
A Theory of Memory Models (Extended Abstract) ∗

Vijay Saraswat
IBM TJ Watson Research Center

vijay@saraswat.org

Radha Jagadeesan
DePaul University

rjagadeesan@cs.depaul.edu

Maged Michael
IBM TJ Watson Research Center

magedm@us.ibm.com

Christoph von Praun
IBM TJ Watson Research Center

praun@us.ibm.com

Abstract
A memory model for a concurrent imperative programming lan-
guage specifies which writes to shared variables may be seen by
reads performed by other threads. We present a simple mathemat-
ical framework for relaxed memory models for programming lan-
guages. To instantiate this framework for a specific language, the
designer must choose the notion of atomic steps supported by the
language (e.g. 32-bit reads and writes) and specify how a composite
step may be broken into a sequence of atomic steps (the decompo-
sition rule). This rule determines which sequence of intermediate
writes (if any) are visible to concurrent reads by other threads. Dif-
ferent choices of the rule lead to models which permit a read to re-
turn any value if there is a concurrent write (race), or models which
satisfy a “No Thin Air Read” property. The former is suitable for
languages such as C++ (programs with races have undefined behav-
ior), and the latter for Java. Other intermediate models are possible,
useful and interesting.

We establish that all models in the framework satisfy the Fun-
damental Property of relaxed memory models: programs whose se-
quentially consistent (SC) executions have no races must have have
only SC executions. We show how to define synchronization con-
structs (such as volatiles of various kinds) in the framework, and
discuss the causality test cases from the Java Memory Model.

Categories and Subject Descriptors D.3.1 [Memory Models]:
Formal Definitions and Theory

General Terms Performance, Languages, Theory

Keywords Memory Model, Sequential Consistency, Weak Mod-
els, RAO

1. Introduction
Memory models address a central question of imperative concur-
rency: When can a write done by one thread be read by another?

∗ A fuller version of this paper can be fetched at http://www.saraswat.org/
rao.html

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’07 March 14–17, 2007, San Jose, California, USA.
Copyright c© 2007 ACM 978-1-59593-602-8/07/0003. . . $5.00

Leslie Lamport provided a simple answer in [8]. Assume the
state of the memory can be described by an assignment of values
to variables. Assume that exactly one thread is permitted to per-
form exactly one read or write operation in a single step. Then the
possible executions of the program are given by all possible inter-
leavings of the steps of the threads making up the program. This
notion of execution is called Sequential Consistency (SC).

Unfortunately, SC is costly to implement. Weak processor ar-
chitectures such as the Power PC require expensive barrier op-
erations to implement SC. Further, SC is not consistent with a
wide array of compiler optimizations geared towards optimizing
the performance of single-threaded code. Such optimizations often
work by rearranging the code of a single thread while guarantee-
ing that its input/output (i/o) behavior is unchanged. For any piece
of sequential code s, let us define its i/o function io(s) to be the
function from total stores (mappings that assign a value to every
variable) to total stores given by executing s in the input store
and returning the final store. Consider, for instance, the program
P = x = 1;r = y. An implementation may replace this code by P′:
r=y;x=1 since io(P) = io(P′). However, under SC these two code
fragments are not identical. Consider running it in parallel with Q:
r0=x;if(r0==1)y=1. Assume execution is initiated in a store
in which x,y=0,0. Now P | Q may result in r=1, whereas P′ | Q
will never do so.

It should be noted that Shasha and Snir [15] recognized this
problem and proposed solutions involving extra computational
overhead (e.g. the use of memory barriers/fences). There has been
more recent work [16] on compiler analyses to reduce or eliminate
the overhead of implementing SC. At this point we cannot defini-
tively conclude that the overhead can be eliminated for a large class
of programs. Therefore the need to define memory models is real.

1.1 Race-free programs

An important observation underlies nearly all research in this area.
Consider again the program P′ | Q above. Let us say that steps ex-
ecuted by a program are related with a transitive, irreflexive par-
tial order, the happens-before (hb) order [8]. One should interpret
p hb q as saying that the step p must happen “before” the step q in
any execution; i.e. q must observe the store in a state in which p has
been performed. For instance, it is reasonable to require that all the
steps taken by a single thread are totally ordered by hb, and syn-
chronization operations (e.g. lock/unlock) must be used to (dynam-
ically) introduce hb edges between steps of one thread and steps
of another. Now since P′ | Q does not contain any synchronization
operation, it has a data race: a thread (Q) has a step s (r0=x) that
reads a variable (x) that another thread (P′) writes in a step t (x=1)

161

without there being an hb-edge from t to s.1 If a program has no
races then a thread T1 does not read the value of a variable written
into by another thread T2 (without using a synchronization oper-
ation). Therefore T1 will be insensitive to code reordering in T2.
Hence one can have one’s cake (SC semantics) and eat it too (good
performance).

Therefore it seems reasonable to require the Fundamental Prop-
erty:

Programs whose SC executions have no races must have
only SC executions.

This raises the question: Who is responsible for ensuring that a
program is race free . . . the implementation2 or the user?

It is plausible that the implementation should have this respon-
sibility. Race analysis is a difficult technical problem and in some
cases it may be permissible to incur the overhead of runtime detec-
tion of races. This approach is being pursued by some researchers.
The general drawback is that it is hard to design static conditions
that are general enough to recognize that arbitrary clever programs
are race-free.

