ELSEVIER SCIENCE B.V.
Sara Burgerhartstraat 25
P.O. Box 211, 1000 AE Amsterdam, The Netherlands

© 2001 Elsevier Science B.V. All rights reserved.

This work is protected under copyright by Elsevier Science, and the following terms and conditions
apply to its use:

Photocopying:

Single photocopies of single chapters may be made for personal use as allowed by national copyright laws. Permission of the
Publisher and payment of a fee is required for all other photocopying, including multiple or systematic copying, copying for
advertising or promotional purposes, resale, and all forms of document delivery. Special rates arc available for educational
institations that wish to make photocopies for non-profit educational classroom use.

Permissions may be sought directly from Elsevier Science Global Rights Department, PO Box 800, Oxford OXS5 DX, UK;
phone: (+44) 1865 843830, fax: (+44) 1865 853333, e-mail: permissions@elsevier.co.uk. You may also contact Global Rights
directly through Elsevier's home page (http://www clsevier.nl}, by selecting ‘Obtaining Permissions’.

In the USA, users may clear permissions and make payments through the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923, USA; phone: (+1) 978 7508400, fax: (+1) 978 7504744, and in the UK through the Copyright
Licensing Agency Rapid Clearance Service (CLARCS), 90 Tottenham Court Road, London W1P OLP, UK; phone: (+44) 207
631 5555; fax: (+44) 207 631 5500. Other countries may have a local reprographic rights agency for payments.

Derivative Works:

Tables of contents may be reproduced for internal circulation, but permission of Elsevier Science is required for external resale
or distribution of such material. Permission of the Publisher is required for all other derivative works, including compilations
and translations.

Electronic Storage or Usage:

Permission of the Publisher is required to store or use electronically any material contained in this work, including any chapter
or part of a chapter.

Except as outlined above, no part of this work may be reproduced, stored in a retrieval system or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission of the Publisher.
Address permissions requests to: Elsevier Science Global Rights Department, at the mail, fax and e-mail addresses noted above.
Notice:

No responsibility is assumed by the Publisher for any injury and/or damage to persons or property as a matter of products
liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the
material herein. Because of rapid advances in the medical sciences, in particular, independent verification of diagnoses and drug
dosages should be made.

First edition 2001

Library of Congress Cataloging in Publication Data
A catalog record from the Library of Congress has been applied for.

ISBN: 0-444-82830-3

The paper used in this publication meets the requirements of ANSI/NISO Z39.48-1992 (Permanence
of Paper).

Printed in The Netherlands

Preface

1. Introduction

According to the Oxford English Dictionary (OED II CD-ROM), a process is a series of

actions or events, and an algebra is a calculus of symbols combining according to certain

defined laws. Completing the picture, a calculus is a system or method of calculation.

Despite going back as far as the 13th Century, collectively, these definitions do a good job

of accurately conveying the meaning of this Handbook’s subject: process algebra.

A process algebra is a formal description technique for complex computer systems, es-
pecially those with communicating, concurrently executing components. A number of dif-
ferent process algebras have been developed — ACP [1], CCS [6], and TCSP [2] being
perhaps the best-known — but all share the following key ingredients.

e Compositional modeling. Process algebras provide a small number of constructs for
building larger systems up from smaller ones. CCS, for example, contains six operators
in total, including ones for composing systems in parallel and others for choice and
scoping.

o Operational semanties. Process algebras are typically equipped with a Plotkin-style [7]
structural operational semantics (SOS) that describes the single-step execution capabil-
ities of systems. Using SOS, systems represented as terms in the algebra can be “com-
piled” into labeled transition systems.

o Behavioral reasoning via equivalences and preorders. Process algebras also feature
the use of behavioral relations as a means for relating different systems given in the
algebra. These relations are usually equivalences, which capture a notion of “same be-
havior”, or preorders, which capture notions of “refinement”.

In a process-algebraic approach to system verification, one typically writes two speci-
fications. One, call it SYS, captures the design of the actual system and the other, call it
SPEC, describes the system’s desired “high-level” behavior. One may then establish the
correctness of SYS with respect to SPEC by showing that SYS behaves the “same as” SPEC
(if using an equivalence) or by showing that it refines SPEC (if using a preorder).

Establishing the correctness of SYS with respect to SPEC can be done in a syntax-
oriented manner or in a semantics-oriented manner. In the former case, an axiomatization
of the behavioral relation of choice is used to show that one expression can be transformed
into the other via syntactic manipulations. In the latter case, one can appeal directly to
the definition of the behavioral relation, and to the operational semantics of the two ex-
pressions, to show that they are related. In certain cases, €.g., when SYS and SPEC are
“finite-state”, verification, be it syntax-based or semantics-based, can be carried out auto-
matically.



vi Preface

The advantages to an algebraic approach are the following.

e System designers need learn only one language for specifications and designs.

e Related processes may be substituted for one another inside other processes. This
makes process algebras particularly suitable for the modular analysis of complex sys-
tems, since a specification and a design adhering to this specification may be used inter-
changeably inside larger systems.

e Processes may be minimized with respect to the equivalence relation before being an-
alyzed; this sometimes leads to orders of magnitude improvement in the performance of
verification routines.

