € Cmd.

@ An expression of the form {A} ¢ {B} is called a partial correctness
property with precondition A and postcondition B.

@ Given o € X | and I € Int, we let
o = {A} c{B}

if o = A implies ¢[c]o ' B

(or equivalently: o € Al = €[c]o € B).
o {A} c{B} is called valid in | (notation: |=' {A} c {B}) if

o = {A} c{B} for every 0 € ¥ (or equivalently: €[c]A’ C B').
o {A} c{B} is called valid (notation: |= {A} c{B}) if =/ {A} c{B}

for every | € Int.
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@ A Valid Partial Correctness Property
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A Valid Partial Correctness Property
Example 8.11

@ Let x € Var and i/ € LVar. We have to show:
E{i<x}x :=x+1{i<x}

v

RWTHAACHE Semantics and Verification of Software Summer Semester 2013 8.23



A Valid Partial Correctness Property
Example 8.11

@ Let x € Var and i € LVar. We have to show:
E{i<x}x :=x+1{i<x}
@ According to Def. 8.10, this is equivalent to
o ):l {i<zx}x := x+1{i <x}
for every c € ¥ and I € Int

v
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A Valid Partial Correctness Property
Example 8.11

@ Let x € Var and i € LVar. We have to show:
E{i<x}x :=x+1{i<x}
@ According to Def. 8.10, this is equivalent to
o ):l {i<zx}x := x+1{i <x}
for every c € ¥ and I € Int
@ For o = | this is trivial. So let 0 € ¥:

o =" (i < %)

v
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A Valid Partial Correctness Property
Example 8.11

@ Let x € Var and i € LVar. We have to show:
E{i<x}x :=x+1{i<x}
@ According to Def. 8.10, this is equivalent to
o ):l {i<zx}x := x+1{i <x}
for every c € ¥ and I € Int

@ For o = L this is trivial. So let 0 € X;

o |':l (i <x)
= Llilo < L[x]lo (Def. 8.5)

v
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A Valid Partial Correctness Property
Example 8.11

@ Let x € Var and i € LVar. We have to show:
E{i<x}x :=x+1{i<x}
@ According to Def. 8.10, this is equivalent to
o ):l {i<zx}x := x+1{i <x}
for every c € ¥ and I € Int
@ For o = | this is trivial. So let 0 € ¥:

o |':l (i <x)
= Llilo < L[x]lo (Def. 8.5)
= 1(i) < o(x) (Def. 8.3)

v
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A Valid Partial Correctness Property
Example 8.11

@ Let x € Var and i € LVar. We have to show:
E{i<x}x :=x+1{i<x}
@ According to Def. 8.10, this is equivalent to
o ):l {i<zx}x := x+1{i <x}
for every c € ¥ and I € Int
@ For o = | this is trivial. So let 0 € ¥:

o |':l (i <x)
= Llilo < L[x]lo (Def. 8.5)
= 1(i) < o(x) (Def. 8.3)

= 1(i) <o(x)+1
= (€[x := x+1]o)(x)

v
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A Valid Partial Correctness Property
Example 8.11

@ Let x € Var and i € LVar. We have to show:
E{i<x}x :=x+1{i<x}
@ According to Def. 8.10, this is equivalent to
o ):l {i<zx}x := x+1{i <x}
for every c € ¥ and I € Int
@ For o = | this is trivial. So let 0 € ¥:

o |':l (i <x)
= Llilo < L[x]lo (Def. 8.5)
= 1(i) < o(x) (Def. 8.3)

= 1(i) <o(x)+1
= (€[x := x+1]o)(x)
= Cx := x+1]o = (i < x)

v
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A Valid Partial Correctness Property
Example 8.11

@ Let x € Var and i € LVar. We have to show:
E{i<x}x :=x+1{i<x}
@ According to Def. 8.10, this is equivalent to
o ):l {i<zx}x := x+1{i <x}
for every c € ¥ and I € Int
@ For o = | this is trivial. So let 0 € ¥:

o |':l (i <x)
= Llilo < L[x]lo (Def. 8.5)
= 1(i) < o(x) (Def. 8.3)

= 1(i) <o(x)+1

= (€[x := x+1]o)(x)
= Cx := x+1]o = (i < x)
= claim

v
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