
Effective Program Verification
for Relaxed Memory Models

Sebastian Burckhardt and Madanlal Musuvathi

Microsoft Research

Abstract. Program verification for relaxed memory models is hard. The
high degree of nondeterminism in such models challenges standard veri-
fication techniques. This paper proposes a new verification technique for
the most common relaxation, store buffers. Crucial to this technique is
the observation that all programmers, including those who use low-lock
techniques for performance, expect their programs to be sequentially con-
sistent. We first present a monitor algorithm that can detect the presence
of program executions that are not sequentially consistent due to store
buffers while only exploring sequentially consistent executions. Then, we
combine this monitor with a stateless model checker that verifies that
every sequentially consistent execution is correct. We have implemented
this algorithm in a prototype tool called Sober and present experiments
that demonstrate the precision and scalability of our method. We find re-
laxed memory model bugs in several programs, including two previously
unknown bugs in a production-level concurrency library that would have
been difficult to find by other means.

1 Introduction

Developers of performance-critical multi-threaded software often try to avoid
the overhead of traditional locking by either making direct use of hardware
primitives for atomic operations (such as interlocked exchange, or compare-and-
swap), or by employing regular loads and stores for synchronization purposes.
Unfortunately, such “low-lock” programs are notoriously hard to get right [4,20].
Subtle bugs can arise in these programs due to memory reordering caused by the
relaxed memory model of the underlying hardware [1] . These errors are hard to
find and debug as they most often show up only in specific thread interleavings
and in particular hardware configurations. On the other hand, low-lock code is
heavily used both in low-level libraries and in critical paths of a system. Because
these parts are crucial to the reliability of the entire system, it is important to
develop verification techniques.

In general, the same program may exhibit more executions on a relaxed model
than on a sequentially consistent (SC) machine [18], as illustrated in Fig. 1. Let
T Y

π denote the set of executions of program π on memory model Y . Most ex-
isting program verification tools can not verify directly whether the executions
in T Y

π are correct (unless Y = SC). A few specialized memory model sensi-
tive verification tools exist [4,13,22,25] but scalability and automation remain a
challenge.

A. Gupta and S. Malik (Eds.): CAV 2008, LNCS 5123, pp. 107–120, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

108 S. Burckhardt and M. Musuvathi

SC

TSO

390

IA-32

RMO

PPC

Initially: X = Y = 0
processor 1 processor 2

X = 1 Y = 1
r1 = Y r2 = X

Eventually: r1 = 0, r2 = 0

When the two threads run on different processors,
the stores to X and Y in the first line can possibly
be delayed by the store buffers in these processors.
Subsequent loads in the second line see the initial
values of X and Y if the store buffers have not
yet been committed.

(a) (b)

Fig. 1. (a) A comparison of various memory models [6,9,14,15,24]. (b) An execution
that is possible on TSO but not on SC.

A key observation of this paper is that programmers, even those writing low-
lock code, expect their programs to be sequentially consistent. They design their
programs to be correct for SC executions and insert memory ordering fences to
counter relaxations where necessary. In particular, any program execution that
is not SC is almost always an error, resulting either from an insufficient use of
fences or a misunderstanding of the underlying memory model.

This observation suggests that we can sensibly verify the relaxed executions
T Y

π by solving the following two verification problems separately:

1. Use standard verification methodology for concurrent programs to show that
the executions in T SC

π are correct.
2. Use specialized methodology for memory model safety verification, showing

that T Y
π = T SC

π . We say the program π is Y -safe if T Y
π = T SC

π .

In this paper, we focus on verifying memory model safety for the most common re-
laxation in modern multiprocessors, store buffers with store-load forwarding. The
corresponding memory model is historically called TSO (total store order) [24],
and we use the terms TSO-safety and store buffer safety interchangeably. Under
TSO, processors may delay the effect of a store instruction in a processor-local
FIFO buffer (to hide the memory latency). While the values of these store instruc-
tions are immediately visible to the local processor, other processors see these val-
ues only when the store buffer is committed at a later time. Fig. 1(b) shows a simple
example. We provide a rigorous characterization of TSO in Section 2.

Apart from the fact that store buffers are so common (as apparent in Fig. 1(a),
T TSO

π ⊆ T Y
π for almost all models Y), our motivation for focusing on TSO largely

arises from the need to prepare the huge body of legacy code heavily optimized to
run on x86 machines for future multicore chip generations. These processors are
likely to make increased use of store buffers but are otherwise fairly conservative
as far as the memory model is concerned [16].

Effective Program Verification for Relaxed Memory Models 109

The main contribution of this paper is a technique for checking the store buffer
safety of a program while only exploring its sequentially consistent executions,
which lets us perform the steps 1 and 2 above simultaneously. Our technique
relies on a notion of borderline execution, which is an SC execution that can be
extended into an execution in T TSO

π \ T SC
π . We establish that a program is store

buffer safe exactly if there are no borderline executions (Theorem 1). Then we
present an efficient, precise monitor for detecting borderline executions, using a
novel generalized vector clock algorithm.

