

Semantics and Verification of Software

Lecture 8: Axiomatic Semantics of WHILE I (Introduction)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw13/>

Summer Semester 2013

- 1 Recapitulation: Equivalence of Operational and Denotational Semantics
- 2 The Axiomatic Approach
- 3 The Assertion Language
- 4 Semantics of Assertions
- 5 Partial Correctness Properties
- 6 A Valid Partial Correctness Property

Remember: in Def. 4.1, $\mathfrak{O}[\cdot] : Cmd \rightarrow (\Sigma \dashrightarrow \Sigma)$ was given by

$$\mathfrak{O}[c](\sigma) = \sigma' \iff \langle c, \sigma \rangle \rightarrow \sigma'$$

Theorem (Coincidence Theorem)

For every $c \in Cmd$,

$$\mathfrak{O}[c] = \mathfrak{C}[c],$$

i.e., $\langle c, \sigma \rangle \rightarrow \sigma'$ iff $\mathfrak{C}[c](\sigma) = \sigma'$, and thus $\mathfrak{O}[\cdot] = \mathfrak{C}[\cdot]$.

The proof of Theorem 7.5 employs the following auxiliary propositions:

Lemma

- ① For every $a \in AExp$, $\sigma \in \Sigma$, and $z \in \mathbb{Z}$:

$$\langle a, \sigma \rangle \rightarrow z \iff \mathfrak{A}[\![a]\!](\sigma) = z.$$

- ② For every $b \in BExp$, $\sigma \in \Sigma$, and $t \in \mathbb{B}$:

$$\langle b, \sigma \rangle \rightarrow t \iff \mathfrak{B}[\![b]\!](\sigma) = t.$$

Proof.

- ① structural induction on a
- ② structural induction on b

Proof (Theorem 7.5).

We have to show that

$$\langle c, \sigma \rangle \rightarrow \sigma' \iff \mathfrak{C}[\![c]\!](\sigma) = \sigma'$$

- ⇒ by structural induction over the derivation tree of $\langle c, \sigma \rangle \rightarrow \sigma'$
- ⇐ by structural induction over c (with a nested complete induction over fixpoint index n)

(on the board)

Overview: Operational/Denotational Semantics

Definition (3.2; Execution relation for statements)

$$\begin{array}{c} (\text{skip}) \frac{}{\langle \text{skip}, \sigma \rangle \rightarrow \sigma} \qquad (\text{asgn}) \frac{\langle a, \sigma \rangle \rightarrow z}{\langle x := a, \sigma \rangle \rightarrow \sigma[x \mapsto z]} \\ (\text{seq}) \frac{\langle c_1, \sigma \rangle \rightarrow \sigma' \quad \langle c_2, \sigma' \rangle \rightarrow \sigma''}{\langle c_1 ; c_2, \sigma \rangle \rightarrow \sigma''} \qquad (\text{if-t}) \frac{\langle b, \sigma \rangle \rightarrow \text{true} \quad \langle c_1, \sigma \rangle \rightarrow \sigma'}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \sigma'} \\ (\text{if-f}) \frac{\langle b, \sigma \rangle \rightarrow \text{false} \quad \langle c_2, \sigma \rangle \rightarrow \sigma'}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \sigma'} \qquad (\text{wh-f}) \frac{\langle b, \sigma \rangle \rightarrow \text{false}}{\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma} \\ (\text{wh-t}) \frac{\langle b, \sigma \rangle \rightarrow \text{true} \quad \langle c, \sigma \rangle \rightarrow \sigma' \quad \langle \text{while } b \text{ do } c, \sigma' \rangle \rightarrow \sigma''}{\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \sigma''} \end{array}$$

