Distrib. Comput. (1999) 12: 57-59 @H@FRU@WE@
COMRUTING

© Springer-Verlag 1999

Sequential consistency and the lazy caching algorithm

Rob Gerth

Intel Microprocessor Products Group, Strategic CAD Laboratories (SCL), 5200 NE Elam Young Parkway, JFT-104, Hillsboro, OR 97124-6497, USA
(e-mail: robgerth@ichips.intel.com)

Summary. | introduce and discussequential consistency ior of a standard shared memory. Most of these relaxations
a relaxed memory model, and define what it means for aare patterned after Lamport’s proposalsafquential consis-
protocol to implement sequential consistency. Then, | intro-tency[Lam79]. In a standard memory the value that is read
duce thelazy caching protocobf Afek, Brown and Mer- at a location must be the value that has last been written to
rit [ABM93] and formalize it as a labeled transition system. that location. A sequentially correct memory satisfies a less
stringent requirement: in Lamport’'s wordse result of any

Key words: Sequential consistency — Weak memory modelsexecution [of the memory] is the same as if the operations
— Cache coherency — Parallel program verification [memory accesses] of all the processors were executed in
some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by
its program.

The challenge that sequentially correct memory poses is
1 Introduction not so much the verification of yet another complex proto-

col but rather the fact that sequential consistency does not

In large multiprocessor architectures the design of efficienitomfortably fit the patterns of standard refinement strategies
shared memory systems is important because the latency inftrace inclusion, failure or ready trace equivalence, testing
posed on the processors when reading or writing should bereorder, bisimulation).
kept at a minimum. This is usually achieved by interpos- The aim of this collection of papers is to appraise how
ing acache memoryetween each processor and the sharedrerifying sequential consistency can be accommodated for
memory system. A cache is private to a processor and corin a number of refinement methods. This is done by actually
tains a subset of the memory; hopefully containing mostverifying a sequential consistent memory—the lazy caching
of the locations (variables) that the processor needs to agrotocol of [ABM93]—using a variety of approaches. Al-
cess; i.e., the ‘cache-hit’ probability should be high. Suchthough the protocol is proven correct in that paper, the proof
caches induce replication of data and hence there is a prolis on a semantical level and is not grounded in a verification
lem of cache consistencyf one processor updates the value methodology.
at some location, all caches in the system that contain a copy This note provides a common introduction to the fol-
of the location need to be updated. This is usually done bytowing papers. In the next section we explain and define
marking the location in the caches so that a subsequent agequential consistency, and the lazy caching protocol is in-
cess causes the location to be fetched from shared memotyoduced in Sect. 3.
again, although variations exist. Clearly, changing a location ~ An earlier draft of this essay appeared in [Ger94].
and marking that location in other caches must be done as
one atomic operation if memory is to behave as expected.

If the multiprocessor architecture is also distributed then2 Sequential consistency
such ‘write and mark’ operations cause unacceptable laten-
cies. For instance, the DASH [LLGand KSR1 [BFKR92] In order to understand Lamport’s definition, we first fix the
architectures envisage up to 10000 workstations to be cornbehavior of a standard, ‘serial’ shared memory. This is done
nected and to operate on a conceptually shared memoryn Figs. 1 and 2.
Clearly, atomic write-and-marks not only cause processors The interface of the memory is comprised of read
to be delayed for 10s of milliseconds but also produce mas{R;(d,a)) and write W;(d,a)) events for each processor
sive network congestion because at any time there will beP;. The processors and the memory have to synchronize
many writes in progress. on these read and write events. The transition system in

The approach taken in such distributed shared mem¥ig. 2 indicates that these are the only external events that
ory architectures is to relax the constraints on the behavd/,..;,; participates in and that it has no internal events.

58 R. Gerth

ior, 7, of M., SO that the order in which the operations of

e each individual processor appear in coincides with order
in which they appear irr.
For instance, the graph below depicts a possible prefix of
a behavior of an SCM and a corresponding serial behavior:
Moo SCM Wi(l,z) Rs(2y) Wa(2,y) Rs(0,z) Rs(l z)
Pr: Wl(l, J?)
. . Py Wa(2,
Fig. 1. Architecture of Msepiar Pi: 2(2) Rs(2,y) Ra(0,7) Rs(l,z)
E | Event | Allowed if | Action Mgeriai W2(2,9) Ra(2,3) R30,z) Wi(l,z) Rs(,z)