We have implemented these ideas in a prototype tool called Sober. Sober com-
bines our store buffer safety monitor with the stateless model checker Chess [21]
which systematically enumerates the SC executions of a bounded concurrent test
program and checks them for errors such as null pointers or assertion violations.
In principle, Sober terminates with one of three possible outputs. First, Sober
may detect a regular program error and output an erroneous execution. Second,
Sober may report that the program is not store buffer safe. Finally, Sober may
terminate without finding an error, proving that all TSO executions of the pro-
gram are correct. In practice, exhaustive verification is too time-consuming for
most programs and we resort to iterative context-bounding [21], which provides
verification guarantees up to a specific preemption bound.

Section 4 describes our initial experiments. Using Sober we found and fixed
store buffer issues in several programs, including Dekker’s mutual exclusion pro-
tocol [2] and the Bakery protocol [17]. We got our greatest success so far when
we applied Sober to a component of a concurrency library at Microsoft. This
component implements a low-lock datastructure. Sober demonstrated two store
buffer problems that the developer immediately agreed were real errors. These
bugs were never detected during the extensive code-review and testing the com-
ponent underwent.

Related Work. Prior work has addressed the verification of programs for re-
laxed memory models using explicit state enumeration [7,13,22] and using con-
straint solving [3,4,11,26]. Our work improves upon them in scalability. To our
knowledge, this paper is the first to demonstrate the possibility of program
verification without exploring the additional nondeterminism of memory-model
relaxation. See the experiments in Huynh and Roychoudhury [13] for the state
space explosion caused by this nondeterminism even for simple programs. This
paper is definitely not the first to observe that sequential consistency is the most
natural memory model for programmers [1,12,18]. The Java Memory Model [19]
guarantees sequential consistency for a broad class of programs, namely those
which are data-race free. In contrast, our characterization of memory model
safety precisely captures those programs which behave sequentially consistent
in a memory model. In particular, a program with data-races might still be
memory-model safe. Specialized algorithms to automatically insert fences based
on static analysis [8,23] can guarantee memory-safety in principle. However,
doubts remain about their precision in the presence of aliasing, loops, and con-
ditionals and the performance implication of conservative fence insertion. Also,

110 S. Burckhardt and M. Musuvathi

the memory models considered in these algorithms assume atomic memory and
cannot model store buffers, the main emphasis of this paper.

2 Problem Formulation

We represent the relevant aspects of a program executions by a memory trace,
or just trace. A trace is a collection of events, each representing a memory access
(either a store, a load, or an interlocked operation1) by a specific processor to
a specific address. Each event has an issue index, which is a sequence number
relative to all events by the same processor. Furthermore, each event has a
coherence index, which is the sequence number of the value that is read or written
by the event, relative to the entire value sequence written to the targeted memory
location during the execution.

Formally, let Op = {st, ld, il}, let N be the set of natural numbers, let Proc =
{1, . . . , N} be a finite set of processor identifiers for some fixed bound N ∈ N, let
Adr be a finite set of memory addresses, and let N0 ⊆ Z be the set of nonnegative
integers. Then we define the set of events as Evt = Op × Proc × N × Adr × N0,
and we denote elements e ∈ Evt using the syntax o(p, i, a, c), where o ∈ Op,
p ∈ Proc, i ∈ N is the issue index, a ∈ Adr, and c ∈ N0 is the coherence index.
We use corresponding projection functions o(e), p(e), i(e), a(e), c(e) for an event
e. Given a set E ⊆ Evt of events, we define the following subsets for notational
convenience:

(commands issued by processor p) E(p) = {e ∈ E | p(e) = p}
(load events) L(E) = {e ∈ E | o(e) = ld}
(store events) S(E) = {e ∈ E | o(e) = st}

(events that write to memory) W (E) = {e ∈ E | o(e) ∈ {st, il}}
(events that read from memory) R(E) = {e ∈ E | o(e) ∈ {ld, il}}

(events that write location a) W (E, a) = {e ∈ W (E) | a(e) = a}

We call a function f : Evt → N an index function for a subset S′ ⊆ Evt if
f(S′) = {1, . . . , |S′|} (including the special case where S′ is empty).

Definition 1 (Traces). A trace is a subset E ⊆ Evt satisfying

(E1) For all p ∈ Proc, i is an index function for E(p).
(E2) For all a ∈ Adr, c is an index function for W (E, a).
(E3) For all l ∈ L(E), either c(l) = 0, or there exists a w ∈ W (E, a(l))

such that c(l) = c(w).

Define T ⊆ P(Evt) to be the set of all traces. We say a trace E is a prefix of a
trace E′ if E ⊆ E′.

