
Semantics and Verification of Software
Lecture 8: Axiomatic Semantics of WHILE I

(Introduction)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Summer Semester 2013

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/svsw13/

Outline

1 Recapitulation: Equivalence of Operational and Denotational Semantics

2 The Axiomatic Approach

3 The Assertion Language

4 Semantics of Assertions

5 Partial Correctness Properties

6 A Valid Partial Correctness Property

Semantics and Verification of Software Summer Semester 2013 8.2

Equivalence of Semantics I

Remember: in Def. 4.1, OJ.K : Cmd → (Σ 99K Σ) was given by

OJcK(σ) = σ′ ⇐⇒ 〈c, σ〉 → σ′

Theorem (Coincidence Theorem)

For every c ∈ Cmd,

OJcK = CJcK,

i.e., 〈c , σ〉 → σ′ iff CJcK(σ) = σ′, and thus OJ.K = CJ.K.

Semantics and Verification of Software Summer Semester 2013 8.3

Equivalence of Semantics II

The proof of Theorem 7.5 employs the following auxiliary propositions:

Lemma
1 For every a ∈ AExp, σ ∈ Σ, and z ∈ Z:

〈a, σ〉 → z ⇐⇒ AJaK(σ) = z .

2 For every b ∈ BExp, σ ∈ Σ, and t ∈ B:

〈b, σ〉 → t ⇐⇒ BJbK(σ) = t.

Proof.
1 structural induction on a

2 structural induction on b

Semantics and Verification of Software Summer Semester 2013 8.4

Equivalence of Semantics III

Proof (Theorem 7.5).

We have to show that

〈c, σ〉 → σ′ ⇐⇒ CJcK(σ) = σ′

⇒ by structural induction over the derivation tree of 〈c , σ〉 → σ′

⇐ by structural induction over c (with a nested complete
induction over fixpoint index n)

(on the board)

Semantics and Verification of Software Summer Semester 2013 8.5

Overview: Operational/Denotational Semantics

Definition (3.2; Execution relation for statements)

(skip)
〈skip, σ〉 → σ

(asgn)
〈a, σ〉 → z

〈x := a, σ〉 → σ[x 7→ z]

(seq)
〈c1, σ〉 → σ′ 〈c2, σ

′〉 → σ′′

〈c1;c2, σ〉 → σ′′ (if-t)
〈b, σ〉 → true 〈c1, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′

(if-f)
〈b, σ〉 → false 〈c2, σ〉 → σ′

〈if b then c1 else c2, σ〉 → σ′ (wh-f)
〈b, σ〉 → false

〈while b do c, σ〉 → σ

(wh-t)
〈b, σ〉 → true 〈c, σ〉 → σ′ 〈while b do c, σ′〉 → σ′′

〈while b do c, σ〉 → σ′′

Definition (5.1; Denotational semantics of statements)

CJskipK := idΣ

CJx := aKσ := σ[x 7→ AJaKσ]
CJc1;c2K := CJc2K ◦ CJc1K

CJif b then c1 else c2K := cond(BJbK,CJc1K,CJc2K)
CJwhile b do cK := fix(Φ) where Φ(f) := cond(BJbK, f ◦ CJcK, idΣ)

Semantics and Verification of Software Summer Semester 2013 8.6

Outline

1 Recapitulation: Equivalence of Operational and Denotational Semantics

2 The Axiomatic Approach

3 The Assertion Language

4 Semantics of Assertions

5 Partial Correctness Properties

6 A Valid Partial Correctness Property

Semantics and Verification of Software Summer Semester 2013 8.7

The Axiomatic Approach I

Example 8.1

Let c ∈ Cmd be given by

s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c ,

σ(s) =

σ(N)∑
k=1

k ?