Indeed, it is often the case that a programmer—aware of the de-
signed control flow of the program—can establish that a particular
program is race-free based on global analysis. Therefore it seems
plausible that the programmer should shoulder the responsibility of
establishing the global property that synchronization-free access to
shared variables will not lead to race conditions.

In return, the implementation should guarantee performance: it
should be able to perform all single thread optimizations as long
as they are consistent with explicit synchronization operations in-
troduced by the programmer (if any). That is, the language should
specify—and the implementation should realize—as weak seman-
tics as possible for concurrent, unsynchronized read/writes to the
same location (performing as many code reorderings as possible).
Memory barriers should be introduced only as required by the se-
mantics of synchronization operations in the language.

How weak is “weak”?

Fundamental Property. For programs without races, the Funda-
mental Property places a lower bound on behaviors and appears
to be a reasonable “firewall”. Most programmers may program in
a world in which they write complete, race-free programs. Hence
they need to reason only about SC executions.

Recently, Doug Lea has argued that volatiles should be permit-
ted to satisfy a weaker requirement, cache-coherent causal consis-
tency (CCCC, [9]). Volatiles are discussed further in Section 4.1.
In essence volatile variables are intended to enable threads to reli-
ably communicate values to each other via single reads and writes.
Volatile variables specify certain synchronization conditions which
ensure that there are no races in the sense in which we have defined
them. Therefore programs in which all shared variables are volatile
will, by definition, be race free. Doug argues that such programs
should satisfy CCCC rather than SC. CCCC require consistency
properties to hold only locally, that is, between pairs of proces-
sors communicating through reads/writes to the same memory lo-
cation, and not globally (across all processors). Thus CCCC does
not require unrestricted transitivity of the happens before relation.
In particular CCCC permits different processors to have different
(inconsistent) views about the ordering of events that do not in-
volve the processor. This observation is interesting because some
architectures that implement a relaxed memory model (such as the

1 Two steps are in a race if both read or write the same variable x, at least
one of them writes to x and the steps are not ordered by hb.
2 Throughout this paper, when we say “implementation” we mean the
compiler/run-time system/architecture/hardware—that is, all elements of
the language implementation.

Power PC) need expensive global barrier operations to obtain SC.
Such barriers are not required for CCCC.

We believe this argument has merit. However, it obliges pro-
grammers to reason about all programs (programs with races or
without races) using CCCC rather than SC. We look forward to
research establishing reasoning principles for CCCC, and investi-
gating the productivity and performance tradeoffs between SC and
CCCC. We point out that the RAO framework presented in this pa-
per can be extended to account for CCCC (in essence by replacing
the underlying “happens before” order with a more local binary
relation that is not necessarily transitive). It should be possible to
develop an appropriate version of the Fundamental Theorem for
CCCC models.

No Thin Air Reads? We consider now programs with races. Such
programs may be deliberately designed – indeed there are a class of
concurrent algorithms (e.g.[11]) designed to contain races, in order
to enable desirable features such as increased throughput and non-
blocking progress. Alteratively, programs may contain races due to
errors. In both cases it is necessary that the semantics of programs
with races be precisely defined – in the former so that programs can
be shown correct, and in the latter so that programmers have some
chance of debugging the problem.

For such programs different answers are possible. Consider a
language such as C++ in which programs with races are considered
to be erroneous and their behavior is undefined. In such a case all
transformations should be permitted as long as only programs with
races can distinguish between them. For instance, it should be pos-
sible to replace any write x=y with the i/o equivalent x=42;x=y.
Only a program with a race would be able to see the “out of thin
air” write 42.

Such a transformation is not as unreasonable as it may appear.
For instance a vectorizing compiler may wish to pack multiple vari-
ables x,y,z,u into two long words and use vector instructions to
optimize execution. The code x=1;y=1;z=1;u=0may be imple-
mented with the code sequence x,y,z,u=1,1,1,1;u=0. Now
the implementation has introduced a Thin Air Write u=1 which
can be detected by a program with races.

On the other extreme are languages such as Java which satisfy
the property that certain data types, such as object references,
behave like capabilities. A piece of code can obtain a reference r to
an object only if it creates the object or it reads a memory location
containing that reference. The integrity of large applications written
in such languages relies on the property that references to objects
can be “closely held”, i.e. held only by a certain collection of
programmer-specified objects. A semantics which permits Thin Air
Reads would permit an attacker to introduce code into the system
(e.g. with an applet) which may gain access to such a closely held
object via some sequence of seemingly innocuous transformations.

A litmus test for “No Thin Air Reads” is the following test case
from [12]. (For the convenience of the reader we indicate with each
example the corresponding test number in [12] using the (TC xx)
notation. For now, we use an informal notation for programs. We
formalize the syntax in Section 2.)

EXAMPLE 1 (TC 4) See also [10, Fig 2]. Consider the program

x=0;y=0;(r1=x;y=r1|r2=y;x=r2)

(“;” binds more tightly than “|”.) Such a program may not exhibit
the behavior r1==r2==1; values are not allowed to materialize
out of thin air.

A related case is exemplified by the following variant of TC 2.

EXAMPLE 2 Consider the program

x=0;y=0;(r1=x;r2=x;y=(r1==r2)?1;|r3=y;x=r3)

162

Such a program should not exhibit the observation r1==0,r2==r3==1,
since the only justification for r3=1 appears to require r1==r2.

