viii Contents

Notes and References for Part VI

Part VII: Objects and w-calculus
Introduction to Part VII

19 Semantic Definition...............
19.1 A programming [anguageoooiuiuii i
19.2 Modelling examples
19.3 Formal definition.........

20 Applications........ ...
20.1 Some properties of declarations and commands
20,2 Proxies...... ...
20.3 An implementation technique...........
20.4 A program transformation.............

Notes and References for Part VII
List of Tables

List of Notations

Bibliography

Indez

513
515

517
517
522
528

533
533
535
539
541

046
548
550
562
576

Foreword

Computer science aims to explain the way computational systems behave for us.
The notion of calculational process, or algorithm, is a lot older than computing
technology; so, oddly enough, a lot of computer science existed before modern
computers. But the invention of real stored-program computers presented enor-
mous challenges; these tools can do a lot for us if we describe properly what we
want done. So computer science has made immense strides in ways of presenting
data and algorithms, in ways of manipulating these presentations themselves as
data, in matching algorithm description to task description, and so on. Technol-
ogy has been the catalyst in the growth of modern computer science.

The first large phase of this growth was in free-standing computer systems.
Such a system might have been a single computer program, or a multi-computer
serving a community by executing several single programs successively or si-
multaneously. Computing theorists have built many mathematical models of
these systems, in relation to their purposes. One very basic such model — the
A-calculus — is remarkably useful in this role, even if it was designed by Alonzo
Church around 1940. .

The second phase of the growth of computer science is in response to the
advent of computer networks. No longer are systems freestanding; they interact,
collaborate and interrupt each other. This has an enormous effect on the way
we think about our systems. We can no longer get away with considering each
system as sequential, goal-directed, deterministic or hierarchical; networks are
none of these. So if we confine ourselves to such concepts then we remain dumb
if asked to predict whether a network will behave in a proper — or an improper
— way; for example, whether someone logging in to his bank may (as happened
recently) find himself scanning someone else’s account instead of his own.

The present book is a rigorous account of a basic calculus which aims to
underpin our theories of interactive systems, in the same way that the A-calculus
did for freestanding computation. The authors are two of the original researchers

1X

x Foreword

on the m-calculus, which is now over ten years old and has served as a focus for
much theoretical and practical experiment. It cannot claim to be definitive;
in fact, since it was designed it has become common to express ideas about
interaction and mobility in variants of the calculus. So it has become a kind of
workshop of ideas.

That’s the spirit in which the book is written. Half the book analyses the
constructions of the calculus, searching out its meaning and exploring its expres-
sivity by looking at weaker variants, or by looking at various type disciplines.
Enthusiasts about types in programming will be struck to find that 7-calculus
types don’t just classify values; they classify patterns of behaviour. This reflects
the fact that what matters most in mobile interactive systems is not values, but
connectivity and mobility of processes. With or without types, the unifying fea-
ture is behaviour, and what it means to say that two different processes behave
the same.

The later part of the book deals with two generic applications. One of these
is classical; how the 7-calculus can actually do the old job which the A-calculus
does in underpinning conventional programming. The other is modern; how
the calculus informs one of the most important models of interaction, the object-
oriented model. These applications bring together much of the theory developed
earlier; together, they show that a small set of constructs, provided that they
emphasize interaction rather than calculation, can still bring some conceptual
unity to the greatly extended scope of modern computing.

This book has been a labour of love for the authors over several years. Their
scholarship is immense, and their organisation of ideas meticulous. As one priv-
ileged to have worked closely with them both, it’s a great pleasure to be able to
recommend the result as a storehouse of ideas and techniques which is unlikely
to be equalled in the next decade or two.

Robin Milner
Cambridge
February 2001

Preface

Mobile systems, whose components communicate and change their structure,
now pervade the informational world and the wider world of which it is a part.
But the science of mobile systems is yet immature. This science must be devel-
oped if we are properly to understand mobile systems, and if we are to design
systems so that they do what they are intended to do. This book presents the 7-
calculus, a theory of mobile systems, and shows how to use it to express systems
precisely and reason about their behaviour rigorously.

