
Distrib. Comput. (1999) 12: 57–59

c© Springer-Verlag 1999

Sequential consistency and the lazy caching algorithm
Rob Gerth

Intel Microprocessor Products Group, Strategic CAD Laboratories (SCL), 5200 NE Elam Young Parkway, JFT-104, Hillsboro, OR 97124-6497, USA
(e-mail: robgerth@ichips.intel.com)

Summary. I introduce and discusssequential consistency,
a relaxed memory model, and define what it means for a
protocol to implement sequential consistency. Then, I intro-
duce thelazy caching protocolof Afek, Brown and Mer-
rit [ABM93] and formalize it as a labeled transition system.

Key words: Sequential consistency – Weak memory models
– Cache coherency – Parallel program verification

1 Introduction

In large multiprocessor architectures the design of efficient
shared memory systems is important because the latency im-
posed on the processors when reading or writing should be
kept at a minimum. This is usually achieved by interpos-
ing a cache memorybetween each processor and the shared
memory system. A cache is private to a processor and con-
tains a subset of the memory; hopefully containing most
of the locations (variables) that the processor needs to ac-
cess; i.e., the ‘cache-hit’ probability should be high. Such
caches induce replication of data and hence there is a prob-
lem of cache consistency: if one processor updates the value
at some location, all caches in the system that contain a copy
of the location need to be updated. This is usually done by
marking the location in the caches so that a subsequent ac-
cess causes the location to be fetched from shared memory
again, although variations exist. Clearly, changing a location
and marking that location in other caches must be done as
one atomic operation if memory is to behave as expected.

If the multiprocessor architecture is also distributed then
such ‘write and mark’ operations cause unacceptable laten-
cies. For instance, the DASH [LLG+] and KSR1 [BFKR92]
architectures envisage up to 10000 workstations to be con-
nected and to operate on a conceptually shared memory.
Clearly, atomic write-and-marks not only cause processors
to be delayed for 10s of milliseconds but also produce mas-
sive network congestion because at any time there will be
many writes in progress.

The approach taken in such distributed shared mem-
ory architectures is to relax the constraints on the behav-

ior of a standard shared memory. Most of these relaxations
are patterned after Lamport’s proposal ofsequential consis-
tency [Lam79]. In a standard memory the value that is read
at a location must be the value that has last been written to
that location. A sequentially correct memory satisfies a less
stringent requirement: in Lamport’s wordsthe result of any
execution [of the memory] is the same as if the operations
[memory accesses] of all the processors were executed in
some sequential order, and the operations of each individual
processor appear in this sequence in the order specified by
its program.

The challenge that sequentially correct memory poses is
not so much the verification of yet another complex proto-
col but rather the fact that sequential consistency does not
comfortably fit the patterns of standard refinement strategies
(trace inclusion, failure or ready trace equivalence, testing
preorder, bisimulation).

The aim of this collection of papers is to appraise how
verifying sequential consistency can be accommodated for
in a number of refinement methods. This is done by actually
verifying a sequential consistent memory—the lazy caching
protocol of [ABM93]—using a variety of approaches. Al-
though the protocol is proven correct in that paper, the proof
is on a semantical level and is not grounded in a verification
methodology.

This note provides a common introduction to the fol-
lowing papers. In the next section we explain and define
sequential consistency, and the lazy caching protocol is in-
troduced in Sect. 3.

An earlier draft of this essay appeared in [Ger94].

2 Sequential consistency

In order to understand Lamport’s definition, we first fix the
behavior of a standard, ‘serial’ shared memory. This is done
in Figs. 1 and 2.

The interface of the memory is comprised of read
(Ri(d, a)) and write (Wi(d, a)) events for each processor
Pi. The processors and the memory have to synchronize
on these read and write events. The transition system in
Fig. 2 indicates that these are the only external events that
Mserial participates in and that it has no internal events.

58 R. Gerth

Fig. 1. Architecture ofMserial

E Event Allowed if Action

√
Ri(d, a) Mem[a] = d√
Wi(d, a) Mem[a] := d

Initially: ∀a Mem[a] = 0

Fig. 2. Mserial

A read eventRi(d, a), issued byPi, can only occur if the
memory holds valued at locationa: Mem[a] = d. Write
eventsWi(d, a) can always occur with the expected result.
The external behaviorof the serial memory, Beh(Mserial),
is defined as the maximal (hence infinite) sequences of read
and write events generated according to the transition sys-
tem of Fig. 2. Hence, the memoryserializesthe reads and
writes of the processors.