1 We do not need to include memory fence operations because a full fence is se-
mantically equivalent to an interlocked operation to a location that is not accessed
anywhere else.

Effective Program Verification for Relaxed Memory Models 111

To reason about traces, we introduce binary relations →p and →c:

– We use the program order →p⊆ Evt × Evt to describe the relative order of
events by the same processor. Specifically, we define e →p e′ if and only if
p(e) = p(e′) and i(e) < i(e′). For any trace E, →p is a partial order on E
and a total order on E(p) for all p ∈ Proc.

– We use the conflict order →c⊆ Evt × Evt to describe the relative order
of conflicting accesses (where we call two accesses e, e′ ∈ Evt conflicting if
a(e) = a(e′) and {e, e′} ∩ W (Evt) �= ∅). Specifically, we define: e →c e′ if
and only if a(e) = a(e′) and either (1) o(e′) ∈ W (Evt) and c(e) < c(e′),
or (2) (e, e′) ∈ W (Evt) × L(Evt) and c(e) ≤ c(e′). The conflict order is not
actually an ’order’ in the mathematical sense because it is not transitive.

We now proceed to define the memory models SC (sequential consistency) and
TSO (total store order) using an axiomatic style. To state the definitions con-
cisely, we define the binary relation →hb, called happens-before relation, to be
the union of the program and conflict orders: →hb= (→p ∪ →c). Note that this
definition does not make →hb implicitly transitive; we will take the transitive
closure →∗

hb explicitly if required by the context.

Definition 2 (SC). Define the set T SC ⊆ T of sequentially consistent traces
to consist of all traces E that satisfy the following condition:

(SC1) The relation →hb is acyclic on E.

To define TSO for any given event set E, we first define the relaxed happens-
before relation →rhb:

→rhb = →hb \ { (e, e′) | e →p e′ ∧ o(e) = st ∧ o(e′) = ld}

Thus the →rhb relation does not put a happens-before edge between a store
and a subsequent load of the same processor (even if they have the same ad-
dress). This reflects the existence of a store buffer: a store may globally commit
after subsequent loads by the same processor, and thus not globally appear as
’happening before the load’.

Definition 3 (TSO). Define the set T TSO ⊆ T of totally-store-ordered traces
to consist of all traces E that satisfy the following conditions:

(TSO1) The relation →rhb is acyclic on E.
(TSO2) never (e →p e′ ∧ e′ →c e) for any e, e′ ∈ E

The axiom (TSO2) is required to guarantee that loads correctly “snoop” the store
buffer: the coherence index of a load may not be less than that of a previous store
to the same address by the same processor. For a detailed proof that Definitions
2 and 3 are equivalent to more intuitive operational descriptions, we refer to our
technical report [5].

We now formally define the set of traces T Y
π that a program π may exhibit on

a memory model Y ∈ {SC, TSO}. To keep our formalization light, we represent

112 S. Burckhardt and M. Musuvathi

a program π abstractly by a function nextπ : T ×Proc → P(Op×Adr). The set
nextπ(E, p) describes what instructions (combinations of operation and address)
may possibly be issued by processor p next, after having executed E. For a
trace E, let last(E, p) be the element e ∈ E(p) such that i(e) is maximal, or
undefined if E(p) = ∅. We say that a program π is locally deterministic if for
all (E, p) ∈ domnextπ, we have (1) |nextπ(E, p)| ≤ 1, and (2) for all prefixes
E′ ⊆ E such that last(E′, p) = last(E, p), we have nextπ(E, p) = nextπ(E′, p).
In the following, we will assume without further mention that all programs are
locally deterministic. For a trace E ∈ T , define the set of possible successor
events under program π as

succπ(E) = {e ∈ (Evt \ E) | (E ∪ {e} ∈ T) and nextπ(E, p(e)) = (o(e), a(e))}.

Definition 4 (Program Traces). For a program π and memory model Y ∈
{SC, TSO}, define the set of traces T Y

π inductively as the smallest set satisfying
(i) ∅ ∈ T Y

π , and (ii) for all E ∈ T Y
π and e ∈ succπ(E) such that E ∪ {e} ∈ T Y ,

we have E ∪ {e} ∈ T Y
π .

Definition 5 (Store Buffer Safety). The program π is called store buffer safe
if and only if T TSO

π = T SC
π .

3 Solution

We now describe how we can check store buffer safety by exploring T SC
π only.

The idea is to look for borderline traces which are defined as follows.

Definition 6 (Borderline Trace). A sequentially consistent trace E ∈ T SC
π

of a program π is called a borderline trace if there exists an e ∈ succπ(E) such
that E ∪ {e} ∈ (T TSO

π \ T SC
π).

Theorem 1. A program π is store buffer safe if and only if it has no borderline
traces.