“Running” c according to the operational semantics in insufficient:
every change of σ(N) requires a new proof

Wanted: a more abstract, “symbolic” way of reasoning

Semantics and Verification of Software Summer Semester 2013 8.8

The Axiomatic Approach I

Example 8.1

Let c ∈ Cmd be given by

s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c ,

σ(s) =

σ(N)∑
k=1

k ?

“Running” c according to the operational semantics in insufficient:
every change of σ(N) requires a new proof

Wanted: a more abstract, “symbolic” way of reasoning

Semantics and Verification of Software Summer Semester 2013 8.8

The Axiomatic Approach I

Example 8.1

Let c ∈ Cmd be given by

s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c ,

σ(s) =

σ(N)∑
k=1

k ?

“Running” c according to the operational semantics in insufficient:
every change of σ(N) requires a new proof

Wanted: a more abstract, “symbolic” way of reasoning

Semantics and Verification of Software Summer Semester 2013 8.8

The Axiomatic Approach I

Example 8.1

Let c ∈ Cmd be given by

s:=0; n:=1; while ¬(n>N) do (s:=s+n; n:=n+1)

How to show that, after termination of c ,

σ(s) =

σ(N)∑
k=1

k ?

“Running” c according to the operational semantics in insufficient:
every change of σ(N) requires a new proof

Wanted: a more abstract, “symbolic” way of reasoning

Semantics and Verification of Software Summer Semester 2013 8.8

The Axiomatic Approach II

Example 8.1 (continued)

Obviously c satisfies the following assertions (after execution of the
respective statement):

s:=0;
{s = 0}
n:=1;
{s = 0 ∧ n = 1}
while ¬(n>N) do (s:=s+n; n:=n+1)

{s =
∑N

k=1 k ∧ n > N}
where, e.g., “s = 0” means “σ(s) = 0 in the current state σ ∈ Σ”

Semantics and Verification of Software Summer Semester 2013 8.9

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s =
∑n−1

k=1 k is
satisfied

Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd

Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate

In particular, {true} while true do skip {false} is a valid property

Semantics and Verification of Software Summer Semester 2013 8.10

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s =
∑n−1

k=1 k is
satisfied

Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd

Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate

In particular, {true} while true do skip {false} is a valid property

Semantics and Verification of Software Summer Semester 2013 8.10

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s =
∑n−1

k=1 k is
satisfied

Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd

Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate

In particular, {true} while true do skip {false} is a valid property

Semantics and Verification of Software Summer Semester 2013 8.10

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s =
∑n−1

k=1 k is
satisfied

Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd

Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate

In particular, {true} while true do skip {false} is a valid property

Semantics and Verification of Software Summer Semester 2013 8.10

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s =
∑n−1

k=1 k is
satisfied

Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd

Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate

In particular, {true} while true do skip {false} is a valid property

Semantics and Verification of Software Summer Semester 2013 8.10

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s =
∑n−1

k=1 k is
satisfied

Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd

Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate

In particular, {true} while true do skip {false} is a valid property

Semantics and Verification of Software Summer Semester 2013 8.10

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s =
∑n−1

k=1 k is
satisfied

Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd

Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate

In particular, {true} while true do skip {false} is a valid property

Semantics and Verification of Software Summer Semester 2013 8.10

The Axiomatic Approach III

How to prove the validity of assertions?

Assertions following assignments are evident (“s = 0”)

Also, “n > N” follows directly from the loop’s execution condition

But how to obtain the final value of s?

Answer: after every loop iteration, the invariant s =
∑n−1

k=1 k is
satisfied

Corresponding proof system employs partial correctness properties of
the form {A} c {B} with assertions A,B and c ∈ Cmd

Interpretation:

Validity of partial correctness property

{A} c {B} is valid iff for all states σ ∈ Σ which satisfy A:
if the execution of c in σ terminates in σ′ ∈ Σ, then σ′ satisfies B.