Note though that it is not difficult for a compiler to transform
the program above so that the behavior is possible. For instance,
it replaces the first thread with the i/o equivalent code sequence
y=1;r1=x;r2=x. An SC execution yields this result, e.g. via:

x=0;y=0;y=1;r1=x;r3=y;x=r3;r2=x;x=1

In summary, we shall require that a framework for memory
models must be flexible enough to permit the formulation of mem-
ory models that answer these test cases differently. Such a frame-
work permits programming language designers to choose a varia-
tion appropriate for their language.

Inlinability. Another important requirement arises for the mem-
ory model for X10[14, 3] like languages that encourage the use
of asynchrony. Any particular implementation is likely to have
fewer hardware threads than the number of activities spawned by
the computation. Therefore it is necessary for the implementation
to ensure that activities are aggregated. Such chunking should not
impose any additional runtime cost because of extra synchroniza-
tion. Therefore we require that the memory model support the abil-
ity to “inline” activities, wherever this does not cause deadlock.

Usability. Programmers need to use the memory model to under-
stand all possible behaviors of their programs. Programmers under-
stand programs: hence, as far as possible, a memory model should
be presented in terms of a few simple permitted transformations of
programs that generate permitted behaviors. A programmer should
be able to calculate all possible behaviors of a program by system-
atically applying these transformations.

Requirements summary. We may now summarize the memory
model requirements for X10 like languages. These requirements
are based on the fundamental assumption that the responsibility
for ensuring that a program is correctly synchronized lies with the
programmer. The memory model framework must:

1. Ensure that every model satisfies the Fundamental Property.

2. Be flexible enough to permit different formulations of the “No
Thin Air Reads” principle.

3. Permit unrestricted use of single-thread optimizations (e.g. code
reordering), subject to the two previous conditions.

4. Require the introduction of explicit memory synchronization
operations, such as fences, only as necessary to implement ex-
plicit synchronization operations in the language (e.g. atomic,
when, clocks).

5. Permit SC-valid program rewrites.

Given a program P and a single-threaded fragment C, let S be
the set of all stores in which C can be executed, considering only
SC-executions of P. Let C′ be another single-threaded program
fragment which produces the same result as C when executed
in any store s ∈ S. Then C can be rewritten to C′.

6. Specify a few rules that can be used by the programmer to
systematically enumerate all possible execution sequences for
a given program (particularly if it has races).

These rules must take into account potentially JITted imple-
mentations of the language; that is, they should permit inter-
leaving of “execution” steps and “compilation” steps (program
transformations supported by whole program analysis from the
current state in the computation).

Memory models satisfying the above criteria support the fol-
lowing programming methodology:

• Most programmers should use explicit synchronization opera-
tions (atomic, when) or volatile variables to reliably commu-
nicate values between activities via shared variables.

• For better performance, programmers may use unsynchronized
access to variables provided they ensure the global property that
there are no data races involving these variables. They may then
reason about their program using sequential consistency.

• If the program contains data races, the programmer/compiler
may use the set of rules specified by the memory model to
determine permissible execution sequences.

1.2 The basic model

We briefly present the central ideas underlying the memory model,
deferring formal details to the main body of the paper.

The central technical idea behind in this paper is to (a) formal-
ize sequential execution through the notion of a step, (b) specify a
process as a partially ordered multiset(=pomset) of steps, together
with a binary linking operation that specifies how the reads of a
step are satisfied, (c) specify “execution” as a binary relation on
processes induced by the application of process-to-process trans-
formations. A completed process is one in which every step that
performs a read is linked to a step that supplies the value for that
read. The result of executing a program is any completed process
that can be obtained from the original by applying zero or more
transformations (in any order).

By defining execution through the notion of applying transfor-
mations, and designing transformations to reflect both “runtime”
actions and compile-time program transformations (which may re-
quire whole program analysis), the model presented in this paper
accurately reflects the flexibility of Java-like languages with Just-
In-Time compilers (JITs).

Steps. Intuitively, a step is a kind of sequential function (hence
a “semantic” entity) which reads and writes variables in a store,
and performs computations on them. Steps should be closed under
sequential composition—given two steps s1 and s2 there should be
an operation (typically written “◦”) which yields a new step that
reflects the effect of executing s1 and then s2. Each programming
language will come equipped with its own notion of primitive,
indivisible (atomic) steps (e.g. read or write a 32-bit variable), and
with a translation function which maps programs in the language
(syntax) to sequences of such primitive steps (semantics).

Let us say that a partial store is an assignment of values to
variables; such a store is total if it specifies values for all variables.
A crucial move is to consider a step to be a partial write function.
For a sequence of statements s, pw(s) is the partial function from
partial stores to partial stores which is defined on an input store d
only if d specifies values for all the variables that are read by s,
and it maps such a d to the set of writes produced by running s.
Thus a step carries more information than just the i/o function—
intuitively, it records the set of variables read as well as the set of
variables actually written by the program. For instance the behavior
of the program skip; x=x is different from skip (even though
both have the same i/o function), since the former can cause a
race whereas the latter can not. Similarly the program x=y;x=z
is different from the program x=z (even though both have the
same i/o function) since the former may be involved in a race with
y but the latter can not. Partial write functions make these extra
distinctions while being able to recover the i/o function, if needed.