Proof. If E ∈ T SC
π is a borderline trace, then there exists a trace E ∪ {e} ∈

(T TSO
π \ T SC

π) implying T SC
π �= T TSO

π . Conversely, assume T SC
π �= T TSO

π . Because
T SC

π ⊆ T TSO
π , there must exist E ∈ (T TSO

π \ T SC
π). By construction of T TSO

π ,
there exist traces E0, . . . , En ∈ T TSO

π and events e1, . . . , en such that E0 = ∅,
{ek} = Ek \ Ek−1, and En = E. Because En /∈ T SC

π but E0 ∈ T SC
π , there exists

a minimal k such that Ek /∈ T SC
π . This implies that Ek−1 ∈ T SC

π and Ek−1 is a
borderline trace (because Ek−1 ∪ {ek} ∈ (T TSO

π \ T SC
π)).

The following cycle characterization lemma provides an efficient method to
detect borderline traces. For a trace E, let lastR(E, p) be the element e ∈
E(p) ∩ R(E) such that i(e) is maximal, or be undefined if (E(p) ∩ R(E)) = ∅;
and let write(E, a, c) denote the element e ∈ W (E, a) such that c(e) = c if it
exists, or be undefined otherwise.

Effective Program Verification for Relaxed Memory Models 113

Lemma 1 (Cycle Characterization). Let E ∈ T SC
π be a sequentially consis-

tent trace of π, and let e = o(p, i, a, c) ∈ succπ(E). Let E′ = E ∪ {e}. Then:

(1) E′ /∈ T SC
π if and only if o = ld and write(E, a, c + 1) →∗

hb last(E, p).
(2) E′ /∈ T TSO

π if and only if o = ld and either

(i) write(E, a, c + 1) →∗
rhb lastR(E, p), or

(ii) there exists c′ > c such that p(write(E, a, c′)) = p.

Proof. (1⇐). If o = ld and write(E, a, c + 1) →∗
hb last(E, p), then

e →c write(E, a, c + 1) →∗
hb last(E, p) →p e

which forms a →hb-cycle, implying E′ /∈ T SC by (SC1), and thus E′ /∈ T SC
π .

(2⇐). either (i) or (ii) must hold; if (i) holds, we proceed as in case (1⇐): we
use e →c write(E, a, c + 1) and lastR(E, p) →p e to construct a cycle (this time,
a →rhb-cycle) which implies E′ /∈ T TSO by (TSO1), and thus E′ /∈ T TSO

π . If (ii)
holds, then either write(E, a, c′) →p e or e →p write(E, a, c′); but the latter is
impossible because both E and E′ are traces (specifically, because i is an index
function on both E(p) and E′(p)). Therefore, write(E, a, c′) →p e. Along with
e →c write(E, a, c′) we conclude E′ /∈ T TSO by (TSO2), and thus E′ /∈ T TSO

π .
(1⇒). Assume E′ /∈ T SC

π . Then E′ /∈ T SC (by Def. 4(ii)), which means (SC1)
does not hold: specifically, E ∪{e} has a →hb-cycle. Because →hb is acyclic on E
(because E ∈ T SC), it must be of the form e →hb e1 →hb . . . →hb en →hb e where
all ek ∈ E and n ≥ 1. Now, e →hb e1 by definition implies that either e →p e1 or
e →c e1. As reasoned earlier, it can not be the case that e →p e1 (because E and
E′ are both traces), thus e →c e1. This implies that o = ld (because c is an index
function on both W (E, a) and W (E′, a)). Because e is a load and e →c e1, we
know o(e1) ∈ {st, il}, a(e1) = a and c(e1) > c, and thus either write(E, a, c+1) =
e1 or write(E, a, c+1) →c e1. Therefore write(E, a, c+1) →∗

hb en. Now, it can not
be the case that en →c e (otherwise en →∗

c e1 which creates a →hb-cycle within
E, contradicting E ∈ T SC

π), thus en →p e. Therefore, either en = last(E, p) or
en →p last(E, p). We can thus conclude that write(E, a, c + 1) →∗

hb last(E, p) as
desired. (2⇒). If E′ /∈ T TSO

π then E′ /∈ T TSO (by Def. 4(ii)). Thus either (TSO1)
or (TSO2) must be violated. First, assume that E′ does not satisfy (TSO1). Just
as in (1⇒) (but using the relation →rhb⊆→hb), we conclude that there exists
a cycle of the form e →rhb e1 →rhb . . . →rhb en →rhb e, that e →c e1, that
o = ld, that write(E, a, c + 1) →∗

rhb en, and that en →p e. The latter implies
that o(en) �= st (otherwise not en →rhb e), and therefore either en = lastR(E, p)
or en →rhb lastR(E, p). Thus condition (i) is satisfied. Next, assume that E′ does
not satisfy (TSO2). Because E does, and because we know that not e →p e′ for
any e′ ∈ E (because E and E′ are both traces), there must exist an e′ ∈ E
such that e′ →p e and e →c e′. This implies o(e) = ld (because c is an index
function on both W (E, a) and W (E′, a)). Because e is a load and e →c e′, we
know o(e′) ∈ {st, il}, a(e′) = a and c(e′) > c. Thus, condition (ii) is satisfied
with c′ = c(e′).