“Partial” means that nothing is said about c if it fails to terminate

In particular, {true} while true do skip {false} is a valid property

Semantics and Verification of Software Summer Semester 2013 8.10

Outline

1 Recapitulation: Equivalence of Operational and Denotational Semantics

2 The Axiomatic Approach

3 The Assertion Language

4 Semantics of Assertions

5 Partial Correctness Properties

6 A Valid Partial Correctness Property

Semantics and Verification of Software Summer Semester 2013 8.11

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable(s)
Logical variables LVar i

Arithmetic expressions
with logical variables LExp a

Assertions Assn A,B,C

Semantics and Verification of Software Summer Semester 2013 8.12

Syntax of Assertion Language I

Assertions = Boolean expressions + logical variables
(to memorize previous values of program variables)

Syntactic categories:

Category Domain Meta variable(s)
Logical variables LVar i

Arithmetic expressions
with logical variables LExp a

Assertions Assn A,B,C

Semantics and Verification of Software Summer Semester 2013 8.12

Syntax of Assertion Language II

Definition 8.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i .A ∈ Assn

Thus: AExp (LExp, BExp (Assn

The following (and other) abbreviations will be employed:

A1 ⇒ A2 := ¬A1 ∨ A2

∃i .A := ¬(∀i .¬A)
a1 ≥ a2 := a1>a2 ∨ a1=a2

...

Semantics and Verification of Software Summer Semester 2013 8.13

Syntax of Assertion Language II

Definition 8.2 (Syntax of assertions)

The syntax of Assn is defined by the following context-free grammar:

a ::= z | x | i | a1+a2 | a1-a2 | a1*a2 ∈ LExp
A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i .A ∈ Assn

Thus: AExp (LExp, BExp (Assn

The following (and other) abbreviations will be employed:

A1 ⇒ A2 := ¬A1 ∨ A2

∃i .A := ¬(∀i .¬A)
a1 ≥ a2 := a1>a2 ∨ a1=a2

...

Semantics and Verification of Software Summer Semester 2013 8.13

Outline

1 Recapitulation: Equivalence of Operational and Denotational Semantics

2 The Axiomatic Approach

3 The Assertion Language

4 Semantics of Assertions

5 Partial Correctness Properties

6 A Valid Partial Correctness Property

Semantics and Verification of Software Summer Semester 2013 8.14

Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of LExp)

An interpretation is an element of the set Int := {I | I : LVar → Z}. The
value of an arithmetic expressions with logical variables is given by the
functional

LJ.K : LExp → (Int → (Σ→ Z))

where
LJzKIσ := z LJa1+a2KIσ := LJa1KIσ + LJa2KIσ
LJxKIσ := σ(x) LJa1-a2KIσ := LJa1KIσ − LJa2KIσ
LJiKIσ := I (i) LJa1*a2KIσ := LJa1KIσ · LJa2KIσ

Def. 4.4 (denotational semantics of arithmetic expressions) implies:

Corollary 8.4

For every a ∈ AExp (without logical variables), I ∈ Int, and σ ∈ Σ:

LJaKIσ = AJaKσ.

Semantics and Verification of Software Summer Semester 2013 8.15

Semantics of LExp

The semantics now additionally depends on values of logical variables:

Definition 8.3 (Semantics of LExp)

An interpretation is an element of the set Int := {I | I : LVar → Z}. The
value of an arithmetic expressions with logical variables is given by the
functional

LJ.K : LExp → (Int → (Σ→ Z))

where
LJzKIσ := z LJa1+a2KIσ := LJa1KIσ + LJa2KIσ
LJxKIσ := σ(x) LJa1-a2KIσ := LJa1KIσ − LJa2KIσ
LJiKIσ := I (i) LJa1*a2KIσ := LJa1KIσ · LJa2KIσ

Def. 4.4 (denotational semantics of arithmetic expressions) implies:

Corollary 8.4

For every a ∈ AExp (without logical variables), I ∈ Int, and σ ∈ Σ:

LJaKIσ = AJaKσ.
Semantics and Verification of Software Summer Semester 2013 8.15

Semantics of Assertions I

Formalized by a satisfaction relation of the form

σ |= A

(where σ ∈ Σ and A ∈ Assn)