The interface of the serial memory (and the caching pro-
tocol) in [ABM93] differs from the one we use. There, a
Ri(d, a)-event in either protocol is split into an (input) event
ReadRequesti(d, a), which is always enabled, and an (out-
put) eventReadReturni(d, a) that behaves as theRi(d, a)-
event. One reason for doing so is their use of I/O automata
specifications in which input events must be always enabled.
However, that paper also stipulates that a processi must not
do otherwise than engage in a Return event after it has issued
a Request. This means that the intended interface is syn-
chronous so that not using I/O automata and having simple
read and write external events seem to be the conceptually
clearer approach.

Two objections that might be levied against this choice
of interface are: events cannot overlap because they do not
extend in time; and: read events specify the value that is
read and thus do not really model read actions. The answer
to both objections is that what is of importance are the points
at which the memory system changes state and the values
that can be read from memory as a result of these changes.
Hence, write events should merely be viewed as the initiators
of state changes while read events indicate which values
can be returned. Thus, the precise way in which a process
initiates a read or a write is of no importance to the modeling.

We can use this definition of serial memory both to char-
acterize the sequential orders in which the memory accesses
of the processors can be executed—any order that corre-
sponds to a behavior ofMserial—as well as to characterize
the order of operations of each individual processor—since
a processor belongs to the environment ofMserial, possi-
ble orderings are determined by the behaviors ofMserial as
well.

We rephrase Lamport’s proposal of correct behavior of
sequential consistent memory (SCM) thusany external be-
havior,σ, [of the SCM] corresponds with an external behav-

ior, τ , of Mserial so that the order in which the operations of
each individual processor appear inσ coincides with order
in which they appear inτ .

For instance, the graph below depicts a possible prefix of
a behavior of an SCM and a corresponding serial behavior:

SCM W1(1, x) R3(2, y) W2(2, y) R3(0, x) R3(1, x)

P1: W1(1, x)
P2: W2(2, y)
P3: R3(2, y) R3(0, x) R3(1, x)

Mserial W2(2, y) R3(2, y) R3(0, x) W1(1, x) R3(1, x)

Time flows from left to right. In particular notice that, al-
thoughP1 setsx to 1 beforeP3 accesses that location, the
first read ofP3 retrievesx’s initial value 0. The effect of
writes are thus seen to propagate slowly through the system.
This is typical of sequential consistent memory. Also notice
that this SCM behavior is not possible for serial memory.

For completeness sake, we mention that the following
behavior of the individual processes cannot be accommo-
dated for by SCM:

P1: W1(1, x)
P2: W2(2, x)
P3: R3(1, x) R3(2, x)
P4: R4(2, x) R4(1, x)

The problem is thatP3 and P4 ‘observe’ the writes ofP1
andP2 in different order.

Sequential consistency has been the canonical distributed
memory model for a long time. In practice, however, differ-
ent, still weaker memory models tend to be implemented
as the synchronization overhead of SCM is still too large.
For instance, theprocessor consistencymodel would allow
the above behavior at the processors. See [Aba93] for an
overview of distributed memory models.

A formal definition

Let · |̀ i denote the operation on behaviors of removing the
events that do not originate from processPi. Then we have

A memory M is sequentially consistent w.r.t.Mserial,
M s.c. Mserial, iff

∀σ ∈ Beh(M) ∃τ ∈ Beh(Mserial) ∀i = 1 . . . n

σ |̀ i = τ |̀ i
This memory model enjoys an important advantage over

its ‘competitors’: for reasoning about a program we may ig-
nore the fact that the program runs on a sequential consistent
memory and can assume instead that it runs on a standard se-
rial memory. I.e., verification techniques need not be adapted
and the programming model is that of standard shared mem-
ory.

We stress that this is the case only if the program has
no means of communication, either implicitly or explicitly,
other than through the memory. If a program can send mes-
sages or can sense the time at which reads and writes oc-
cur, then differences between sequential consistent and serial
memory can be detected; see, e.g., [ABM93].

Sequential consistency and the lazy caching algorithm 59

Mdistr

Mem

P1

C1

I
n

1

O
u
t

1

P2

C2

I
n

2

O
u
t

2

� � � Pn

C
n

I
n
n

O
u
t
n

Fig. 3. Architecture ofMdistr

E Event Allowed if Action

√
Ri(d, a) Ci(a) = d ∧ Outi = {}

∧ no ∗-ed entries inIni

√
Wi(d, a) Outi := append(Outi, (d, a))

MWi(d, a) head(Outi) = (d, a) Mem[a] := d;
Outi := tail (Outi);
(∀k /= i ::
Ink := append(Ink, (d, a)));

Ini := append(Ini, (d, a, ∗))

MRi(d, a) Mem[a] = d Ini := append(Ini, (d, a))

CUi(d, a) head(Ini) is either
(d, a) or (d, a, ∗) Ini := tail (Ini);

Ci := update(Ci, d, a)

CIi Ci := restrict(Ci)

Initially: ∀a Mem[a] = 0
∧ ∀i = 1 . . . n Ci ⊂ Mem∧ Ini = {} ∧ Outi = {}

Fairness: no action other thanCIi can be always enabled
but never taken

MW—memory write MR—memory read
CU—cache update CI—cache invalidate

Fig. 4. Mdistr

3 The lazy caching protocol

In [ABM93] a sequential correct memory that is not serial
was proposed: the lazy caching protocol. We use a slightly
adapted version of this protocol.