Process-algebraic system descriptions can also be verified using model checking [3], a
technique for ascertaining if a labeled transition system satisfies a correctness proper.ty
given as a temporal-logic formula. Model checking has enjoyed considerable success in
application to hardware designs. Progress is now being seen in other application domains
such as software and protocol verification.

2. Classical roots

Process algebra can be viewed as a generalization of the classical theory of formal lan-
guages and automata [4], focusing on system specification and behavior rather than lan-
guage recognition and generation. Process algebra also embodies the principles of cellular
automata [5] — cells receiving inputs from neighboring cells and then taking appropriate
action — while adding a notion of programmability: nondeterminism, dynamic topologies,
evolving cell behavior, etc.

Process algebra lays the groundwork for a rigorous system-design ideology, providing
support for specification, verification, implementation, testing and other life-cycle-critical
activities. Interest in process algebra, however, extends beyond the system-design arena, to
areas such as programming language design and semantics, complexity theory, real-time
programming, and performance modeling and analysis.

3. About this Handbook

This Handbook documents the fate of process algebra from its modern inception in the late
1970’s to the present. It is intended to serve as a reference source for researchers, students,
and system designers and engineers interested in either the theory of process algebra or
in learning what process algebra brings to the table as a formal system description and
verification technique.

The Handbook is divided into six parts, the first five of which cover various theoretical
and foundational aspects of process algebra. Part 6, the final part, is devoted to tools for
applying process algebra and to some of the applications themselves. Each part contains
between two and four chapters. Chapters are self-contained and can be read independently
of each other. In total, there are 19 chapters spanning roughly 1300 pages. Collectively, the
Handbook chapters give a comprehensive, albeit necessarily incomplete, view of the field.

Part 1, consisting of four chapters, covers a broad swath of the basic theory of process
algebra. In Chapter 1, The Linear Time — Branching Time Spectrum I, van Glabbeek gives

Preface vii

a useful structure to, and an encyclopedic account of, the many behavioral relations that
have been proposed in the process-algebra literature. Chapter 2, Trace-Oriented Models
of Concurrency by Broy and Olderog, provides an in-depth presentation of trace-oriented
models of process behavior, where a trace is a communication sequence that a process can
perform with its environment. Aceto, Fokkink and Verhoef present a thorough account of
Structural Operational Semantics in Chapter 3. Part 1 concludes with Chapter 4, Modal
Logics and Mu-Calculi: An Introduction by Bradfield and Stirling. Modal logics, which
extend classical logic with operators for possibility and necessity, play an important role in
filling out the semantic picture of process algebra.

Part 2 is devoted to the sub-specialization of process algebra known as finite-state pro-
cesses. This class of processes holds a strong practical appeal as finite-state systems can
be verified in an automatic, push-button style. The two chapters in Part 2 address finite-
state processes from an axiomatic perspective: Chapter 5, Process Algebra with Recur-
sive Operations by Bergstra, Fokkink and Ponse; and from an algorithmic one: Chapter 6,
Equivalence and Preorder Checking for Finite-State Systems by Cleaveland and Sokolsky.

Infinite-state processes, the subject of Part 3, capture process algebra at its most ex-
pressive. Chapter 7, the first of the three chapters in this part, A Symbolic Approach to
Value-Passing Processes by Ing6lfsdéttir and Lin, systematically examines the class of
infinite-state processes arising from the ability to transmit data from an arbitrary domain of
values. Symbolic techniques are proposed as a method for analyzing such systems. Chap-
ter 8, by Parrow, is titled An Introduction to the 7 -Calculus. This chapter investigates the
area of mobile processes, an enriched form of value-passing process that is capable of
transmitting communication channels and even processes themselves from one process to
another. Finally, Burkhart, Caucal, Moller and Steffen consider the equivalence-checking
and model-checking problems for a large variety of infinite-state processes in Chapter 9,
Verification on Infinite Structures.

The three chapters of Part 4 explore several extensions to process algebra that make it
easier to model the kinds of systems that arise in practice. Chapter 10 focuses on real-time
systems. Process Algebra with Timing: Real Time and Discrete Time by Middelburg and
Baeten, presents a real-time extension of the process algebra ACP that extends ACP in a
natural way. The final two chapters of Part 4 study the impact on process algebra of re-
placing the standard notion of “nondeterministically choose the next transition to execute”
with one in which probability or priority information play pivotal roles. Chapter 11, Proba-
bilistic Extensions of Process Algebras by Jonsson, Larsen and Yi, targets the probabilistic
case, which is especially useful for modeling system failure, reliability, and performance.
Chapter 12, Priority in Process Algebra by Cleaveland, Liittgen and Natarajan, considers
the case of priority, and shows how a process algebra with priority can be used to model
interrupts, prioritized choice and real-time behavior.