Non-terminating computations captured by undefined state ⊥:

Σ⊥ := Σ ∪ {⊥}

Modification of interpretations (in analogy to program states):

I [i 7→ z](j) :=

{
z if j = i
I (j) otherwise

Semantics and Verification of Software Summer Semester 2013 8.16

Semantics of Assertions I

Formalized by a satisfaction relation of the form

σ |= A

(where σ ∈ Σ and A ∈ Assn)

Non-terminating computations captured by undefined state ⊥:

Σ⊥ := Σ ∪ {⊥}

Modification of interpretations (in analogy to program states):

I [i 7→ z](j) :=

{
z if j = i
I (j) otherwise

Semantics and Verification of Software Summer Semester 2013 8.16

Semantics of Assertions I

Formalized by a satisfaction relation of the form

σ |= A

(where σ ∈ Σ and A ∈ Assn)

Non-terminating computations captured by undefined state ⊥:

Σ⊥ := Σ ∪ {⊥}

Modification of interpretations (in analogy to program states):

I [i 7→ z](j) :=

{
z if j = i
I (j) otherwise

Semantics and Verification of Software Summer Semester 2013 8.16

Semantics of Assertions II

Reminder: A ::= t | a1=a2 | a1>a2 | ¬A | A1 ∧ A2 | A1 ∨ A2 | ∀i .A ∈ Assn

Definition 8.5 (Semantics of assertions)

Let A ∈ Assn, σ ∈ Σ⊥, and I ∈ Int. The relation “σ satisfies A in I ”
(notation: σ |=I A) is inductively defined by:

σ |=I true
σ |=I a1=a2 if LJa1KIσ = LJa2KIσ
σ |=I a1>a2 if LJa1KIσ > LJa2KIσ
σ |=I ¬A if not σ |=I A
σ |=I A1 ∧ A2 if σ |=I A1 and σ |=I A2

σ |=I A1 ∨ A2 if σ |=I A1 or σ |=I A2

σ |=I ∀i .A if σ |=I [i 7→z] A for every z ∈ Z
⊥ |=I A

Furthermore σ satisfies A (σ |= A) if σ |=I A for every interpretation
I ∈ Int, and A is called valid (|= A) if σ |= A for every state σ ∈ Σ.

Semantics and Verification of Software Summer Semester 2013 8.17

Semantics of Assertions III

Example 8.6

The following assertion expresses that, in the current state σ ∈ Σ, σ(y) is
the greatest divisor of σ(x):

(∃i .i > 1 ∧ i*y = x) ∧ ∀j .∀k .(j > 1 ∧ j*k = x ⇒ k ≤ y)

In analogy to Corollary 8.4, Def. 4.5 (denotational semantics of Boolean
expressions) yields:

Corollary 8.7

For every b ∈ BExp (without logical variables), I ∈ Int, and σ ∈ Σ:

σ |=I b ⇐⇒ BJbKσ = true.

Semantics and Verification of Software Summer Semester 2013 8.18

Semantics of Assertions III

Example 8.6

The following assertion expresses that, in the current state σ ∈ Σ, σ(y) is
the greatest divisor of σ(x):

(∃i .i > 1 ∧ i*y = x) ∧ ∀j .∀k .(j > 1 ∧ j*k = x ⇒ k ≤ y)

In analogy to Corollary 8.4, Def. 4.5 (denotational semantics of Boolean
expressions) yields:

Corollary 8.7

For every b ∈ BExp (without logical variables), I ∈ Int, and σ ∈ Σ:

σ |=I b ⇐⇒ BJbKσ = true.

Semantics and Verification of Software Summer Semester 2013 8.18

Semantics of Assertions IV

Definition 8.8 (Extension)

Let A ∈ Assn and I ∈ Int. The extension of A with respect to I is given by

AI := {σ ∈ Σ⊥ | σ |=I A}.