The book is intended to serve both as a reference for the theory and as an
extended demonstration of how to use the w-calculus to express systems and
analyse their properties. The book therefore presents the theory in detail, with
emphasis on proof techniques. How to use the techniques is shown both in proofs
of results that form part of the theory and in example applications of it.

The book is in seven Parts. Part I introduces the w-calculus and develops
its basic theory. Part II presents variations of the basic theory and important
subcalculi of the m-calculus. A distinctive feature of the calculus is its rich theory
of types for mobile systems. Part III introduces this theory, and Part IV shows
how it is useful for understanding and reasoning about systems. Part V examines
the relationship between the m-calculus and higher-order process calculi. Part VI
analyses the relationship between the m-calculus and the A-calculus. Part VII
shows how ideas from w-calculus can be useful in object-oriented design and
programming. '

The book is written at the graduate level and is intended for computer sci-
entists interested in mobile systems. It assumes no prior acquaintance with the
m-calculus: both the theory and the viewpoint that underlies it are explained
from the beginning.

Although the book covers quite a lot of ground, several topics, notably logics
for mobility, and denotational and non-interleaving semantics, are not treated
at all. The book contains detailed accounts of a selection of topics, chosen for

xi

xii Preface

their interest and because they allow us to explore concepts and techniques that
can also be used elsewhere. Each Part ends with some references to sources
and additional notes on related topics. We have not attempted the arduous
task of referring to all relevant published work. The references given provide
starting points for a reader who wishes to go more deeply into particular topics.
Sometimes, an clement of arbitrariness in the choice of references was inevitable.

Many exercises are suggested to help appreciation of the material; the more
difficult of them are marked with an asterisk. We intend to maintain a Web page
for general information and auxiliary material about the book. At the time of
writing, this page is located at

http://www—sop.inria.fr/mimosa/personnel/Davide.Sangiorgi/
Book_pi.html

Acknowledgements Our greatest debt is to Robin Milner. The field that is
the subject of this book was shaped by his fundamental work on CCS and in
creating and developing the m-calculus. Further, we have both been privileged
to have worked with Milner, and his influence on our approach to the subject
and how to write about it are profound.

We thank the many colleagues — too many to mention here — with whom we
have worked on or discussed 7-calculus and related topics, and whose insights
and comments have contributed to our understanding,.

We are grateful to the following people for reading parts of a draft of the
book and offering comments that helped us improve it: Michael Baldamus, Sil-
via Crafa, Cédric Fournet, Daniel Hirshkoff, Kohei Honda, Naoki Kobayashi,
Giovanni Lagorio, Cédric Lhoussaine, Huimin Lin, Barbara Kénig, Robin Mil-
ner, Julian Rathke, Vasco Vasconcelos, Nobuko Yoshida, and especially Marco
Pistore.

We record our appreciation of the work of David Tranah and his colleagues at
Cambridge University Press in guiding the book into print.

Finally, we thank Laurence Sangiorgi and Katharine Grevling for their encour-
agement, assistance, and patience during the seemingly interminable process of
writing.

General Introduction

Mobile systems are everywhere. Palpable examples are mobile communication
devices and the networks that span the Earth and reach out into Space. And less
tangibly, there is mobile code and the wondrous weaving within the World Wide
Web. An accepted science of mobile systems is not yet established, however.
The development of this science is both necessary and challenging. It is likely
that it will consist of theories offering explanations at many different levels. But
there should be something basic that underlies the various theories.

This book presents the w-calculus, a theory of mobile systems. The w-calculus
provides a conceptual framework for understanding mobility, and mathematical
tools for expressing mobile systems and reasoning about their behaviours. We
believe it is an important stepping-stone on the path to the science of mobile
systems.