Definition (5.1; Denotational semantics of statements)

$$\begin{aligned} \mathfrak{C}[\![\text{skip}]\!] &:= \text{id}_\Sigma \\ \mathfrak{C}[\![x := a]\!] \sigma &:= \sigma[x \mapsto \mathfrak{A}[\![a]\!] \sigma] \\ \mathfrak{C}[\![c_1 ; c_2]\!] &:= \mathfrak{C}[\![c_2]\!] \circ \mathfrak{C}[\![c_1]\!] \\ \mathfrak{C}[\![\text{if } b \text{ then } c_1 \text{ else } c_2]\!] &:= \text{cond}(\mathfrak{B}[\![b]\!], \mathfrak{C}[\![c_1]\!], \mathfrak{C}[\![c_2]\!]) \\ \mathfrak{C}[\![\text{while } b \text{ do } c]\!] &:= \text{fix}(\Phi) \text{ where } \Phi(f) := \text{cond}(\mathfrak{B}[\![b]\!], f \circ \mathfrak{C}[\![c]\!], \text{id}_\Sigma) \end{aligned}$$

- 1 Recapitulation: Equivalence of Operational and Denotational Semantics
- 2 The Axiomatic Approach
- 3 The Assertion Language
- 4 Semantics of Assertions
- 5 Partial Correctness Properties
- 6 A Valid Partial Correctness Property

Example 8.1

- Let $c \in Cmd$ be given by

```
s:=0; n:=1; while  $\neg(n > N)$  do (s:=s+n; n:=n+1)
```

Example 8.1

- Let $c \in Cmd$ be given by

$s := 0; n := 1; \text{while } \neg(n > N) \text{ do } (s := s + n; n := n + 1)$

- How to show that, after termination of c ,

$$\sigma(s) = \sum_{k=1}^{\sigma(N)} k \quad ?$$

Example 8.1

- Let $c \in Cmd$ be given by

$s := 0; n := 1; \text{while } \neg(n > N) \text{ do } (s := s + n; n := n + 1)$

- How to show that, after termination of c ,

$$\sigma(s) = \sum_{k=1}^{\sigma(N)} k \quad ?$$

- “Running” c according to the operational semantics is insufficient: every change of $\sigma(N)$ requires a **new proof**

Example 8.1

- Let $c \in Cmd$ be given by

$s := 0; n := 1; \text{while } \neg(n > N) \text{ do } (s := s + n; n := n + 1)$

- How to show that, after termination of c ,

$$\sigma(s) = \sum_{k=1}^{\sigma(N)} k \quad ?$$

- “Running” c according to the operational semantics is insufficient: every change of $\sigma(N)$ requires a **new proof**
- Wanted: a more abstract, “**symbolic**” way of reasoning

Example 8.1 (continued)

Obviously c satisfies the following **assertions** (after execution of the respective statement):

```
s:=0;  
{s = 0}  
n:=1;  
{s = 0  $\wedge$  n = 1}  
while  $\neg(n > N)$  do (s:=s+n; n:=n+1)  
{s =  $\sum_{k=1}^N k$   $\wedge$  n > N}
```

where, e.g., “ $s = 0$ ” means “ $\sigma(s) = 0$ in the current state $\sigma \in \Sigma$ ”

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)
- Also, “ $n > N$ ” follows directly from the loop's **execution condition**

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)
- Also, “ $n > N$ ” follows directly from the loop's **execution condition**
- But how to obtain the final value of **s**?

The Axiomatic Approach III

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)
- Also, “ $n > N$ ” follows directly from the loop's **execution condition**
- But how to obtain the final value of **s**?
- Answer: after every loop iteration, the **invariant** $s = \sum_{k=1}^{n-1} k$ is satisfied

The Axiomatic Approach III

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)
- Also, “ $n > N$ ” follows directly from the loop’s **execution condition**
- But how to obtain the final value of s ?
- Answer: after every loop iteration, the **invariant** $s = \sum_{k=1}^{n-1} k$ is satisfied
- Corresponding proof system employs **partial correctness properties** of the form $\{A\} c \{B\}$ with assertions A, B and $c \in Cmd$

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)
- Also, “ $n > N$ ” follows directly from the loop’s **execution condition**
- But how to obtain the final value of s ?
- Answer: after every loop iteration, the **invariant** $s = \sum_{k=1}^{n-1} k$ is satisfied
- Corresponding proof system employs **partial correctness properties** of the form $\{A\} c \{B\}$ with assertions A, B and $c \in Cmd$
- Interpretation:

Validity of partial correctness property

$\{A\} c \{B\}$ is **valid** iff for all states $\sigma \in \Sigma$ which satisfy A :
if the execution of c in σ terminates in $\sigma' \in \Sigma$, then σ' satisfies B .