114 S. Burckhardt and M. Musuvathi

1 function is_store_buffer_safe(e1e2 . . . en) returns boolean {
2 var k,p,a,c : N; var E : T ;
3 E := ∅;
4 for (k := 1; k <= n; k++) {
5 if (o(ek) = ld) {
6 p := p(ek); a := a(ek); c := c(ek);
7 while (c > 0) {
8 if (p = i(write(E,a,c)))
9 break;

10 if (write(E,a,c) →∗
rhb lastR(E,p))

11 break;
12 if (write(E,a,c) →∗

hb last(E,p))
13 return false;
14 c := c - 1;
15 }
16 }
17 E := E ∪ ek;
18 }
19 return true;
20 }

Fig. 2. Our algorithm to monitor store buffer safety in a given interleaving

3.1 Monitor Algorithm

Fig. 2 shows our implementation of a monitor that can monitor store buffer
safety in any interleaved execution of the program. It processes the events in
the sequence in order (and can thus be used online or offline) and reports any
detected borderline traces. We now qualify the soundness and completeness of
this monitor. For a sequence w = e1 . . . en ∈ Evt∗ of events, let Ew = {e1, . . . en}.
The sequence w is called an interleaving of a program π if (1) the ek are pairwise
distinct, (2) Ew ∈ T SC

π , (3) ex →hb ey =⇒ x < y, and (4) nextπ(Ew, p) = ∅ for
all p ∈ Proc.

Theorem 2 (Soundness). If an an interleaving w of program π is reported
unsafe by our monitor, then π is not store buffer safe.

Proof. Assume is_store_buffer_safe(w) returns false for w = e1 . . . en. Let
E, k, p, i, a and c′ be the values of the program variables E, k, p, i, a, and
c at the time of the return, respectively. Then E = {e1, . . . , ek−1}, and ek =
ld(p, i, a, c) for some c. Let e = ek, and let e′ = ld(p, i, a, c′ − 1). We now argue
that E′ = E ∪ {e′} ∈ (T TSO

π \ T SC
π), which implies that E is a borderline trace

and thus T SC
π �= T TSO

π by Theorem 1 as desired. First, note that e′ ∈ succπ(E)
because E ∪ {e} ∈ T SC

π implies E ∪ {e′} ∈ T and (o, a) ∈ nextπ(E, p) (using
that π is locally deterministic). We can thus enlist the help of Lemma 1 to show
E′ ∈ (T TSO

π \ T SC
π). First, because the program returned at line 13, we know

write(E, a, c′) →∗
hb last(E, p), which implies E′ /∈ T SC

π by Lemma 1, part (1).
Second, because the program did not break at line 11 right before returning on
line 13, we know that not (write(E, a, c′) →∗

rhb lastR(E, p)). Moreover, because

Effective Program Verification for Relaxed Memory Models 115

the while loop was not broken at line 9, we know that p(write(E, a, c′′)) �= p for
all c′′ ≥ c′. By Lemma 1, part (2) we conclude that E′ ∈ T TSO

π .

As for completeness, we clearly cannot detect all borderline traces by looking at
a single interleaving w only. However, it is possible to detect them reliably by
checking a sufficient set of interleavings. Specifically, we call a set of interleav-
ings I ⊆ Evt∗ representative for program π if for all E ∈ T SC

π there exists an
interleaving w ∈ I such that E ⊆ Ew and there are no →hb-edges from Ew \ E
into E.

Theorem 3 (Completeness). Let I be a representative set of interleavings of
a program π. Then, if π is not store buffer safe, our monitor will detect it on
some interleaving w ∈ I.

Proof. By Theorem 1, we know that T SC
π �= T TSO

π implies that there exists a
borderline trace E ∈ T SC

π . Thus there exists an element e = o(p, i, a, c) ∈ Evt
such that E′ = (E ∪ {e}) ∈ T TSO

π \ T SC
π . Because I is representative, it must

contain an interleaving w = e1 . . . en such that E ⊆ Ew is a prefix. Because
(o(e), a(e)) ∈ nextπ(E, p), there must be a k such that p(ek) = p and i(ek) = i
(otherwise last(Ew , p) = last(E, p) and thus nextπ(E, p) = nextπ(Ew, p), con-
tradicting nextπ(Ew, p) = ∅). We now claim that if the algorithm reaches the
k-th iteration, it must return false (if it returns prior to that, it also returns false
and we are satisfied). Let Ek = {e1, . . . , ek−1}. By Lemma 1, part (1), we know
that write(E, a, c+1) →∗

hb last(E, p) within E. Now, by the choice of k, we know
E(p) = Ek(p), thus last(E, p) = last(Ek, p), and because w is an interleaving (re-
spects →hb), this implies write(Ek, a, c+1) →∗

