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Equivalence of Semantics I

Remember: in Def. 4.1, OJ.K : Cmd → (Σ 99K Σ) was given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Theorem (Coincidence Theorem)

For every c ∈ Cmd,

OJcK = CJcK,

i.e., 〈c , σ〉 → σ′ iff CJcK(σ) = σ′, and thus OJ.K = CJ.K.
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Equivalence of Semantics II

The proof of Theorem 7.5 employs the following auxiliary propositions:

Lemma
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z .

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Proof.
1 structural induction on a

2 structural induction on b
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Equivalence of Semantics III

Proof (Theorem 7.5).

We have to show that

〈c, σ〉 → σ′ ⇐⇒ CJcK(σ) = σ′

⇒ by structural induction over the derivation tree of 〈c , σ〉 → σ′

⇐ by structural induction over c (with a nested complete
induction over fixpoint index n)

(on the board)

Semantics and Verification of Software Summer Semester 2013 8.5



Overview: Operational/Denotational Semantics

Definition (3.2; Execution relation for statements)

(skip)
〈skip, σ〉 → σ

(asgn)
〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]

(seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′ (if-t)
〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′ (wh-f)
〈b, σ〉 → false

〈while b do c, σ〉 → σ

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

Definition (5.1; Denotational semantics of statements)

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ) where Φ(f ) := cond(BJbK, f ◦ CJcK, idΣ)
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The Axiomatic Approach I

Example 8.1

Let c ∈ Cmd be given by

s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c ,

σ(s) =

σ(N)∑
k=1

k ?

“Running” c according to the operational semantics in insufficient:
every change of σ(N) requires a new proof

Wanted: a more abstract, “symbolic” way of reasoning
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The Axiomatic Approach II

Example 8.1 (continued)

Obviously c satisfies the following assertions (after execution of the
respective statement):

s:=0;
{s = 0}
n:=1;
{s = 0 ∧ n = 1}
while ¬(n>N) do (s:=s+n; n:=n+1)

{s =
∑N

k=1 k ∧ n > N}
where, e.g., “s = 0” means “σ(s) = 0 in the current state σ ∈ Σ”
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The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s =
∑n−1

k=1 k is
satisfied

Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd

Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate

In particular, {true} while true do skip {false} is a valid property
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Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable(s)
Logical variables LVar i

Arithmetic expressions
with logical variables LExp a

Assertions Assn A,B,C
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Syntax of Assertion Language II

Definition 8.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i .A ∈ Assn

Thus: AExp ( LExp, BExp ( Assn

The following (and other) abbreviations will be employed:

A1 ⇒ A2 := ¬A1 ∨ A2

∃i .A := ¬(∀i .¬A)
a1 ≥ a2 := a1>a2 ∨ a1=a2

...
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Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of LExp)

An interpretation is an element of the set Int := {I | I : LVar → Z}. The
value of an arithmetic expressions with logical variables is given by the
functional

LJ.K : LExp → (Int → (Σ→ Z))

where
LJzKIσ := z LJa1+a2KIσ := LJa1KIσ + LJa2KIσ
LJxKIσ := σ(x) LJa1-a2KIσ := LJa1KIσ − LJa2KIσ
LJiKIσ := I (i) LJa1*a2KIσ := LJa1KIσ · LJa2KIσ

Def. 4.4 (denotational semantics of arithmetic expressions) implies:

Corollary 8.4

For every a ∈ AExp (without logical variables), I ∈ Int, and σ ∈ Σ:

LJaKIσ = AJaKσ.
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Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of LExp)

An interpretation is an element of the set Int := {I | I : LVar → Z}. The
value of an arithmetic expressions with logical variables is given by the
functional

LJ.K : LExp → (Int → (Σ→ Z))

where
LJzKIσ := z LJa1+a2KIσ := LJa1KIσ + LJa2KIσ
LJxKIσ := σ(x) LJa1-a2KIσ := LJa1KIσ − LJa2KIσ
LJiKIσ := I (i) LJa1*a2KIσ := LJa1KIσ · LJa2KIσ