Vv | Ri(d,a) | Mem[a] = d Time flows from left to right. In particular notice that, al-
Vv | Wi(d, a) Memla) :=d though P; setsz to 1 beforeP; accesses that location, the
N first read of P; retrievesz’s initial value 0. The effect of
Initially: Va Mermia] =0 writes are thus seen to propagate slowly through the system.
Fig. 2. Mserial This is typical of sequential consistent memory. Also notice

that this SCM behavior is not possible for serial memory.
A read eventR,(d, a), issued byP;, can only occur if the For completeness sake, we mention that the following
memory holds valuel at locationa: Mem{a] = d. Write behavior of the |n.d|V|duaI processes cannot be accommo-
eventsW,(d, a) can always occur with the expected result. dated for by SCM:

The external behaviorof the serial memory, BetWseria1), P Wa(L z)

is defined as the maximal (hence infinite) sequences of read p,; Wa(2,)

and write events generated according to the transition sys- Ps: Rs(1, z) R3(2, z)

tem of Fig. 2. Hence, the memosegrializesthe reads and Fy: Ra(2, 2) Ra(1, 2)

writes of the processors.

The interface of the serial memory (and the caching pro
tocol) in [ABM93] differs from the one we use. There, a
R;(d, a)-event in either protocol is split into an (input) event
ReadRequest,(d, a), which is always enabled, and an (out-
put) eventReadReturn;(d, a) that behaves as the;(d, a)-

The problem is thai?; and P, ‘observe’ the writes ofP;
and P in different order.

Sequential consistency has been the canonical distributed
memory model for a long time. In practice, however, differ-
ent, still weaker memory models tend to be implemented

event. One reason for doing so is their use of I/0O automat s the synchronization overhead of SCM is still too large.

specifications in which input events must be always enabledt.hOr mstancte), [t_]h@'roce?st(;]r c0n3|stenaylodsel W%tl)d ;CL)IO\;V
However, that paper also stipulates that a pro¢esast not € above benavior at In€ processors. See [Abad3] for an
do otherwise than engage in a Return event after it has issued) eMVIew of distributed memory models.

a Request. This means that the intended interface is syn-

chronous so that not using 1/0O automata and having simple

read and write external events seem to be the conceptuallx formal definition

clearer approach.

Two objections that might be levied against this choice
of interface are: events cannot overlap because they do glot
extend in time; and: read events specify the value that is
read and thus do not really model read actions. The answer A memory M is sequentially consistent w.it,. .,
to both objections is that what is of importance are the points 5. M., iff
at which the memory system changes state and the values
that can be read from memory as a result of these changes. Vo € Beh(M) 3r € Beh(M,ei00) Vi=1...7n
Hence, write events should merely be viewed as the initiators Ni=7Tli
of state changes while read events indicate which values
can be returned. Thus, the precise way in which a process This memory model enjoys an important advantage over
initiates a read or a write is of no importance to the modeling.its ‘competitors’: for reasoning about a program we may ig-

We can use this definition of serial memory both to char-nore the fact that the program runs on a sequential consistent
acterize the sequential orders in which the memory accesseaemory and can assume instead that it runs on a standard se-
of the processors can be executed—any order that corraial memory. l.e., verification techniques need not be adapted
sponds to a behavior d¥/,.,;,;—as well as to characterize and the programming model is that of standard shared mem-
the order of operations of each individual processor—sinceory.

et - [4 denote the operation on behaviors of removing the
ents that do not originate from proce8s Then we have

a processor belongs to the environmentidf.,;.;, POSSi- We stress that this is the case only if the program has
ble orderings are determined by the behaviordff,,.; as no means of communication, either implicitly or explicitly,
well. other than through the memory. If a program can send mes-

We rephrase Lamport’s proposal of correct behavior ofsages or can sense the time at which reads and writes oc-
sequential consistent memory (SCM) tharsy external be- cur, then differences between sequential consistent and serial
havior, o, [of the SCM] corresponds with an external behav- memory can be detected; see, e.g., [ABM93].

Sequential consistency and the lazy caching algorithm

Outy

’ Mem ‘

Mistr

Fig. 3. Architecture of M 4; s¢,

E | Event Allowed if Action
Vv |Ri(d,a) |Ci(a)=dAOut; ={}
A no x-ed entries inn;
Vv | Wi(d, a) Out; := appendOut;, (d, a))
MW;(d, a) | headOut;) = (d, a) Mema] := d;
Out; := tail (Out;);
Vk#£i =

In = appending, (d, a)));
In; := appendlni7 (d7 a, *))

MR;(d, a) | Mema] = d

CU;(d,a) | headln;) is either
(d,a) or (d,a, *) | In; :=tail(In;);
C; = updatdC}, d, a)

Cl; C; = restrict(C;)

In; := appendln;, (d, a))