hb last(Ek, p) within Ek. Moreover,
we know that c(ek) ≥ (c+1) because w is an interleaving and write(Ek, a, c+1)
appears before ek in w. Thus, the while loop (which assigns c(ek) to the vari-
able c initially, and then keeps decrementing it) must eventually return true at
line 13 unless it is broken at either line 9 or line 11. But that is not possible,
for the following reasons. First, suppose line 9 breaks. Let c′ be the value of the
variable c at that time; then c+1 ≤ c′ ≤ c(ek) and p(write(Ek, a, c′)) = p. Now,
because E(p) = Ek(p), we know write(Ek, a, c′) ∈ E. Thus, write(E, a, c′) =
write(Ek, a, c′), implying p(write(E, a, c′)) = p which in turn implies E′ /∈ T TSO

π

by Lemma 1, part (2ii), contradicting the assumption. Next, suppose line 11
breaks. Let c′ be the value of the variable c at that time; then c+1 ≤ c′ ≤ c(ek)
and write(Ek, a, c′) →∗

rhb lastR(Ek, p) within Ek. Now, because E(p) = Ek(p),
lastR(Ek, p) = lastR(E, p). Because there are no →hb-edges (and thus no →rhb-
edges) from Ew into E, this implies that write(E, a, c′) →∗

rhb lastR(E, p). Be-
cause c + 1 ≤ c′, this implies write(E, a, c) →∗

rhb lastR(Ek, p), which in turn
implies E′ /∈ T TSO

π by Lemma 1, part (2i), contradicting the assumption.

A stateless model checker (such as Verisoft [10] or Chess[21]) can provide us
with a representative set of interleavings if the program is bounded (we call a
program bounded if there exists a number M ∈ N such that |E| < M for all
E ∈ T SC

π). The following theorem (proved in [5]) clarifies that this is true even
if partial order reduction is employed. We call a set of interleavings I ⊆ Evt∗

116 S. Burckhardt and M. Musuvathi

1 type timestamp: array[2*N] of N0;
2 var lc: array[Proc] of timestamp;
3 sc: array[Proc] of timestamp;
4 mc1: array[Proc][Adr] of timestamp;
5 mc2: array[Adr] of timestamp;
6 initially lc[*][*] = sc[*][*] = mc1[*][*][*] = mc2[*][*] = 0;
7 function merge(ts1, ... tsn : timestamp) returns timestamp {
8 return (maxi(tsi[1]), ... , maxi(tsi[N*2]));
9 }

10 function process_event(e : Evt) returns timestamp {
11 match e with
12 ld(p,i,a,c) ->
13 ts := merge(lc[p], mc1[p][a]);
14 ts[2*p] := ts[2*p] + 1; // advance load count for p
15 lc[p] := merge(lc[p], ts);
16 mc2[a] := merge(mc2[a], ts);
17 st(p,i,a,c) ->
18 ts := merge(sc[p], lc[p], mc2[a]);
19 ts[2*p+1] := ts[2*p+1] + 1; // advance store count for p
20 forall q �= p do
21 mc1[q][a] := merge(mc1[q][a], ts);
22 mc2[a] := merge(mc2[a], ts);
23 sc[p] := merge(sc[p], ts);
24 il(p,i,a,c) ->
25 ts := merge(sc[p], lc[p], mc2[a]);
26 ts[2*p] := ts[2*p] + 1; // advance load count for p
27 ts[2*p+1] := ts[2*p+1] + 1; // advance store count for p
28 forall q ∈ Proc do
29 mc1[q][a] := merge(mc1[q][a], ts);
30 mc2[a] := merge(mc2[a], ts);
31 lc[p] := merge(lc[p], ts);
32 sc[p] := merge(sc[p], ts);
33 return ts;
34 }

Fig. 3. A vector clock for tracking the transitive closure →∗
rhb

a partial-order-complete set for program π if for all interleavings w of π, there
exists a w′ in I such that Ew = Ew′ .

Theorem 4. If I is a partial-order-complete set of interleavings for a bounded
program π, then it is representative for π.

3.2 Vector Clocks

The pseudocode in Fig. 2 does not detail how to decide the conditions on lines
10 and 12. While it is well known how to use vector clocks to compute the
transitive closure →∗

hb for a given interleaving of length n in time O(nN), it is
not immediately clear how to do the same for →∗

rhb. We solved this problem
by generalizing vector clocks (Def. 7 below) and by engineering a vector clock
instance (Fig. 3) that can compute the transitive closure →∗

rhb in time O(nN2).

Effective Program Verification for Relaxed Memory Models 117

Theorem 5. Let w = e0 . . . en be an interleaving of some program π, and let
t1, . . . , tn be the timestamps returned by the corresponding sequence of calls to
process_event (Fig. 3). Then ei →∗

rhb ej if and only if i ≤ j and ti[k] ≤ tj [k]
for all k ∈ {1, . . . , 2N}.