Process algebra was originally conceived with the view that concurrency equals inter-
leaving. That is, the concurrent execution of a collection of events can be modeled as
their interleaved execution, in any order. More recent versions of process algebra known
as non-interleaving process algebras, aim to model concurrency directly, for example,
as embodied in Petri nets. The four chapters of Part 5 address this subject. Chapter 13,
Fartial-Order Process Algebra by Baeten and Basten, thoroughly considers the impact of
a non-interleaving semantics on ACP. Chapter 14, A Unified Model for Nets and Process



viii Preface

Algebras by Best, Devillers and Koutny, examines a range of issues that arise when process
algebra and Petri nets are combined together. Another kind of non-interleaving treatment
of concurrency is put forth in Chapter 15, Castellani’s Process Algebras with Localities. In
this approach, “locations” are assigned to parallel components, resulting in what Castel-
lani calls a “distributed semantics” for process algebra. Finally, in Chapter 16, Gorrieri
and Rensink’s Action Refinement gives a thorough treatment of process algebra with action
refinement, the operation of replacing a high-level atomic action with a low-level process.
The interplay between action refinement and non-interleaving semantics is carefully con-
sidered.

Part 6, the final part of the Handbook, contains three chapters dealing with tools and
applications of process algebra. The first of these, Chapter 17, Algebraic Process Ver-
ification by Groote and Reniers, gives a close-up account of verification techniques for
distributed algorithms and protocols, using process algebra extended with data (wCRL).
Chapter 18, Discrete Time Process Algebra and the Semantics of SDL by Bergstra, Mid-
delburg and Usenko, introduces a discrete-time process algebra that is used to provide a
formal semantics for SDL, a widely used formal description technique for telecommuni-
cations protocols. Finally, Chapter 19, A Process Algebra for Interworkings by Mauw and
Reniers, devises a process-algebra-based semantics for Interworkings, a graphical design
language of Philips Kommunikations Industrie.

Acknowledgements

The editors gratefully acknowledge the constant support of Arjen Sevenster, our manager
at Elsevier; without his efforts, this Handbook would not have seen the light of day. We
are equally grateful to all the authors; their diligence, talent, and patience are greatly ap-
preciated. We would also like to thank the referees, whose reports significantly enhanced
the final contents of the Handbook. They are: Luca Aceto, Jos Baeten, Wan Fokkink, Rob
Goldblatt, Hardi Hungar, Joost-Pieter Katoen, Alexander Letichevsky, Bas Luttik, Faron
Moller, Uwe Nestmann, Nikolaj Nikitchenko, Benjamin Pierce, Piet Rodenburg, Mariélle
Stoelinga, P.S. Thiagarajan, and Yaroslav Usenko. Finally, we would like to thank Rance
Cleaveland for his help in writing this preface.

Autumn 2000

Jan A. Bergstra (Amsterdam),

Alban Ponse (Amsterdam),

Scott A. Smolka (Stony Brook, New York)

References

[1]1 J.A. Bergstra and J.W. Klop, Process algebra for synchronous communication, Inform. and Control 60 (1/3)
(1984), 109-137.

[2] S.D.Brookes, C.A.R. Hoare and A.W. Roscoe, A theory of communicating sequential processes, J. ACM 31
(3) (1984), 560-599.

Preface ix

[3]1 EM. Clarke, E.A. Emerson and A.P. Sistla, Automatic verification of finite-state concurrent systems using
temporal logic specifications, ACM TOPLAS 8 (2) (1986).

[4] J.E. Hopcroft and J.D. Ullman, Introduction to Automata Theory, Languages, and Computation, Addison-
Wesley (1979).

[51 J. von Neumann, Theory of self-reproducing automata, A.W. Burks, ed., Urbana, University of Illinois Press
(1966).

[6] R.Milner, A Calculus of Communicating Systems, Lecture Notes in Comput. Sci. 92, Springer-Verlag (1930).

[71 G.D. Plotkin, A structural approach to operational semantics, Report DAIMI FN-19, Computer Science
Department, Aarhus University (1981).

Jan A. Bergstra2’3, Alban Ponse!2, Scott A. Smolka?

VCWI, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands
http:/fwww.cwi.nl/

2 University of Amsterdam, Programming Research Group, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
http:/fwww.science.uva.nlfresearch/prog/

3 Utrecht University, Department of Philosophy, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands
hitp:/fwww.phil.uu.nl/eng/home. htmlE-mail:

4 State University of New York at Stony Brook, Department of Computer Science
Stony Brook, NY 11794-4400, USA
hitp:/fwww.cs.sunysb.edu/

E-mails: janb@science.uva.nl, alban@science.uva.nl, sas@cs.sunysb.edu