Note that, for every A ∈ Assn and I ∈ Int, ⊥ ∈ AI .

Example 8.9

For A := (∃i .i*i = x) and every I ∈ Int,

AI = {⊥} ∪ {σ ∈ Σ | σ(x) ∈ {0, 1, 4, 9, . . .}}

Semantics and Verification of Software Summer Semester 2013 8.19

Semantics of Assertions IV

Definition 8.8 (Extension)

Let A ∈ Assn and I ∈ Int. The extension of A with respect to I is given by

AI := {σ ∈ Σ⊥ | σ |=I A}.

Note that, for every A ∈ Assn and I ∈ Int, ⊥ ∈ AI .

Example 8.9

For A := (∃i .i*i = x) and every I ∈ Int,

AI = {⊥} ∪ {σ ∈ Σ | σ(x) ∈ {0, 1, 4, 9, . . .}}

Semantics and Verification of Software Summer Semester 2013 8.19

Outline

1 Recapitulation: Equivalence of Operational and Denotational Semantics

2 The Axiomatic Approach

3 The Assertion Language

4 Semantics of Assertions

5 Partial Correctness Properties

6 A Valid Partial Correctness Property

Semantics and Verification of Software Summer Semester 2013 8.20

Partial Correctness Properties

Definition 8.10 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int, we let

σ |=I {A} c {B}
if σ |=I A implies CJcKσ |=I B
(or equivalently: σ ∈ AI ⇒ CJcKσ ∈ B I).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ B I).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int.

Semantics and Verification of Software Summer Semester 2013 8.21

Partial Correctness Properties

Definition 8.10 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int, we let

σ |=I {A} c {B}
if σ |=I A implies CJcKσ |=I B
(or equivalently: σ ∈ AI ⇒ CJcKσ ∈ B I).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ B I).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int.

Semantics and Verification of Software Summer Semester 2013 8.21

Partial Correctness Properties

Definition 8.10 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int, we let

σ |=I {A} c {B}
if σ |=I A implies CJcKσ |=I B
(or equivalently: σ ∈ AI ⇒ CJcKσ ∈ B I).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ B I).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int.

Semantics and Verification of Software Summer Semester 2013 8.21

Partial Correctness Properties

Definition 8.10 (Partial correctness properties)

Let A,B ∈ Assn and c ∈ Cmd .

An expression of the form {A} c {B} is called a partial correctness
property with precondition A and postcondition B.

Given σ ∈ Σ⊥ and I ∈ Int, we let

σ |=I {A} c {B}
if σ |=I A implies CJcKσ |=I B
(or equivalently: σ ∈ AI ⇒ CJcKσ ∈ B I).

{A} c {B} is called valid in I (notation: |=I {A} c {B}) if
σ |=I {A} c {B} for every σ ∈ Σ⊥ (or equivalently: CJcKAI ⊆ B I).

{A} c {B} is called valid (notation: |= {A} c {B}) if |=I {A} c {B}
for every I ∈ Int.

Semantics and Verification of Software Summer Semester 2013 8.21

Outline

1 Recapitulation: Equivalence of Operational and Denotational Semantics

2 The Axiomatic Approach

3 The Assertion Language

4 Semantics of Assertions

5 Partial Correctness Properties

6 A Valid Partial Correctness Property

Semantics and Verification of Software Summer Semester 2013 8.22

A Valid Partial Correctness Property

Example 8.11

Let x ∈ Var and i ∈ LVar . We have to show:

|= {i ≤ x} x := x+1 {i < x}

According to Def. 8.10, this is equivalent to

σ |=I {i ≤ x} x := x+1 {i < x}
for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Def. 8.5)
⇒ I (i) ≤ σ(x) (Def. 8.3)
⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim