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)
- Also, “ $n > N$ ” follows directly from the loop’s **execution condition**
- But how to obtain the final value of s ?
- Answer: after every loop iteration, the **invariant** $s = \sum_{k=1}^{n-1} k$ is satisfied
- Corresponding proof system employs **partial correctness properties** of the form $\{A\} c \{B\}$ with assertions A, B and $c \in Cmd$
- Interpretation:

Validity of partial correctness property

$\{A\} c \{B\}$ is **valid** iff for all states $\sigma \in \Sigma$ which satisfy A :
if the execution of c in σ terminates in $\sigma' \in \Sigma$, then σ' satisfies B .

- “**Partial**” means that nothing is said about c if it fails to terminate

How to prove the **validity** of assertions?

- Assertions following **assignments** are evident (“ $s = 0$ ”)
- Also, “ $n > N$ ” follows directly from the loop’s **execution condition**
- But how to obtain the final value of s ?
- Answer: after every loop iteration, the **invariant** $s = \sum_{k=1}^{n-1} k$ is satisfied
- Corresponding proof system employs **partial correctness properties** of the form $\{A\} c \{B\}$ with assertions A, B and $c \in Cmd$
- Interpretation:

Validity of partial correctness property

$\{A\} c \{B\}$ is **valid** iff for all states $\sigma \in \Sigma$ which satisfy A :
if the execution of c in σ terminates in $\sigma' \in \Sigma$, then σ' satisfies B .

- “**Partial**” means that nothing is said about c if it fails to terminate
- In particular, $\{\text{true}\} \text{while true do skip} \{\text{false}\}$ is a **valid** property

- 1 Recapitulation: Equivalence of Operational and Denotational Semantics
- 2 The Axiomatic Approach
- 3 The Assertion Language
- 4 Semantics of Assertions
- 5 Partial Correctness Properties
- 6 A Valid Partial Correctness Property

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category	Domain	Meta variable(s)
Logical variables	$LVar$	i
Arithmetic expressions with logical variables	$LExp$	a
Assertions	$Assn$	A, B, C

Definition 8.2 (Syntax of assertions)

The *syntax of Assn* is defined by the following context-free grammar:

$$a ::= z \mid x \mid i \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in LExp$$
$$A ::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg A \mid A_1 \wedge A_2 \mid A_1 \vee A_2 \mid \forall i. A \in Assn$$

Definition 8.2 (Syntax of assertions)

The **syntax of *Assn*** is defined by the following context-free grammar:

$$a ::= z \mid x \mid i \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in LExp$$

$$A ::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg A \mid A_1 \wedge A_2 \mid A_1 \vee A_2 \mid \forall i. A \in Assn$$

- Thus: $AExp \subsetneq LExp$, $BExp \subsetneq Assn$
- The following (and other) **abbreviations** will be employed:

$$A_1 \Rightarrow A_2 := \neg A_1 \vee A_2$$

$$\exists i. A := \neg (\forall i. \neg A)$$

$$a_1 \geq a_2 := a_1 > a_2 \vee a_1 = a_2$$

⋮

- 1 Recapitulation: Equivalence of Operational and Denotational Semantics
- 2 The Axiomatic Approach
- 3 The Assertion Language
- 4 Semantics of Assertions
- 5 Partial Correctness Properties
- 6 A Valid Partial Correctness Property

The semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of $LExp$)