The architecture ofMdistr is depicted in Fig. 3; the
transition system in Fig. 4. The protocol is thus geared to-
wards a bus based architecture. Here, too, the interface of
the memory is comprised of the read and write events of
the processors.Mdistr, however, interposes cachesCi be-
tween the shared memoryMem and the processesPi. Each
cacheCi contains a part of the memoryMem and has two
queues associated with it: an out-queueOuti in which Pi’s
write requests are buffered and an in-queueIni in which the
pending cache updates are stored. These queues model the
asynchronous behavior of write events in a sequential con-
sistent memory. The gray arrows indicate the information
flows from the out queues to the in queues and toMem.

A write eventWi(d, a) does not have immediate effect.
Instead, a request (d, a) is placed inOuti. When the write

request is taken out of the queue, by an internal memory-
write eventMWi(d, a), the memory is updated and a cache
update request is placed in every in-queue. This cache update
is eventually removed from the top of some queueInj by an
internal cache update eventCUj(d, a) as a result of which
cache memoryCj gets updated. Cache misses are modeled
by internal cache invalidate events:CIi can arbitrarily re-
move locations from cacheCi. Caches are filled both as the
delayed result of write events as well as through internal
memory-read events,MRi(d, a). The latter events intend to
model the effect of a cache-miss: in that case the read event
suspends until the location is copied from memory.

A read eventRi(d, a), predictably, stalls until a copy of
locationa is present inCi but also until the copy contains a
correct value in the following sense: sequential consistency
demands that a processorPi reads the value at a location
a that was most recently written byPi unless some other
processor updateda in the meantime. Hence, a read event
Ri(d, a) cannot occur unless all pending writes to locationa
in Outi are processed as well as the cache update requests
from Ini that correspond to writes ofPi. For this reason,
such cache update request are marked (with a∗).

The transition system in Fig. 4 makes all this precise.
In this transition system caches are modeled as par-

tial functions from the set of locations to the set of val-
ues. Cache update (CU) actions produce ‘variant functions’:
update(Ci, d, a) stands for the functionf that coincides with
Ci except ‘at’a wheref (a) = d. Cache invalidate (CI) ac-
tions yield ‘restrictions’ of functions:restrict(Ci) stands for
any function whose domain is included in that ofCi and
which coincides withCi on its domain.

For Mdistr there is a distinction between the external be-
havior, Beh(Mdistr) and theinternal behavior, IBeh(Mdistr)
that comprises the maximal sequences of internal and ex-
ternal events thatMdistr can generate. (Obviously we have
Beh(Mserial) = IBeh(Mdistr).) Observe that fors ∈
IBeh(Mdistr), s |̀ i denotes the subsequence ofexternalread
and write-events ofPi in s.

References
[Aba93] Mosberger D: Memory consistency models. ACM SIGOPS Op-

erating Systems Review 27(1):18–27 (1993)
[ABM93] Afek Y, Brown G, Merritt M: Lazy Caching. Transactions on

Programming Languages and Systems (TOPLAS) 15(1):182–
206 (1993)

[BFKR92] Burkhardt H, Frank S, Knobe B, Rothnie J: Overview of the
KSR1 Computer System. Technical Report KSR-TR-9202001,
Kendall Square Research, Boston, 1992

[Ger94] Rob Gerth: Introduction to sequential consistency and the lazy
caching algorithm. In: Deliverable WP3 of ESPRIT BRA RE-
ACT (project 6021), June 1994

[Lam79] Lamport L: How to make a multiprocessor that correctly exe-
cutes multiprocess programs. IEEE Transactions on Computers
C-28:690-691 (1979)

[LLG+] Lenoski D, Laudon J, Gharachorloo K, Weber W-D, Gupta A,
Hennessy J, Horowitz M, Lam MS: The Stanford Dash multi-
processor. IEEE Computer pp 63–79, 1992

Rob Gerth is a staff engineer in the Strategic CAD Laboratories (SCL),
Intel Corporation, Hillsboro, OR. He got his Ph.D in Computer Sci-
ence from Utrecht University, The Netherlands in 1989 and was a lec-
turer at Eindhoven Technical University before he joined Intel in 1997.
His current verification include automated verification/validation in gen-
eral and the verification of multi-processor systems. His email address is
robgerth@ichips.intel.com .