With such a view of sequential execution in hand, the notion
of concurrent execution is easy to define: it is a multiset of steps
with two bits of additional structure. First there must be a partial
order on steps arising from sequentiality of steps executed by the
same thread (the “happens before” order). Second, there must be a
way to reflect links that record which step f was used to answer

163

the read of a variable x by a step g. The links must satisfy a
consistency condition with the happens before relation, namely, if
a link connects a step f to a step g on a variable x, then either f
and g are unordered or there is no other step between f and g (in
the hb-order) which writes on x. (This condition is called the hb-
consistency condition.)

Transformations. A process is taken to be a set of partially or-
dered sets (=pomsets) with links, closed under a certain set of sim-
ple transformations.

All models in the RAO (Relaxed Atomic + Ordering) family
are equipped with the transformations IMprovement (IM), COm-
position (CO), LInk(LI), PRopagation (PR), and AUgmentation
(AU). Additionally, each model has a DEcomposition transforma-
tion which we will generically call DX. DX is required to refine the
“weakest” decomposition transformation, DL.

The central transformation is LI, a “run-time” action that per-
mits a step to “read” the information in another hb-unordered steps
by introducing a link. Let f and g be two hb-unordered steps. LI is
parameterized by a non-empty set of variables W . It links f and g
so that information produced by f on W is used to update the input
store into g. Thus g “sees” the writes on W performed by f —even
though f is not hb-ordered before f . Thus LI is able to take advan-
tage of a write to a variable x that is in a race with a read of x. We
shall see in Section 4.1 that the use of LI distinguishes raw variables
from volatile variables; volatiles do not permit the use of LI.

CO permits two successive steps g;h to be replaced by f = g◦h,
as long as incoming and outgoing links and hb edges are respected.
CO may be thought of as a compile-time step that reflects the
compiler’s decision to execute two steps together as a single step.

Conversely, DL permits the compiler to break up a step f into
a pair of atomic steps g followed by h as long as f = h ◦ g3 and
incoming and outgoing links are respected. While this restriction
is strong enough to guarantee that no new races are introduced, it
permits the replacement of x=y by x=42;x=y and hence invali-
dates Examples 1 and 2. Other decomposition rules are permitted,
however they must all strengthen DL (i.e. impose extra conditions).

The decomposition rule for a programming language specifies
the intermediate reads and writes that can be performed when de-
composing a composite step. The requirement that decomposition
rules strengthen DL ensures that they cannot introduce new races.
Nevertheless, for programs with races, DL offers opportunities for
a step to observe values produced internally during the execution of
another step. Therefore the programming language designer must
carefully choose a decomposition rule appropriate for the language.

AU is the only transformation that changes the hb relation be-
tween existing steps. An hb-edge can be added between two steps
provided that the result of the transformation is a valid process.
This transformation reflects a compiler’s decision to schedule two
unordered step one after the other. This may now introduce more
opportunities to answer reads through CO. This transformation is
not supported by the Java Memory Model described in [10].

PR is a generic “whole program” transformation. It permits a
step f to be replaced by a step g provided that f and g are equivalent
in all stores that satisfy a condition c, and it is the case that all SC
executions of the program force the condition c to be true before f
is executed. PR permits whole program analysis to be factored into
the model.

IM permits a step f to be replaced by a step g if io(f) = io(g),
and g reads and writes fewer variables than f , while respecting all
incoming and outgoing links. IM permits extra reads and writes
to be dropped (e.g. x,y=x,2 to be replaced by y=2). It may
be thought of as a compile-time step that permits a compiler to

3 Note: We define ◦ to use application order, f ◦ g = λd.(f (g(x))), rather
than textual order, f ◦g = λd.(g(f (x))).

replace a code fragment by a “better” code fragment, getting rid of
unnecessary operations.

Additional remarks. CO, DX, IM, AU and PR are compatible
with a totally-ordered notion of memory—memory is a global set
of locations from which every read fetches the current value and
every write modifies the current value. However, LI permits the
same thread to see two different writes if it performs two different
reads of the same variable in sequence, even if no other thread
has taken any action in the meantime. Thus, LI is not compatible
with such a “Totally Ordered Memory” principle [1]. Indeed, LI
does not even support the notion of “a central store” shared by all
threads (and therefore does not support “coherence”). Two threads
may simultaneously read two different values for the same variable.

Motivations for these transformations. Informally, let us say
that a transformation X is well-behaved if for all well-behaved
processes P (processes whose SC executions have no races), P(X)
is well-behaved and the set of SC executions of P(X) is contained
in those of X . We shall see in Section 2.5 that all six transformations
are well-behaved; this is the basis for the Fundamental Theorem.
Let us say that a transformation is SC if for any process X , the SC
behaviors of P(X) are contained in those of X . The transformations
CO,AU,IM and PR are SC. LI and DX are not—they are the core
“weak” (non-SC) transformations around which RAO is built.

There is is nothing particularly singular about the choice of CO,
AU, PR and IM, other than they appear to be a fairly simple, small,
orthogonal basis for SC transformations performed by compilers
and provide a concrete way (e.g. exhaustive enumeration) to estab-
lish that a certain behavior is not exhibited by a given program.
We leave as future work a more general axiomatic formulation of
the RAO models which will permit any SC transformation to be
admitted, as long as it satisfies certain conditions.

Volatile. On this basis various synchronization operations can be
defined. Volatile variables introduce synchronization conditions. In
this paper, we consider three variants of volatility, one introduced in
JLS 2 (the weakest), DX-restricted volatility, and JLS 3 volatility.