But what is mobility? When we talk about mobile systems, what are the
entities that move, and in what space do they move? Our broad answer is based
on distinguishing two kinds of mobility. In one kind, it is links that move in
an abstract space of linked processes. For example: hypertext links can be cre-
ated, can be passed around, and can disappear; the connections between cellular
telephones and a network of base stations can change as the telephones are car-
ried around; and references can be passed as arguments of method invocations
in object-oriented systems. In the second kind of mobility, it is processes that
move in an abstract space of linked processes. For instance: code can be sent
over a network and put to work at its destination; mobile devices can acquire new
functionality using, for instance, the Jini technology [AWO™99]; and procedures
can be passed as arguments of method invocations in object-oriented systems.

The w-calculus treats the first kind of mobility: it directly expresses movement
of links in a space of linked processes. There are two kinds of basic entity in
the (untyped) m-calculus: names and processes. Names are names of links.
Processes can interact by using names that they share. The crux is that the

2 General Introduction

data that processes communicate in interactions are themselves names, and a
namg received in one interaction can be used to participate in another. By
receving a name, a process can acquire a capability to interact with processes
that were unknown to it. The structure of a system — the connections among its
component processes — can thus change over time, in arbitrary ways. The source
of the m-calculus’s strength is how it treats scoping of names and extrusion of
names from their scopes.

The second kind of mobility, where it is processes (or, more generally, compu-
tational entities built from processes) that move, can be made precise in several
ways. We will examine a theory based on process-passing, the Higher-Order
m-calculus, in Part V. In the book, calculi based on process-passing mobility are
called higher-order calculi, and those, such as the m-calculus, that are based on
name-passing mobility are called first-order calculi.

What can be said by way of comparison between name-passing and process-
passing, and in particular for the precedence given in this book to first-order
calculi? First, naming and name-passing are ubiquitous: think of addresses,
identifiers, links, pointers, references. Secondly, as we will see, name-passing as
embodied in the 7-calculus is extremely expressive. In particular, Part V shows
how process-passing calculi can be modelled in m-calculus. But name-passing is
also more refined than process-passing. For by passing a name, one can pass
partial access to a process, an ability to interact with it only in a certain way.
Similarly, with name-passing one can easily model sharing, for instance of a
resource that can be used by different sets of clients at different times. It can
be complicated to model these things when processes are the only transmissible
values. Thirdly, it was possible to work out the theory of m-calculus, and the
theory is tractable. The theory of process-passing is harder, and important parts
of it are not yet well understood. Its advancement has been, and can continue
to be, greatly helped by the existence of the simpler theory of the m-calculus, in
much the same way that the development of 7-calculus was made much easier
by prior work on theories of non-mobile processes.

The 7-calculus does not explicitly mention location or distribution of mobile
processes. The issue of location and distribution is orthogonal to the question
of name-passing or process-passing. One can envisage worlds in which processes
reside at locations and exchange links, worlds in which they exchange processes,
and worlds in which they exchange both links and processes. It is too early to be
able to distil the right concepts for treating distributed mobile systems and all the
associated phenomena. We may hope, however, that ideas from w-calculus will
continue to contribute to the search for these concepts and the development of
theories based on them. At the time of writing, many theories treating location
or distribution are being investigated. Some of them are extensions or close

General Introduction 3

relatives of the m-calculus, for instance the Distributed Join Calculus [FGL96]
and the Distributed 7-calculus [HR98b], while others are influenced by it, such as
the Ambient Calculus [CG98] and Oz [Smo95]. All of these calculi and languages
benefit from the theory of w-calculus.

