

Semantics and Verification of Software

Lecture 9: Axiomatic Semantics of WHILE II (Hoare Logic)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/svsw13/>

Summer Semester 2013

- 1 Recapitulation: Axiomatic Semantics of WHILE
- 2 Proof Rules for Partial Correctness
- 3 Soundness of Hoare Logic

Validity of property $\{A\} c \{B\}$

For all states $\sigma \in \Sigma$ which satisfy A :

if the execution of c in σ terminates in $\sigma' \in \Sigma$, then σ' satisfies B .

Definition (Syntax of assertions)

The *syntax of Assn* is defined by the following context-free grammar:

$$a ::= z \mid x \mid i \mid a_1 + a_2 \mid a_1 - a_2 \mid a_1 * a_2 \in LExp$$

$$A ::= t \mid a_1 = a_2 \mid a_1 > a_2 \mid \neg A \mid A_1 \wedge A_2 \mid A_1 \vee A_2 \mid \forall i. A \in Assn$$

- Thus: $AExp \subsetneq LExp$, $BExp \subsetneq Assn$
- The following (and other) **abbreviations** will be employed:

$$A_1 \Rightarrow A_2 := \neg A_1 \vee A_2$$

$$\exists i. A := \neg (\forall i. \neg A)$$

$$a_1 \geq a_2 := a_1 > a_2 \vee a_1 = a_2$$

⋮

The semantics now additionally depends on values of logical variables:

Definition (Semantics of LExp)

An **interpretation** is an element of the set $\text{Int} := \{I \mid I : LVar \rightarrow \mathbb{Z}\}$. The **value of an arithmetic expressions with logical variables** is given by the functional

$$\mathfrak{L}[\cdot] : LExp \rightarrow (\text{Int} \rightarrow (\Sigma \rightarrow \mathbb{Z}))$$

where

$$\begin{array}{ll} \mathfrak{L}[z] / \sigma := z & \mathfrak{L}[a_1 + a_2] / \sigma := \mathfrak{L}[a_1] / \sigma + \mathfrak{L}[a_2] / \sigma \\ \mathfrak{L}[x] / \sigma := \sigma(x) & \mathfrak{L}[a_1 - a_2] / \sigma := \mathfrak{L}[a_1] / \sigma - \mathfrak{L}[a_2] / \sigma \\ \mathfrak{L}[i] / \sigma := I(i) & \mathfrak{L}[a_1 * a_2] / \sigma := \mathfrak{L}[a_1] / \sigma \cdot \mathfrak{L}[a_2] / \sigma \end{array}$$

Semantics of Assertions II

Reminder: $A ::= t \mid a_1=a_2 \mid a_1>a_2 \mid \neg A \mid A_1 \wedge A_2 \mid A_1 \vee A_2 \mid \forall i. A \in \text{Assn}$

Definition (Semantics of assertions)

Let $A \in \text{Assn}$, $\sigma \in \Sigma_{\perp}$, and $I \in \text{Int}$. The relation “ σ satisfies A in I ” (notation: $\sigma \models^I A$) is inductively defined by:

$$\begin{array}{ll} \sigma \models^I \text{true} & \\ \sigma \models^I a_1=a_2 & \text{if } \mathcal{L}[\![a_1]\!]_I \sigma = \mathcal{L}[\![a_2]\!]_I \sigma \\ \sigma \models^I a_1>a_2 & \text{if } \mathcal{L}[\![a_1]\!]_I \sigma > \mathcal{L}[\![a_2]\!]_I \sigma \\ \sigma \models^I \neg A & \text{if not } \sigma \models^I A \\ \sigma \models^I A_1 \wedge A_2 & \text{if } \sigma \models^I A_1 \text{ and } \sigma \models^I A_2 \\ \sigma \models^I A_1 \vee A_2 & \text{if } \sigma \models^I A_1 \text{ or } \sigma \models^I A_2 \\ \sigma \models^I \forall i. A & \text{if } \sigma \models^{I[i \mapsto z]} A \text{ for every } z \in \mathbb{Z} \\ \perp \models^I A & \end{array}$$

Furthermore σ satisfies A ($\sigma \models A$) if $\sigma \models^I A$ for every interpretation $I \in \text{Int}$, and A is called **valid** ($\models A$) if $\sigma \models A$ for every state $\sigma \in \Sigma$.