We now describe informally how this vector clock works (for a detailed proof of
the theorem see [5]). Our vector clock uses timestamps of a fixed width (here
2N , where N is the maximal number of processors) and maintains a number of
clocks (defined as global variables in Fig. 3). The computation of each timestamp
follows the following pattern: (1) some of the clocks are read and merged, (2)
some positions of the resulting vector are incremented to form the timestamp,
and (3) the timestamp is merged back into some of the clocks. The following
definition clarifies the conditions that underly this general mechanism (in(e)
and out(e) represent the clock sets in step (1) and (3), respectively, and gps(e)
represents the set of positions in step (2)).

Definition 7 (General Vector Clock). Let Σ be a set of events, and let
→ be a binary relation on Σ. A general vector clock for (Σ, →) is a tuple
(C, G, in , out , gps) where C is a set of clocks, G is a set of groups, in, out are
functions Σ → P(C), and gps is a function Σ → P(G) such that the following
conditions are satisfied:

(VC1) for all σ ∈ Σ, gps(σ) �= ∅.
(VC2) for all g ∈ G, → is a total order on {σ ∈ Σ | g ∈ gps(σ)}.
(VC3) for all σ, σ′ ∈ Σ, we have (out(σ) ∩ in(σ′) �= ∅) ⇔ (σ → σ′).

4 Experiments

We present experimental results for four C# programs (Fig. 4(a)). The largest
one (takequeue) implements a low-lock datastructure and is part of a concurrency
library at Microsoft. For all programs, Sober (1) falsified the original version
(found that it is not store buffer safe), and (2) verified a fixed version (which we
obtained by adding more memory fences whenever Sober showed us a borderline
trace) up to some bound on the number of preemptions [21] (column 2).

We make two observations. First, a large percentage of interleavings trip the
monitor (columns 3,4). Therefore, a violation is found quickly (column 5). This
indicates that our monitor may be useful for falsification even in a plain testing
setup (without doing exhaustive space exploration). Second, when verifying a
correct program, the number of interleavings and the verification time increase
dramatically with the context bound as usual [21]; however, the overhead by the
store buffer safety monitor is fairly low in practice (columns 6,7), indicating that
it makes sense to turn it on by default within the Chess tool.

Figure 4(b) describes a memory model bug that we found in a production
level concurrency library at Microsoft [5]. The program uses two flags isIdling
and hasWork as well as a condition variable to synchronize between consumers
and producers. An idle consumer waits on the condition variable if hasWork is

118 S. Burckhardt and M. Musuvathi

volatile bool isIdling;
program context time volatile bool hasWork;

name bound total borderline [s] SoBeR CHESS
Fig. 1(b) 10 4 < 0.1 < 0.2 < 0.2 //Consumer thread
dekker 1 5 4 < 0.1 < 0.2 < 0.2 void BlockOnIdle(){
(2 threads, 2 36 23 < 0.1 0.39 0.37 lock (condVariable){
2 crit-sec) 3 183 50 < 0.1 1.9 1.8 isIdling = true;
(loc 82) 4 1,219 124 < 0.1 13.2 13.0 if (!hasWork)

5 8,472 349 < 0.1 106.0 100.6 Wait(condVariable);
bakery 0 1 1 < 0.1 < 0.2 < 0.2 isIdling = false;
(2 threads, 1 25 20 < 0.1 0.47 0.43 }
3 crit-sec) 2 742 533 < 0.1 10.3 9.8 }
(loc 122) 3 12,436 8,599 < 0.1 189.0 181.0
takequeue 0 3 0 n.a. < 0.3 < 0.3 //Producer thread
(2 threads, 1 47 14 0.34 0.72 0.69 void NotifyPotentialWork(){
6 ops) 2 402 189 0.43 5.2 4.9 hasWork = true;
(loc 374) 3 2,318 1,197 0.74 28.9 27.8 if (isIdling)

4 9,147 5,321 0.84 125.5 118.9 lock (condVariable) {
5 29,821 17,922 0.86 481.5 461.6 Pulse(condVariable);

 }
}

(a) (b)

interleavings ver. time [s]

Fig. 4. (a) Experiments on a 2.2GHz Intel Core Duo laptop running Windows Vista.
(b) An example of a store buffer safety bug we found in a production-level C# program.

false, but only after setting isIdling to true. To optimize for the common case
in which there are no idle consumers, the producer acquires the lock only when
isIdling is true. Also, to account for a possible race on the isIdling flag, the
producer sets hasWork to true before checking the isIdling flag. We can see
that in all sequentially consistent executions the producer correctly wakes up the
idle consumer, if any. However, in the presence of store buffers, a store can be
delayed past a subsequent load.2 In particular, the consumer can read hasWork
before its write to isIdling is visible to the producer. Thus, the producer may
erroneously believe that no consumer is idling, not perform a signal, and leave
the consumer waiting forever.