In m-calculus, names are names of links. But what is a link? The calculus is
not prescriptive on this point: link is construed very broadly, and names can be
put to very many uses. This point is important and deserves some attention.
For example, names can be thought of as channels that processes use to com-
municate. Also, by syntactic means and using type systems, m-calculus names
can be used to represent names of processes or names of objects in the sense of
object-oriented programming. (Part VII is about objects and w-calculus.) Fur-
ther, although the m-calculus does not mention locations explicitly, often when
describing systems in m-calculus, some names are naturally thought of as loca-
tions. Finally, some names can be thought of as encryption keys as, for instance,
in the Spi calculus [AG97], which applies ideas from =-calculus to computer
security.

The w-calculus has two aspects. First, it is a theory of mobile systems. The
m-calculus has a rich blend of techniques for reasoning about the behaviour of
systems, as we will see in the book. There has been some initial work on develop-
ment of (semi-) automatic tools to assist in reasoning, but substantial challenges,
both theoretical and practical, remain. Second, the m-calculus is a general model
of computation, which takes interaction as primitive. The relationship between
the m-calculus and the A-calculus, which is a general model of computation that
takes function application as primitive, is studied in depth in Part VI. Just as
the A-calculus underlies functional programming languages, so the m-calculus, or
a variant of it, is the basis for several experimental programming languages, for
instance Pict [PT00], Join [INR], and TyCO [VB9S].

Of central concern in concurrency theory is when two terms express processes
that have the same observable behaviour. The technical basis for the account
of behavioural equivalence in the book is the notion of bisimulation. Bisimula-
tion is one of the most stable and mathematically natural concepts developed
in concurrency theory. It is at the heart of a successful theory of behavioural
equivalence for non-mobile processes [Mil89], and it has important connections
with non-well-founded sets [Acz88], domain theory [Abr91], modal logic [HM85],
and final coalgebras [RT94]. Two m-calculus terms will be deemed to express
the same behaviour if they are barbed congruent, that is, if no difference can be
observed when the terms are put into an arbitrary m-calculus context and com-
pared using the appropriate bisimulation game. Although the book concentrates
on barbed congruence and other equivalences based on bisimulation, almost all

4 General Introduction

of the results presented hold for other contextually-defined equivalences. The
basic theory of the 7-calculus is presented in Part I and Part II.

When employing w-calculus to describe a system, one normally follows a disci-
pline that governs how names can be used. Such disciplines can be made explicit
using ¢ypes. This brings several benefits, notably the possibility of statically de-
tecting many programming errors. Using types also has important consequences
for the behaviour of processes and the techniques for reasoning about behav-
iour. Types are one of the most important differences between m-calculus and
non-mobile process calculi. They are studied in Part III and Part IV.

A technical theme that recurs throughout the book is interpreting one calculus
or language in another. There are several reasons for presenting and studying
interpretations. First, in many cases, doing so addresses fundamental concerns
relating to the expressiveness of calculi, and gives insight into how to use them for
modelling systems. Secondly, showing how to express terms of one language or
calculus in another often demonstrates effective use of important programming
idioms. And thirdly, by studying properties of encodings, we show various proof
techniques in action and illustrate ideas that are useful for analysing systems.

Robin Milner’s invention of the Calculus of Communicating Systems (CCS)
in the late 1970s Was a watershed in the theory of concurrency [Mil80]. CCS
inspired the field of process calculus, which continues to flourish some twenty
years later. The m-calculus was created in the late 1980s by Milner, Joachim
Parrow, and the second author [MPW89]. It evolved from CCS via an Extended
Calculus of Communicating Systems introduced by Mogens Nielsen and Uffe
Engberg [ENS6].

The first book treating 7-calculus was written by Milner [Mil99]. Based on
an undergraduate course, it recapitulates CCS and then introduces m-calculus,
with emphasis on examples and using the calculus to express systems. [Mil99] is
an excellent introduction to concurrency theory in general and to CCS and the
m-calculus in particular, and a reader unfamiliar with the field may find it easier
to start with it. The present book covers more of the basic theory and in greater
depth, and takes the reader further into the subject. We hope that it forms a
natural complement to Milner’s book.

Part 1

The m-calculus