Definition (Partial correctness properties)

Let $A, B \in \text{Assn}$ and $c \in \text{Cmd}$.

- An expression of the form $\{A\} c \{B\}$ is called a **partial correctness property** with **precondition** A and **postcondition** B .
- Given $\sigma \in \Sigma_{\perp}$ and $I \in \text{Int}$, we let

$$\sigma \models^I \{A\} c \{B\}$$

if $\sigma \models^I A$ implies $\mathfrak{C}[c]\sigma \models^I B$
(or equivalently: $\sigma \in A^I \Rightarrow \mathfrak{C}[c]\sigma \in B^I$).

- $\{A\} c \{B\}$ is called **valid in I** (notation: $\models^I \{A\} c \{B\}$) if
 $\sigma \models^I \{A\} c \{B\}$ for every $\sigma \in \Sigma_{\perp}$ (or equivalently: $\mathfrak{C}[c]A^I \subseteq B^I$).
- $\{A\} c \{B\}$ is called **valid** (notation: $\models \{A\} c \{B\}$) if $\models^I \{A\} c \{B\}$
for every $I \in \text{Int}$.

- 1 Recapitulation: Axiomatic Semantics of WHILE
- 2 Proof Rules for Partial Correctness
- 3 Soundness of Hoare Logic

Hoare Logic I

Goal: syntactic derivation of valid partial correctness properties. Here $A[x \mapsto a]$ denotes the syntactic replacement of every occurrence of x by a in A .

Tony Hoare (* 1934)

Definition 9.1 (Hoare Logic)

The **Hoare rules** are given by

$$\begin{array}{c} \text{(skip)} \frac{}{\{A\} \text{ skip } \{A\}} \qquad \text{(asgn)} \frac{}{\{A[x \mapsto a]\} x := a \{A\}} \\ \text{(seq)} \frac{\{A\} c_1 \{C\} \quad \{C\} c_2 \{B\}}{\{A\} c_1; c_2 \{B\}} \qquad \text{(if)} \frac{\{A \wedge b\} c_1 \{B\} \quad \{A \wedge \neg b\} c_2 \{B\}}{\{A\} \text{ if } b \text{ then } c_1 \text{ else } c_2 \{B\}} \\ \text{(while)} \frac{\{A \wedge b\} c \{A\}}{\{A\} \text{ while } b \text{ do } c \{A \wedge \neg b\}} \\ \text{(cons)} \frac{\models (A \Rightarrow A') \quad \{A'\} c \{B'\} \quad \models (B' \Rightarrow B)}{\{A\} c \{B\}} \end{array}$$

A partial correctness property is **provable** (notation: $\vdash \{A\} c \{B\}$) if it is derivable by the Hoare rules. In (while), A is called a **(loop) invariant**.

Example 9.2 (Factorial program)

Proof of $\{A\} y := 1; c \{B\}$ where

$$\begin{aligned} c &:= (\text{while } \neg(x=1) \text{ do } (y := y * x; x := x - 1)) \\ A &:= (x > 0 \wedge x = i) \\ B &:= (y = i!) \end{aligned}$$

(on the board)

Example 9.2 (Factorial program)

Proof of $\{A\} y := 1; c \{B\}$ where

$$\begin{aligned}c &:= (\text{while } \neg(x=1) \text{ do } (y := y * x; x := x - 1)) \\A &:= (x > 0 \wedge x = i) \\B &:= (y = i!)\end{aligned}$$

(on the board)