Initially: Va Mema] =0
AVi=1l...n C; CMemAIn; ={} AOut; = {}
Fairness: no action other th&i; can be always enabled
| | but never taken

MW—memory write
CU—cache update

Flg 4. Mdist'r

MR—memory read
Cl—cache invalidate

3 The lazy caching protocol

In [ABM93] a sequential correct memory that is not serial

59

request is taken out of the queue, by an internal memory-
write eventMW,(d, a), the memory is updated and a cache
update request is placed in every in-queue. This cache update
is eventually removed from the top of some quéuigby an
internal cache update eve@U;(d, a) as a result of which
cache memory’; gets updated. Cache misses are modeled
by internal cache invalidate eventSi; can arbitrarily re-
move locations from cach€;. Caches are filled both as the
delayed result of write events as well as through internal
memory-read eventdR;(d, a). The latter events intend to
model the effect of a cache-miss: in that case the read event
suspends until the location is copied from memory.

A read evenRR;(d, a), predictably, stalls until a copy of
locationa is present inC; but also until the copy contains a
correct value in the following sense: sequential consistency
demands that a processéy reads the value at a location
a that was most recently written b¥; unless some other
processor updated in the meantime. Hence, a read event
R;(d, a) cannot occur unless all pending writes to location
in Out; are processed as well as the cache update requests
from In; that correspond to writes aP;. For this reason,
such cache update request are marked (with. a

The transition system in Fig. 4 makes all this precise.

In this transition system caches are modeled as par-
tial functions from the set of locations to the set of val-
ues. Cache updat€U) actions produce ‘variant functions’:
updatdC;, d, a) stands for the functiorf that coincides with
C; except ‘at’ a where f(a) = d. Cache invalidateGl) ac-
tions yield ‘restrictions’ of functionstestrict(C;) stands for
any function whose domain is included in that @f and
which coincides withC;; on its domain.

For My;.:, there is a distinction between the external be-
havior, Beh{\/,;:-) and theinternal behavioy IBeh(M y;)
that comprises the maximal sequences of internal and ex-
ternal events thad/ ;.- can generate. (Obviously we have
Beh(Mseria)) = IBeh(My;s:r).) Observe that fors €
IBeh(My;st-), s[4 denotes the subsequenceeaternalread
and write-events of’; in s.

References

[Aba93] Mosberger D: Memory consistency models. ACM SIGOPS Op-
erating Systems Review 27(1):18-27 (1993)

[ABM93] Afek Y, Brown G, Merritt M: Lazy Caching. Transactions on
Programming Languages and Systems (TOPLAS) 15(1):182—-
206 (1993)

was proposed: the lazy caching protocol. We use a slightlygrkro2] Burkhardt H, Frank S, Knobe B, Rothnie J: Overview of the

adapted version of this protocol.

The architecture ofM ;.- is depicted in Fig. 3; the
transition system in Fig. 4. The protocol is thus geared to[{Ger94]
wards a bus based architecture. Here, too, the interface of
the memory is comprised of the read and write events of[l_am79]

KSR1 Computer System. Technical Report KSR-TR-9202001,
Kendall Square Research, Boston, 1992

Rob Gerth: Introduction to sequential consistency and the lazy
caching algorithm. In: Deliverable WP3 of ESPRIT BRA RE-
ACT (project 6021), June 1994

Lamport L: How to make a multiprocessor that correctly exe-

the processorsMy; ..., however, interposes cachés be-
tween the shared memolem and the processel;. Each

cacheC; contains a part of the memoiMem and has two [LLG"]

gueues associated with it: an out-queédigt; in which P;’s
write requests are buffered and an in-quéugin which the

cutes multiprocess programs. |IEEE Transactions on Computers
C-28:690-691 (1979)

Lenoski D, Laudon J, Gharachorloo K, Weber W-D, Gupta A,
Hennessy J, Horowitz M, Lam MS: The Stanford Dash multi-
processor. IEEE Computer pp 63-79, 1992

pending cache updates are stored. These queues model tReb Gerth is a staff engineer in the Strategic CAD Laboratories (SCL),
asynchronous behavior of write events in a sequential conlnte! Corporation, Hillsboro, OR. He got his Ph.D in Computer Sci-

sistent memory. The gray arrows indicate the information
flows from the out queues to the in queues and/iEm.

ence from Utrecht University, The Netherlands in 1989 and was a lec-
turer at Eindhoven Technical University before he joined Intel in 1997.
His current verification include automated verification/validation in gen-

A write eventW;(d, a) does not have immediate effect. eral and the verification of multi-processor systems. His email address is

Instead, a requesti(a) is placed inOut;. When the write

robgerth@ichips.intel.com