1.3 Related work

Location consistency model. Location consistency (LC) [4] is
probably the weakest memory model described in the literature.
The distinguishing property of LC is that it does not rely on co-
herence, thus dispensing the need for cache snooping and direc-
tories in a multiprocessor implementation. Gao and Sarkar argue
that the model is equivalent to release consistency (RC) [5] for pro-
grams that are data race free. However, unlike RAO the specifica-
tion of LC is not suited as a basis for a memory model of a high-
level programming language as it does not explicitly define which
re-orderings of access and synchronization statements are permit-
ted [18]. Like LC, RAO does not rely on the coherence assumption.

OpenMP and UPC memory models. The memory models of
OpenMP [7] and UPC [19] have been specified after the original
specification of these language extensions. The fundamental differ-
ence with RAO is as follows: Both OpenMP and UPC are founded
on programming languages with unsafe typing and pointer arith-
metic and thus the requirements that their memory models impose
on programs that are not data race free can be looser. RAO, in con-
trast, is designed for type safe-languages like X10 or Java with the
strong memory safety in mind. The focus of the specification of
the UPC and OpenMP memory model is on the effect and order-
ing guarantees provided by certain accesses with synchronization
semantics and explicit synchronization constructs—not on guaran-
tees that are given in the absences of such synchronization. Both
models allow the introduction of spurious writes, and reads may
observe “out of thin air” values in programs with data races [2].

164

Java memory model. The RAO model can be thought of as a
“happens before” model, discussed in [10, Section3]. RAO is gen-
erative, given a source program it generates all possible sequences
of executions. In contrast, the methodological stance of [10] is that
a trace must be given beforehand; the memory model is then spec-
ified in terms of which traces are correct. We feel that valuable
information is lost when one moves from a generative model to an
oracle; in particular, the task of specifying the semantics is made
harder.

ASIAN 2004 paper. This paper generalizes and simplifies [13].
The core concept of linking is derived from the action sets of [13].
The “unique valuation” condition has been replaced by the simpler
well-foundedness condition. Conditional linkings have been done
away with in favor of (partial) steps. The formulation of the model
in terms of a set of permitted transformations is new to this paper.

Store Atomicity Arvind and Maessen [1] have recently proposed
a framework for the definition of memory models. Their work
shares conceptual commonalities with this work: both are opera-
tional and allow enumeration of possible program behaviors based
on transformation rules. However, [1] is focused on processor
memory models that give semantics to multiple instruction streams
with load and store access. Since processors perform a fairly lim-
ited set of “transformations” on instruction streams (basically re-
ordering), the baseline of the [1] model can be relatively strong
(i.e., store atomicity, which requires that all accesses are serializ-
able). On the other hand, RAO is focused on providing a precise
account for memory models for programming languages, and must
hence account for a wide variety of program transformations and
their interactions with the memory model.

1.4 Rest of this paper

The next section presents the basic formal definitions and results of
the paper for the unsynchronized language. Section 3 presents sev-
eral examples to illustrate the range of applicability of the model.
All these examples—and all the examples in [12]—can be treated
formally within our model. Section 4 treats various definitions of
volatiles.

In this extended abstract, all proofs are elided. We refer the
reader to the full version of the paper for a complete formal de-
velopment.

2. RAO Model
2.1 Preliminaries

First some simple preliminaries to fix intuitions.

Syntax. To make the following discussion concrete, we now
introduce a syntax for steps of single-threaded code. The syntax
is intended to be illustrative, to have a core set of constructs into
which a concrete programming language can be translated so that
its memory model can be defined. It may be extended routinely
with concepts such as function definitions.

(Variables) x ::= x | . . .
(Condition) c ::= true | false | e==e | c&&c | !c
(Expression) e ::= k | x | c?e :e | c?e | (e)
(Step) s ::= x̄=ē

The language is simple. It permits partial definition of terms—with
one-sided conditional branches (c?e) and two-sided conditional
branches c?e1:e2. The term c?e is undefined if c evaluates to
false.

We will write skip for the step ε = ε.

Stores. By a partial function from a domain D to a range R
we shall mean a function that is defined from some subset of D,
dom(f), into R. The restriction of a partial function f to a set V ,
f ↓V , is f restricted to the domain dom(s)∩V .

We fix an infinite set of variables V and a set of values L. A
partial store d is a partial map from V to L, a total store is one
whose domain is V . We designate the set of all partial stores by
Store, and the set of all total stores by TStore. We treat a store
isomorphically as a set of bindings, {x0 = v0,x1 = v1, . . .}.

The union d0 ∪ d1 of two stores d0 and d1 (with disjoint do-
mains) is their union when viewed as a set of bindings. Since two
stores may have conflicting information, their asymmetric union
c[d] (read as: c updated by d) is quite important and is defined as
the set of bindings in d together with the bindings from c for those
variables not bound by d.

We define a binary relation on stores c ≤ d (read as: d extends
c) to hold iff d[c] = d. It is easy to see that ≤ is a partial order. Note
that for distinct stores d,d′, d ≤ d′ implies that dom(d) is strictly
contained in dom(d′).