Semantics and Verification of Software Summer Semester 2013 8.23

A Valid Partial Correctness Property

Example 8.11

Let x ∈ Var and i ∈ LVar . We have to show:

|= {i ≤ x} x := x+1 {i < x}

According to Def. 8.10, this is equivalent to

σ |=I {i ≤ x} x := x+1 {i < x}
for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Def. 8.5)
⇒ I (i) ≤ σ(x) (Def. 8.3)
⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim

Semantics and Verification of Software Summer Semester 2013 8.23

A Valid Partial Correctness Property

Example 8.11

Let x ∈ Var and i ∈ LVar . We have to show:

|= {i ≤ x} x := x+1 {i < x}

According to Def. 8.10, this is equivalent to

σ |=I {i ≤ x} x := x+1 {i < x}
for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)

⇒ LJiKIσ ≤ LJxKIσ (Def. 8.5)
⇒ I (i) ≤ σ(x) (Def. 8.3)
⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim

Semantics and Verification of Software Summer Semester 2013 8.23

A Valid Partial Correctness Property

Example 8.11

Let x ∈ Var and i ∈ LVar . We have to show:

|= {i ≤ x} x := x+1 {i < x}

According to Def. 8.10, this is equivalent to

σ |=I {i ≤ x} x := x+1 {i < x}
for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Def. 8.5)

⇒ I (i) ≤ σ(x) (Def. 8.3)
⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim

Semantics and Verification of Software Summer Semester 2013 8.23

A Valid Partial Correctness Property

Example 8.11

Let x ∈ Var and i ∈ LVar . We have to show:

|= {i ≤ x} x := x+1 {i < x}

According to Def. 8.10, this is equivalent to

σ |=I {i ≤ x} x := x+1 {i < x}
for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Def. 8.5)
⇒ I (i) ≤ σ(x) (Def. 8.3)

⇒ I (i) < σ(x) + 1
= (CJx := x+1Kσ)(x)

⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim

Semantics and Verification of Software Summer Semester 2013 8.23

A Valid Partial Correctness Property

Example 8.11

Let x ∈ Var and i ∈ LVar . We have to show:

|= {i ≤ x} x := x+1 {i < x}

According to Def. 8.10, this is equivalent to

σ |=I {i ≤ x} x := x+1 {i < x}
for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Def. 8.5)
⇒ I (i) ≤ σ(x) (Def. 8.3)
⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)

⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim

Semantics and Verification of Software Summer Semester 2013 8.23

A Valid Partial Correctness Property

Example 8.11

Let x ∈ Var and i ∈ LVar . We have to show:

|= {i ≤ x} x := x+1 {i < x}

According to Def. 8.10, this is equivalent to

σ |=I {i ≤ x} x := x+1 {i < x}
for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Def. 8.5)
⇒ I (i) ≤ σ(x) (Def. 8.3)
⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
⇒ CJx := x+1Kσ |=I (i < x)

⇒ claim

Semantics and Verification of Software Summer Semester 2013 8.23

A Valid Partial Correctness Property

Example 8.11

Let x ∈ Var and i ∈ LVar . We have to show:

|= {i ≤ x} x := x+1 {i < x}

According to Def. 8.10, this is equivalent to

σ |=I {i ≤ x} x := x+1 {i < x}
for every σ ∈ Σ⊥ and I ∈ Int

For σ = ⊥ this is trivial. So let σ ∈ Σ:

σ |=I (i ≤ x)
⇒ LJiKIσ ≤ LJxKIσ (Def. 8.5)
⇒ I (i) ≤ σ(x) (Def. 8.3)
⇒ I (i) < σ(x) + 1

= (CJx := x+1Kσ)(x)
⇒ CJx := x+1Kσ |=I (i < x)
⇒ claim

Semantics and Verification of Software Summer Semester 2013 8.23

	Recapitulation: Equivalence of Operational and Denotational Semantics
	The Axiomatic Approach
	The Assertion Language
	Semantics of Assertions
	Partial Correctness Properties
	A Valid Partial Correctness Property