5 Conclusions and Future Work

We have presented a novel method to verify store buffer safety using a non-
intrusive monitor that is run alongside sequentially consistent executions of the
program. We have demonstrated that this method is scalable, automatic and
precise enough to find store-buffer-related bugs in realistic low-lock code, such
as concurrency libraries.

As future work, we consider including memory model relaxations other than
store buffers, and we plan to apply our monitor to larger execution traces.

2 Note that unlike Java, the C# memory model does not guarantee a sequentially
consistent ordering of volatile accesses.

Effective Program Verification for Relaxed Memory Models 119

References

1. Adve, S., Gharachorloo, K.: Shared memory consistency models: a tutorial. Com-
puter 29(12), 66–76 (1996)

2. Ben-Ari, M.: Principles of Concurrent Programming. Prentice Hall, Englewood
Cliffs (1982)

3. Burckhardt, S., Alur, R., Martin, M.: Bounded verification of concurrent data types
on relaxed memory models: A case study. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 489–502. Springer, Heidelberg (2006)

4. Burckhardt, S., Alur, R., Martin, M.: CheckFence: Checking consistency of con-
current data types on relaxed memory models. In: PLDI, pp. 12–21 (2007)

5. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. Technical Report MSR-TR-2008-12, Microsoft Research (2008)

6. Compaq Computer Corporation. Alpha Architecture Reference Manual, 4th edn.
(January 2002)

7. Dill, D., Park, S., Nowatzyk, A.: Formal specification of abstract memory mod-
els. In: Symposium on Research on Integrated Systems, pp. 38–52. MIT Press,
Cambridge (1993)

8. Fang, X., Lee, J., Midkiff, S.: Automatic fence insertion for shared memory multi-
processing. In: ICS, pp. 285–294 (2003)

9. Frey, B.: PowerPC Architecture Book v2.02. IBM Corporation (2005)
10. Godefroid, P.: Model checking for programming languages using Verisoft. In: POPL

1997: Principles of Programming Languages, pp. 174–186 (1997)
11. Gopalakrishnan, G., Yang, Y., Sivaraj, H.: QB or not QB: An efficient execution

verification tool for memory orderings. In: Alur, R., Peled, D.A. (eds.) CAV 2004.
LNCS, vol. 3114, pp. 401–413. Springer, Heidelberg (2004)

12. Hill, M.: Multiprocessors should support simple memory-consistency models. IEEE
Computer 31(8), 28–34 (1998)

13. Huynh, T., Roychoudhury, A.: A Memory Model Sensitive Checker for C#. In:
Misra, J., Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 476–
491. Springer, Heidelberg (2006)

14. IBM Corporation. z/Architecture Principles of Operation, 1st edn. (2000)
15. Intel Corporation. Intel 64 and IA-32 Architectures Software Developer’s Manual,

vol. 3A (November 2006)
16. Intel Corporation. Intel 64 Architecture Memory Ordering White Paper (August

2007)
17. Lamport, L.: A new solution of dijkstra’s concurrent programming problem. Com-

munications of the ACM 17(8), 453–455 (1974)
18. Lamport, L.: How to make a multiprocessor computer that correctly executes mul-

tiprocess programs. IEEE Trans. Comp. C-28(9), 690–691 (1979)
19. Manson, J., Pugh, W., Adve, S.: The Java memory model. In: Principles of Pro-

gramming Languages (POPL), pp. 378–391 (2005)
20. Morrison, V.: Understand the impact of low-lock techniques in multithreaded apps.

MSDN Magazine 20(10) (October 2005)
21. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of

multithreaded programs. In: PLDI, pp. 446–455 (2007)
22. Park, S., Dill, D.L.: An executable specification, analyzer and verifier for RMO

(relaxed memory order). In: SPAA, pp. 34–41 (1995)

120 S. Burckhardt and M. Musuvathi

23. Shasha, D., Snir, M.: Efficient and correct execution of parallel programs that share
memory. ACM Trans. Program. Lang. Syst. 10(2), 282–312 (1988)

24. Weaver, D., Germond, T.: The SPARC Architecture Manual Version 9. PTR Pren-
tice Hall, Englewood Cliffs (1994)

25. Yang, Y., Gopalakrishnan, G., Lindstrom, G.: Memory-model-sensitive data race
analysis. In: Davies, J., Schulte, W., Barnett, M. (eds.) ICFEM 2004. LNCS,
vol. 3308, pp. 30–45. Springer, Heidelberg (2004)

26. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: A framework for
axiomatic and executable specifications of memory consistency models. In: IPDPS
(2004)

	Effective Program Verification for Relaxed Memory Models
	Introduction
	Problem Formulation
	Solution
	Monitor Algorithm
	Vector Clocks

	Experiments
	Conclusions and Future Work