Functions on stores. Define a partial order on partial functions
over stores by: f ≤ g if dom(f) ⊆ dom(g) and f (c) ≤ g(c) for all
c ∈ dom(f). The notion of monotonicity of such functions is stan-
dard. f is monotone if d ∈ dom(f),e ≥ d implies e ∈ dom(f) and
f (e) ≥ f (d). For any function f on stores, we define its transi-
tion function f � by: f �(c) = c[f (c)]. Unlike f , f � “flows” the input
through to the output.

A function f is complete if it is defined for every total store.

2.2 Modelling single-threaded code

The fundamental intuition underlying the models is that a piece
of sequential code should be modelled as a step, i.e. a function
from stores to stores. We use partial functions that record for each
partial store d the writes produced by executing s on d. In the rest
of this discussion, given a syntactic step s, we will use [[s]] for its
denotation, i.e. the function associated with the step. On an input
store d, the output store [[s]](d) is defined at variable x only if x is
written by s. Dually, if [[s]](d) is not defined on a given (partial)
store d, then it must mean that s must read some variable that does
not have a binding in d.

EXAMPLE 3 [[x = (false?0)]] is the unique function that is de-
fined on every input (i.e. it does not perform a read) and maps it
to {}. In no store can the assignment to x happen since its pre-
condition, false, can never be satisfied.

[[x = 1]] is the function that is defined on every input and maps
it to {x = 1}.

On any input store d, f = [[x = (y == 1?1)]] is a function
that must definitely read y, hence d must define a value for y.
The function produces a write on x, x=1, iff d(y) = 1. Formally,
d ∈ dom(f) iff y∈ dom(d). f maps such a d to {x= 1} if d(y) = 1
and to {} otherwise.

[[x = (y == 1?0 : (y == 0?1))]] is defined on input stores d iff
y∈ dom(d). Such a d is mapped to {x= 0} if d(y) = 1, to {x= 1}
if d(y) = 0 and to {} otherwise.

f = [[x,r = (x! = 42?42),42]] is defined on input stores d iff
x ∈ dom(d). Such a d is mapped to {x= 42,r = 42} if d(x)! = 42
and to {r = 42} if d(x) = 42. Note that for all d ∈ dom(f) we
have {x = 42} ≤ f �(d) – in some cases because of the write in
f (d) and in some cases because of the flow-through from the input.
Our treatment of steps as partial functions enables us to model this
distinction.

We further restrict our attention to sequential functions that cor-
respond to the execution of single-threaded code. Such code must

165

perform its basic operations (e.g. reads and writes) in sequence, one
after the other. (It may not perform operations such as a “parallel
or”, which reads reads two variables in parallel, without specifying
the order.) Therefore such sequential functions f have the property
that any store d is either in f ’s domain, or there is a non-empty set
of variables, n(f ,d), all variables in which must be read next by
the function. The formal definition of n(f ,d) is standard [17] and
is elided in this extended abstract.

DEFINITION 1 (STEP). A step is a monotone, sequential, partial
function from finite stores to finite stores.

2.3 Modeling concurrent programs

A concurrent program can now be thought of as a partially ordered
multiset (pomset) of steps. The partial order is called the happens
before order and indicates those steps that are known to occur
before other steps. Formally, an AO process is a initialized pomset
of steps, with a possibly empty set of links:

DEFINITION 2 (SEQUENTIAL COMPOSITION). Given two steps f
and g, their sequential composition g ◦ f is the partial function
defined only on those d s.t. d ∈ dom(f) and f �(d) ∈ dom(g) and
which maps d to f (d)[g(f �(d))].

While the definition of a step captures only the actual output
of the step, the use of a step in a sequential composition permits
inputs to traverse untouched to the output of the first step, if they
are needed by the second step. However, the output produced by
the composite is only the (combination of) output produced by each
step—flow through from the input is not counted as output. It is not
hard to see that (f ◦ g)� = f � ◦ g�. We now consider examples of
sequential compositions of steps.

EXAMPLE 4 Consider f = [[x = 1]]; [[y = 1]]. It is not difficult
to see that f = [[x,y = 1,1]]. Formally, one uses the definition of
denotation of a step given above, and the definition of composition
of steps (Definition 2) to establish this.

Let us consider a step that reads a variable after conditionally
writing into it: f = [[x = (x == 1?0 : 1)]]; [[y = x]]. Clearly this
should be the same function as [[x,y= (x== 1?0 : 1),(x== 1?0 :
1)]]. Again, this can be established formally.

In general, [[x= c?z]]; [[y= x]] is the same as [[x,y = c?z,c?z :
x]]. Specifically [[x= (x! = k?k);y= x]] is the same as [[x,y= (x! =
k?k),x! = k?k : x]], and this is the same as [[x,y = (x! = k?k),k]].

A rule for calculating the sequential composition of steps is formal-
ized in the full version of the paper.

DEFINITION 3 (LINK). Given a pomset of steps P, a link is a
quadruple (s,t,x,v) where s,t ∈ P, x is a variable and v is a value.

DEFINITION 4 (INPUT STORE, LINK-COMPLETED STEP). Given
a set L of links (,s,x,v) entering s, in(s) is the store {x =
v | (,s,x,v) ∈ L}. When used as a function, in(s) stands for the
function that maps input d to d[{x = v | (,s,x,v) ∈ L}].

We say that a step s is complete if in(s) ∈ dom(s).
We define s† (read: link-completed s) as the function s◦ in(s).