An **interpretation** is an element of the set $\text{Int} := \{I \mid I : LVar \rightarrow \mathbb{Z}\}$. The **value of an arithmetic expressions with logical variables** is given by the functional

$$\mathfrak{L}[\cdot] : LExp \rightarrow (\text{Int} \rightarrow (\Sigma \rightarrow \mathbb{Z}))$$

where

$$\begin{array}{ll} \mathfrak{L}[z] / \sigma := z & \mathfrak{L}[a_1 + a_2] / \sigma := \mathfrak{L}[a_1] / \sigma + \mathfrak{L}[a_2] / \sigma \\ \mathfrak{L}[x] / \sigma := \sigma(x) & \mathfrak{L}[a_1 - a_2] / \sigma := \mathfrak{L}[a_1] / \sigma - \mathfrak{L}[a_2] / \sigma \\ \mathfrak{L}[i] / \sigma := I(i) & \mathfrak{L}[a_1 * a_2] / \sigma := \mathfrak{L}[a_1] / \sigma \cdot \mathfrak{L}[a_2] / \sigma \end{array}$$

The semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of $LExp$)

An **interpretation** is an element of the set $Int := \{I \mid I : LVar \rightarrow \mathbb{Z}\}$. The **value of an arithmetic expressions with logical variables** is given by the functional

$$\mathfrak{L}[\cdot] : LExp \rightarrow (Int \rightarrow (\Sigma \rightarrow \mathbb{Z}))$$

where

$$\begin{array}{ll} \mathfrak{L}[z] / \sigma := z & \mathfrak{L}[a_1 + a_2] / \sigma := \mathfrak{L}[a_1] / \sigma + \mathfrak{L}[a_2] / \sigma \\ \mathfrak{L}[x] / \sigma := \sigma(x) & \mathfrak{L}[a_1 - a_2] / \sigma := \mathfrak{L}[a_1] / \sigma - \mathfrak{L}[a_2] / \sigma \\ \mathfrak{L}[i] / \sigma := I(i) & \mathfrak{L}[a_1 * a_2] / \sigma := \mathfrak{L}[a_1] / \sigma \cdot \mathfrak{L}[a_2] / \sigma \end{array}$$

Def. 4.4 (denotational semantics of arithmetic expressions) implies:

Corollary 8.4

For every $a \in AExp$ (without logical variables), $I \in Int$, and $\sigma \in \Sigma$:

$$\mathfrak{L}[a] / \sigma = \mathfrak{A}[a] \sigma.$$

- Formalized by a **satisfaction relation** of the form

$$\sigma \models A$$

(where $\sigma \in \Sigma$ and $A \in Assn$)

- Formalized by a **satisfaction relation** of the form

$$\sigma \models A$$

(where $\sigma \in \Sigma$ and $A \in \text{Assn}$)

- Non-terminating computations captured by **undefined state \perp** :

$$\Sigma_{\perp} := \Sigma \cup \{\perp\}$$

- Formalized by a **satisfaction relation** of the form

$$\sigma \models A$$

(where $\sigma \in \Sigma$ and $A \in \text{Assn}$)

- Non-terminating computations captured by **undefined state \perp** :

$$\Sigma_{\perp} := \Sigma \cup \{\perp\}$$

- **Modification of interpretations** (in analogy to program states):

$$I[i \mapsto z](j) := \begin{cases} z & \text{if } j = i \\ I(j) & \text{otherwise} \end{cases}$$

Reminder: $A ::= t \mid a_1=a_2 \mid a_1>a_2 \mid \neg A \mid A_1 \wedge A_2 \mid A_1 \vee A_2 \mid \forall i. A \in \text{Assn}$

Definition 8.5 (Semantics of assertions)

Let $A \in \text{Assn}$, $\sigma \in \Sigma_{\perp}$, and $I \in \text{Int}$. The relation “ σ satisfies A in I ” (notation: $\sigma \models^I A$) is inductively defined by:

$$\begin{array}{ll} \sigma \models^I \text{true} & \\ \sigma \models^I a_1=a_2 & \text{if } \mathcal{L}[\![a_1]\!]_I \sigma = \mathcal{L}[\![a_2]\!]_I \sigma \\ \sigma \models^I a_1>a_2 & \text{if } \mathcal{L}[\![a_1]\!]_I \sigma > \mathcal{L}[\![a_2]\!]_I \sigma \\ \sigma \models^I \neg A & \text{if not } \sigma \models^I A \\ \sigma \models^I A_1 \wedge A_2 & \text{if } \sigma \models^I A_1 \text{ and } \sigma \models^I A_2 \\ \sigma \models^I A_1 \vee A_2 & \text{if } \sigma \models^I A_1 \text{ or } \sigma \models^I A_2 \\ \sigma \models^I \forall i. A & \text{if } \sigma \models^{I[i \mapsto z]} A \text{ for every } z \in \mathbb{Z} \\ \perp \models^I A & \end{array}$$