Structure of the proof:

$$\begin{array}{c} \text{(seq)} \frac{\text{(cons)} \frac{\text{(asgn)} \frac{4}{5} \text{ (asgn)} \frac{6}{6}}{2} \text{ (cons)} \frac{\text{(while)} \frac{7}{8} \text{ (while)}}{3}}{1} \text{ (seq)} \frac{\text{(cons)} \frac{\text{(asgn)} \frac{11}{12} \text{ (seq)} \frac{\text{(asgn)} \frac{14}{15} \text{ (asgn)}}{13}}{10}}{9} \\ \text{ (cons)} \frac{\text{(asgn)} \frac{14}{15}}{13} \text{ (asgn)} \frac{15}{15} \end{array}$$

Example 9.2 (continued)

Here the respective propositions are given by (where $C := (x > 0 \wedge y * x! = i!)$):

- ① $\{A\} y := 1; c \{B\}$
- ② $\{A\} y := 1 \{C\}$
- ③ $\{C\} c \{B\}$
- ④ $\models (A \Rightarrow C[y \mapsto 1])$
- ⑤ $\{C[y \mapsto 1]\} y := 1 \{C\}$
- ⑥ $\models (C \Rightarrow C)$
- ⑦ $\models (C \Rightarrow C)$
- ⑧ $\{C\} c \{\neg(\neg(x = 1)) \wedge C\}$
- ⑨ $\models (\neg(\neg(x = 1)) \wedge C \Rightarrow B)$
- ⑩ $\{\neg(x = 1) \wedge C\} y := y * x; x := x - 1 \{C\}$
- ⑪ $\models (\neg(x = 1) \wedge C \Rightarrow C[x \mapsto x - 1, y \mapsto y * x])$
- ⑫ $\{C[x \mapsto x - 1, y \mapsto y * x]\} y := y * x; x := x - 1 \{C\}$
- ⑬ $\models (C \Rightarrow C)$
- ⑭ $\{C[x \mapsto x - 1, y \mapsto y * x]\} y := y * x \{C[x \mapsto x - 1]\}$
- ⑮ $\{C[x \mapsto x - 1]\} x := x - 1 \{C\}$

- 1 Recapitulation: Axiomatic Semantics of WHILE
- 2 Proof Rules for Partial Correctness
- 3 Soundness of Hoare Logic

Soundness: no wrong propositions can be derived, i.e., every (syntactically) provable partial correctness property is also (semantically) valid

Soundness: no wrong propositions can be derived, i.e., every (syntactically) provable partial correctness property is also (semantically) valid

For the corresponding proof we use:

Lemma 9.3 (Substitution lemma)

For every $A \in \text{Assn}$, $x \in \text{Var}$, $a \in A\text{Exp}$, $\sigma \in \Sigma$, and $I \in \text{Int}$:

$$\sigma \models^I A[x \mapsto a] \iff \sigma[x \mapsto \mathfrak{A}[a]\sigma] \models^I A.$$

Soundness: no wrong propositions can be derived, i.e., every (syntactically) provable partial correctness property is also (semantically) valid

For the corresponding proof we use:

Lemma 9.3 (Substitution lemma)

For every $A \in \text{Assn}$, $x \in \text{Var}$, $a \in A\text{Exp}$, $\sigma \in \Sigma$, and $I \in \text{Int}$:

$$\sigma \models^I A[x \mapsto a] \iff \sigma[x \mapsto \mathfrak{A}[a]\sigma] \models^I A.$$

Proof.

by induction over $A \in \text{Assn}$ (omitted)

Theorem 9.4 (Soundness of Hoare Logic)

For every partial correctness property $\{A\} c \{B\}$,

$$\vdash \{A\} c \{B\} \quad \Rightarrow \quad \models \{A\} c \{B\}.$$

Theorem 9.4 (Soundness of Hoare Logic)

For every partial correctness property $\{A\} c \{B\}$,

$$\vdash \{A\} c \{B\} \Rightarrow \models \{A\} c \{B\}.$$

Proof.

Let $\vdash \{A\} c \{B\}$. By induction over the structure of the corresponding proof tree we show that, for every $\sigma \in \Sigma$ and $I \in \text{Int}$ such that $\sigma \models^I A$, $\mathfrak{C}[c]\sigma \models^I B$ (on the board).

(If $\sigma = \perp$, then $\mathfrak{C}[c]\sigma = \perp \models^I B$ holds trivially.)

□