EXAMPLE 5 Below we consider a link (f ,g,x,1).
Let f be [[x = 1]] and g be [[r = x]]. Then g† is [[r = 1]]. f can be used
to answer the read on x in g, but f ’s outputs are not propagated.
Let f be [[x,y = 1,1]] and g be [[r = x]]. Then g† is [[r = 1]]. Irrelevant
information in f is ignored.
Let f be [[x = 1]] and g be [[r,x = x,(x! = 1)?1]]. Then g† is [[r = 1]].
Information in f may force a write of g to be dropped.

DEFINITION 5 (WRITE-BEFORE). Let P be a pomset of steps. For
steps f ,g ∈ P and a variable x, define f wbx g (read: g can read x
from f) if (i) f writes x, i.e. x ∈ dom(f ({})), and (ii) f and g are
unordered, or f hb g and (iii) there is no other step f ′ between f
and g (in the hb-order) s.t. x ∈ dom(f ′(d)) for any store d.

DEFINITION 6 (AO PROCESS). An AO process (P,Ls) is a par-
tially ordered multiset of steps P, together with a set Ls of links
satisfying:

Link Uniqueness (s,t,x,v),(s′,t,x,v′) ∈ Ls implies s = s′ and t =
t ′.

Link Well-definedness (s,t,x,v) ∈ Ls implies s is complete and
s†(in(s))(x) = v. (Thus s unconditionally produces v for x, given
its input links.)

Link Acyclicity The graph with steps as nodes and edges s → t if
(s,t, ,) ∈ Ls is acyclic.
Note that this condition is not the same as hb-acyclicity. Indeed,
an edge may be introduced by a link when the two steps are
unordered by hb.

HB Consistency (s,t,x,v) ∈ Ls implies s wbx t.
Initialization Condition: If a step in P touches a variable x ∈ V

then there is a unique step in P that writes into x, does not read
from x, and hb any other step in P that touches x.

It is useful to visualize an AO process as a directed graph with
nodes labeled with steps and edges representing the hb relation.

DEFINITION 7 (COMPLETED AO PROCESS). An AO process A is
said to be a completed execution if every step of A is complete.

DEFINITION 8 (SC (EXECUTION OF) AO PROCESS). An AO process
A is said to be sequentially consistent (SC) if its hb order is total.
An SC execution of an AO process A is any SC AO process A′
with the same set of steps and link-set as A. For an SC process P
with steps s0, . . . ,sn−1 enumerated in hb order, the i/o function of
P, io(P) is io(s†

0 ◦ . . .◦ s†
n−1).

DEFINITION 9 (WELL-BEHAVED AO PROCESS). An AO process
P is well-behaved if no SC execution Q of P has a P-race. Q has a
P-race if in the execution s†

0 ◦ . . . ◦ s†
n−1 of Q there are steps si and

s j (i < j), such that si produces a value that s j reads, but it is not
the case that si hbs j in P.

Process combinators

AO processes are composed using “;” (sequential composition)
and “|” (parallel composition). ; binds more tightly than |.

P ; Q has the steps of P and Q with the hb order of P and Q
extended to ensure that every step of P hb every step of Q.

P | Q has the steps of P and Q with the hb order of P and Q.
Note that ; is associative, whereas | is commutative and as-

sociative (but not idempotent—the resulting pomset has twice as
many steps). If we use skip to denote the unique process with no
steps, then skip | P = P | skip = P, and skip;P = P;skip = P.

2.4 Transformations of AO processes

In the RAO model, the following transformation rules can be used
to transform an AO process. The transformation is applicable only
if the resulting structure is an AO process.

The transformations IM, AU, CO, DL and LI are local, i.e.
the applicability of the transformation does not depend on whole

166

program analysis or on the absence or presence of other steps than
the ones named in the transformation.

Below, for a process (P,Ls) with steps p ∈ P, p′ when we say
replace p by p′ while preserving all edges and links we mean that a
new process (P′,Ls′) is created in which P′ is the same as P with p
replaced by p′, every edge (h, p) ∈ hb is replaced by (h, p′), every
edge (p,h) ∈ hb is replaced by (p,h′), every link (q, p,x,v) ∈ Ls
is replaced by (q, p′,x,v), and every link (p,q,x,v)∈ Ls is replaced
by (p′,q,x,v).

2.4.1 Improvement

We say that a step g improves a step f if io(g) = io(f), dom(g) ⊆
dom(f), and f ≥ g. The first condition ensures that the behavior
of f and g under sequential (sequentially consistent) execution is
identical. The second condition ensures that extra reads—reads of
variables that do not affect the final result—can be dropped. The
third condition ensures that extra writes—writes of the form x=x
– can be dropped. Let us write [[s]] for the step corresponding to a
piece of sequential code s. Then [[x = y]] improves [[x = z;x = y]]
and [[x= y;z = z]].

DEFINITION 10 (IM). Given an AO process (P,Ls), replace f ∈ P
with a step g while preserving all edges and links, if g improves f ,
and g writes on every variable x for which (f , ,x,) ∈ Ls.

2.4.2 Augmentation

DEFINITION 11 (AU). Add an hb-edge between two steps in P
provided that the resulting set is an AO-process.

AU permits the implementation to schedule two otherwise uncon-
strained steps (belonging to separate threads) in a particular order.

2.4.3 Composition

Consider two steps f ;g. We would like to replace them with e =
g ◦ f and move the incoming and outgoing links of f and g to e.
That is, we would like to replace h′ = g† ◦ f † by h = (g◦ f)†.