Furthermore σ satisfies A ($\sigma \models A$) if $\sigma \models^I A$ for every interpretation $I \in \text{Int}$, and A is called **valid** ($\models A$) if $\sigma \models A$ for every state $\sigma \in \Sigma$.

Example 8.6

The following assertion expresses that, in the current state $\sigma \in \Sigma$, $\sigma(y)$ is the greatest divisor of $\sigma(x)$:

$$(\exists i. i > 1 \wedge i * y = x) \wedge \forall j. \forall k. (j > 1 \wedge j * k = x \Rightarrow k \leq y)$$

Example 8.6

The following assertion expresses that, in the current state $\sigma \in \Sigma$, $\sigma(y)$ is the greatest divisor of $\sigma(x)$:

$$(\exists i. i > 1 \wedge i * y = x) \wedge \forall j. \forall k. (j > 1 \wedge j * k = x \Rightarrow k \leq y)$$

In analogy to Corollary 8.4, Def. 4.5 (denotational semantics of Boolean expressions) yields:

Corollary 8.7

For every $b \in BExp$ (without logical variables), $I \in Int$, and $\sigma \in \Sigma$:

$$\sigma \models^I b \iff \mathfrak{B}[b]\sigma = \text{true}.$$

Definition 8.8 (Extension)

Let $A \in \text{Assn}$ and $I \in \text{Int}$. The **extension** of A with respect to I is given by

$$A^I := \{\sigma \in \Sigma_{\perp} \mid \sigma \models^I A\}.$$

Note that, for every $A \in \text{Assn}$ and $I \in \text{Int}$, $\perp \in A^I$.

Definition 8.8 (Extension)

Let $A \in \text{Assn}$ and $I \in \text{Int}$. The **extension** of A with respect to I is given by

$$A^I := \{\sigma \in \Sigma_{\perp} \mid \sigma \models^I A\}.$$

Note that, for every $A \in \text{Assn}$ and $I \in \text{Int}$, $\perp \in A^I$.

Example 8.9

For $A := (\exists i. i * i = x)$ and every $I \in \text{Int}$,

$$A^I = \{\perp\} \cup \{\sigma \in \Sigma \mid \sigma(x) \in \{0, 1, 4, 9, \dots\}\}$$

- 1 Recapitulation: Equivalence of Operational and Denotational Semantics
- 2 The Axiomatic Approach
- 3 The Assertion Language
- 4 Semantics of Assertions
- 5 Partial Correctness Properties
- 6 A Valid Partial Correctness Property

Definition 8.10 (Partial correctness properties)

Let $A, B \in \text{Assn}$ and $c \in \text{Cmd}$.

- An expression of the form $\{A\} c \{B\}$ is called a **partial correctness property** with **precondition** A and **postcondition** B .

Definition 8.10 (Partial correctness properties)

Let $A, B \in \text{Assn}$ and $c \in \text{Cmd}$.

- An expression of the form $\{A\} c \{B\}$ is called a **partial correctness property** with **precondition** A and **postcondition** B .
- Given $\sigma \in \Sigma_\perp$ and $I \in \text{Int}$, we let

$$\sigma \models^I \{A\} c \{B\}$$

if $\sigma \models^I A$ implies $\mathfrak{C}[c]\sigma \models^I B$
(or equivalently: $\sigma \in A^I \Rightarrow \mathfrak{C}[c]\sigma \in B^I$).

Definition 8.10 (Partial correctness properties)

Let $A, B \in \text{Assn}$ and $c \in \text{Cmd}$.