Def. 4.4 (denotational semantics of arithmetic expressions) implies:

Corollary 8.4

For every a ∈ AExp (without logical variables), I ∈ Int, and σ ∈ Σ:

LJaKIσ = AJaKσ.
Semantics and Verification of Software Summer Semester 2013 8.15



Semantics of Assertions I

Formalized by a satisfaction relation of the form

σ |= A

(where σ ∈ Σ and A ∈ Assn)

Non-terminating computations captured by undefined state ⊥:

Σ⊥ := Σ ∪ {⊥}

Modification of interpretations (in analogy to program states):

I [i 7→ z ](j) :=

{
z if j = i
I (j) otherwise
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Semantics of Assertions II

Reminder: A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i .A ∈ Assn

Definition 8.5 (Semantics of assertions)

Let A ∈ Assn, σ ∈ Σ⊥, and I ∈ Int. The relation “σ satisfies A in I ”
(notation: σ |=I A) is inductively defined by:

σ |=I true
σ |=I a1=a2 if LJa1KIσ = LJa2KIσ
σ |=I a1>a2 if LJa1KIσ > LJa2KIσ
σ |=I ¬A if not σ |=I A
σ |=I A1 ∧ A2 if σ |=I A1 and σ |=I A2

σ |=I A1 ∨ A2 if σ |=I A1 or σ |=I A2

σ |=I ∀i .A if σ |=I [i 7→z] A for every z ∈ Z
⊥ |=I A

Furthermore σ satisfies A (σ |= A) if σ |=I A for every interpretation
I ∈ Int, and A is called valid (|= A) if σ |= A for every state σ ∈ Σ.
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Semantics of Assertions III

Example 8.6

The following assertion expresses that, in the current state σ ∈ Σ, σ(y) is
the greatest divisor of σ(x):

(∃i .i > 1 ∧ i*y = x) ∧ ∀j .∀k .(j > 1 ∧ j*k = x ⇒ k ≤ y)

In analogy to Corollary 8.4, Def. 4.5 (denotational semantics of Boolean
expressions) yields:

Corollary 8.7

For every b ∈ BExp (without logical variables), I ∈ Int, and σ ∈ Σ:

σ |=I b ⇐⇒ BJbKσ = true.
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Semantics of Assertions IV

Definition 8.8 (Extension)

Let A ∈ Assn and I ∈ Int. The extension of A with respect to I is given by

AI := {σ ∈ Σ⊥ | σ |=I A}.

Note that, for every A ∈ Assn and I ∈ Int, ⊥ ∈ AI .

Example 8.9

For A := (∃i .i*i = x) and every I ∈ Int,

AI = {⊥} ∪ {σ ∈ Σ | σ(x) ∈ {0, 1, 4, 9, . . .}}
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Partial Correctness Properties

Definition 8.10 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int, we let

σ |=I {A} c {B}
if σ |=I A implies CJcKσ |=I B
(or equivalently: σ ∈ AI ⇒ CJcKσ ∈ B I ).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ B I ).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int.
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A Valid Partial Correctness Property

Example 8.11

Let x ∈ Var and i ∈ LVar . We have to show:

|= {i ≤ x} x := x+1 {i < x}

According to Def. 8.10, this is equivalent to

σ |=I {i ≤ x} x := x+1 {i < x}
for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Def. 8.5)
⇒ I (i) ≤ σ(x) (Def. 8.3)
⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim

Semantics and Verification of Software Summer Semester 2013 8.23



A Valid Partial Correctness Property

Example 8.11

Let x ∈ Var and i ∈ LVar . We have to show:

|= {i ≤ x} x := x+1 {i < x}

According to Def. 8.10, this is equivalent to

σ |=I {i ≤ x} x := x+1 {i < x}
for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Def. 8.5)
⇒ I (i) ≤ σ(x) (Def. 8.3)
⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim
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