- An expression of the form $\{A\} c \{B\}$ is called a **partial correctness property** with **precondition** A and **postcondition** B .
- Given $\sigma \in \Sigma_{\perp}$ and $I \in \text{Int}$, we let

$$\sigma \models^I \{A\} c \{B\}$$

if $\sigma \models^I A$ implies $\mathfrak{C}[c]\sigma \models^I B$
(or equivalently: $\sigma \in A^I \Rightarrow \mathfrak{C}[c]\sigma \in B^I$).

- $\{A\} c \{B\}$ is called **valid in** I (notation: $\models^I \{A\} c \{B\}$) if
 $\sigma \models^I \{A\} c \{B\}$ for every $\sigma \in \Sigma_{\perp}$ (or equivalently: $\mathfrak{C}[c]A^I \subseteq B^I$).

Definition 8.10 (Partial correctness properties)

Let $A, B \in \text{Assn}$ and $c \in \text{Cmd}$.

- An expression of the form $\{A\} c \{B\}$ is called a **partial correctness property** with **precondition** A and **postcondition** B .
- Given $\sigma \in \Sigma_{\perp}$ and $I \in \text{Int}$, we let

$$\sigma \models^I \{A\} c \{B\}$$

if $\sigma \models^I A$ implies $\mathfrak{C}[c]\sigma \models^I B$
(or equivalently: $\sigma \in A^I \Rightarrow \mathfrak{C}[c]\sigma \in B^I$).

- $\{A\} c \{B\}$ is called **valid in** I (notation: $\models^I \{A\} c \{B\}$) if
 $\sigma \models^I \{A\} c \{B\}$ for every $\sigma \in \Sigma_{\perp}$ (or equivalently: $\mathfrak{C}[c]A^I \subseteq B^I$).
- $\{A\} c \{B\}$ is called **valid** (notation: $\models \{A\} c \{B\}$) if $\models^I \{A\} c \{B\}$
for every $I \in \text{Int}$.

- 1 Recapitulation: Equivalence of Operational and Denotational Semantics
- 2 The Axiomatic Approach
- 3 The Assertion Language
- 4 Semantics of Assertions
- 5 Partial Correctness Properties
- 6 A Valid Partial Correctness Property

Example 8.11

- Let $x \in \text{Var}$ and $i \in L\text{Var}$. We have to show:

$$\models \{i \leq x\} x := x+1 \{i < x\}$$

Example 8.11

- Let $x \in \text{Var}$ and $i \in LVar$. We have to show:

$$\models \{i \leq x\} x := x+1 \{i < x\}$$

- According to Def. 8.10, this is equivalent to

$$\sigma \models^I \{i \leq x\} x := x+1 \{i < x\}$$

for every $\sigma \in \Sigma_\perp$ and $I \in \text{Int}$

Example 8.11

- Let $x \in \text{Var}$ and $i \in L\text{Var}$. We have to show:

$$\models \{i \leq x\} x := x+1 \{i < x\}$$

- According to Def. 8.10, this is equivalent to

$$\sigma \models^I \{i \leq x\} x := x+1 \{i < x\}$$

for every $\sigma \in \Sigma_{\perp}$ and $I \in \text{Int}$

- For $\sigma = \perp$ this is trivial. So let $\sigma \in \Sigma$:

$$\sigma \models^I (i \leq x)$$

Example 8.11

- Let $x \in \text{Var}$ and $i \in LVar$. We have to show:

$$\models \{i \leq x\} x := x+1 \{i < x\}$$

- According to Def. 8.10, this is equivalent to

$$\sigma \models^I \{i \leq x\} x := x+1 \{i < x\}$$

for every $\sigma \in \Sigma_{\perp}$ and $I \in \text{Int}$

- For $\sigma = \perp$ this is trivial. So let $\sigma \in \Sigma$:

$$\begin{aligned} & \sigma \models^I (i \leq x) \\ \Rightarrow & \mathcal{L}[i]/\sigma \leq \mathcal{L}[x]/\sigma \end{aligned} \quad (\text{Def. 8.5})$$

Example 8.11

- Let $x \in \text{Var}$ and $i \in L\text{Var}$. We have to show:

$$\models \{i \leq x\} x := x+1 \{i < x\}$$

- According to Def. 8.10, this is equivalent to

$$\sigma \models^I \{i \leq x\} x := x+1 \{i < x\}$$

for every $\sigma \in \Sigma_{\perp}$ and $I \in \text{Int}$

- For $\sigma = \perp$ this is trivial. So let $\sigma \in \Sigma$:

$$\begin{aligned} & \sigma \models^I (i \leq x) \\ \Rightarrow & \mathcal{L}[i] / \sigma \leq \mathcal{L}[x] / \sigma && \text{(Def. 8.5)} \\ \Rightarrow & I(i) \leq \sigma(x) && \text{(Def. 8.3)} \end{aligned}$$

Example 8.11

- Let $x \in \text{Var}$ and $i \in L\text{Var}$. We have to show:

$$\models \{i \leq x\} x := x+1 \{i < x\}$$

- According to Def. 8.10, this is equivalent to

$$\sigma \models^I \{i \leq x\} x := x+1 \{i < x\}$$

for every $\sigma \in \Sigma_{\perp}$ and $I \in \text{Int}$

- For $\sigma = \perp$ this is trivial. So let $\sigma \in \Sigma$:

$$\begin{aligned} & \sigma \models^I (i \leq x) \\ \Rightarrow & \mathfrak{L}[i]I\sigma \leq \mathfrak{L}[x]I\sigma && \text{(Def. 8.5)} \\ \Rightarrow & I(i) \leq \sigma(x) && \text{(Def. 8.3)} \\ \Rightarrow & I(i) < \sigma(x) + 1 \\ = & (\mathfrak{C}[x := x+1]\sigma)(x) \end{aligned}$$

Example 8.11

- Let $x \in \text{Var}$ and $i \in \text{LVar}$. We have to show:

$$\models \{i \leq x\} x := x+1 \{i < x\}$$

- According to Def. 8.10, this is equivalent to

$$\sigma \models^I \{i \leq x\} x := x+1 \{i < x\}$$

for every $\sigma \in \Sigma_{\perp}$ and $I \in \text{Int}$

- For $\sigma = \perp$ this is trivial. So let $\sigma \in \Sigma$:

$$\begin{aligned} & \sigma \models^I (i \leq x) \\ \Rightarrow & \mathfrak{L}[i]I\sigma \leq \mathfrak{L}[x]I\sigma && \text{(Def. 8.5)} \\ \Rightarrow & I(i) \leq \sigma(x) && \text{(Def. 8.3)} \\ \Rightarrow & I(i) < \sigma(x) + 1 \\ & = (\mathfrak{C}[x := x+1]\sigma)(x) \\ \Rightarrow & \mathfrak{C}[x := x+1]\sigma \models^I (i < x) \end{aligned}$$

Example 8.11

- Let $x \in \text{Var}$ and $i \in LVar$. We have to show:

$$\models \{i \leq x\} x := x+1 \{i < x\}$$

- According to Def. 8.10, this is equivalent to

$$\sigma \models^I \{i \leq x\} x := x+1 \{i < x\}$$

for every $\sigma \in \Sigma_{\perp}$ and $I \in \text{Int}$

- For $\sigma = \perp$ this is trivial. So let $\sigma \in \Sigma$:

$$\begin{aligned} & \sigma \models^I (i \leq x) \\ \Rightarrow & \mathfrak{L}[i]I\sigma \leq \mathfrak{L}[x]I\sigma && \text{(Def. 8.5)} \\ \Rightarrow & I(i) \leq \sigma(x) && \text{(Def. 8.3)} \\ \Rightarrow & I(i) < \sigma(x) + 1 \\ & = (\mathfrak{C}[x := x+1]\sigma)(x) \\ \Rightarrow & \mathfrak{C}[x := x+1]\sigma \models^I (i < x) \\ \Rightarrow & \text{claim} \end{aligned}$$