The following conditions are sufficient. If f and g have incom-
ing links for x, those links must arise from the same step (so they
read the same value and have the same hb relationship with the
link source). This implies in(f)[in(g)] = in(g)[in(f)], or (in terms
of functions) in(f) ◦ in(g) = in(g) ◦ in(f). Further, f should pass
through, without modification, any variable for which there is a link
into g. Symmetrically, if f has an outgoing link for x, then g should
pass through the value produced by f on x without modification.
This motivates the following definition.

DEFINITION 12 (CO). Let (P,Ls) be an AO process. Let the im-
mediate hb successor of f in P be g (and only g), and the im-
mediate hb predecessor of g be f (and only f). Let h = g ◦ f ◦
in(g) ◦ in(f) and h′ = g ◦ in(g) ◦ f ◦ in(f). Let f and g satisfy
the property that (i) (s, f ,x,v),(s′,g,x,v′) ∈ Ls implies s = s′ (and
therefore v = v′), (ii) h = h′, (iii) for every x s.t. (f , ,x,v) ∈ Ls,
h(in(f)[in(g)])(x) = f (in(f)[in(g)])(x).

Replace f and g by e = g ◦ f , replacing each link/edge enter-
ing/exiting f or g by the same link/edge entering/exiting e.

CO permits the implementation to schedule two successive steps in
the hb-order together, treating them as part of the same sequential
step. In the new process e† is the same function as g† ◦ f † in the
old process. Further, the conditions are always satisfied if g has no
incoming links and f has no outgoing links.

2.4.4 Propagation

By a constraint q on stores we mean a (possibly infinite) set of
stores. A store d satisfies q if d ∈ q. Two functions f0 and f1

on stores are q-equivalent if for Q = q∩ dom(f0), we have Q =
q∩dom(f1), and f0 ↓ Q = f1 ↓ Q.

DEFINITION 13 (PR). Let A = (P,Ls) be a process. Let f ∈ P and
f ′ be a step that is q-equivalent to f , where in all SC-executions
(Definition 8) of P, q is true at (before) f .

Replace f by f ′, preserving all edges and links.

PR permits an implementation to perform any global optimization
based on data-flow analyses as long as the analyses consider only
SC executions. Since this transformation effects a global analysis,
it is sensitive to the presence steps in P other than s. One of its uses
is to replace conditional execution with unconditional execution.

We shall see below that typically an application of CO enables
applications of DL. Applications of PR and AU enable applications
of CO. Applications of DL enable applications of AU, etc.

2.4.5 Link

LI is an “inter thread” version of CO.

DEFINITION 14 (LI). Let A = (P,Ls) be a process. Let s,t ∈ P
and x be a variable s.t. (i) s wbx t in P, (ii) s is completed,
(iii) s(in(s))(x) = v, and (iv) x ∈ n(t, in(t)).

Transform A to (P,Ls∪{(s,t,x,v)}).
EXAMPLE 6 (see also Example 5) Let f be x=(x!=42)?42
and g r=x be two steps in an AO process (P,Ls) and the only link
entering g is from f and labeled with x. Then r=42 is an improve-
ment of g† (since it does not read x). Thus, a conditional write in f
may result in an unconditional write by g.

2.4.6 Decomposition

DEFINITION 15 (DL). Let (P,Ls) be an AO process, f ∈ P s.t.
f = h ◦ g, and for every incoming (outgoing) x-link for f it is the
case that precisely one of f or g reads (writes) x. (Call that step ix.)

Replace f with g;h. Every edge (e, f)∈ hb is replaced by (e,g)
and every edge (f ,e) ∈ hb by (h,e). Every link (e, f ,x,v) and
(f ,e,x,v) in Ls is replaced by (e, ix,x,v) and (ix,e,x,v) respectively.

Intuitively, the implementation decides to break up a single step
f into two steps g and h since the behavior of a thread executing f
is indistinguishable (in any race-free context) from the behavior of
the thread executing first g and then h.

DR adds to DL the condition that for any variable x and input
store d, x is in the domain of at most one of the stores g†(d) and
(g† ◦ h†)(d). DW adds to DL the condition that for any variable x
and input store d, x is in at most one of n(g†,d) and n(g† ◦ h†,d).
DO adds both these conditions to DL. We let DX stand for any of
these four decomposition rules.

In combination with CO, DX may change the hb order of
the original program. For instance consider the program fragment
x=1;y=2 . Using CO this may be converted to x,y=1,2 and
then using DX to y=2;x=1. Thus the original hb order is inverted.
Some synchronization constructs (e.g. volatiles) are designed to
ensure that such reordering cannot occur (see Section 4.2); hence
their semantics places restrictions on the application of DX.

DX is also useful in conjunction with LI: sometimes it is possi-
ble to break a function f which performs some reads into f0 and f1
in such a way that f0 does not perform any reads. Now f0 can be
used as a source for a link.

2.4.7 RAO process

DEFINITION 16 (RAO PROCESS). An RAO process is a set of AO
processes closed under CO, DL, IM, LI, PR and AU. For any AO
process P, the smallest (qua set) RAO process containing P is
denoted by RAO(P).

167

2.5 Main theorem

Let P,Q be AO processes. Say that P
X−→ Q if Q is obtained

from P by the application of a transform X in the set of RAO
transformations. The SC i/o functions of P, sc(P) is the set of
functions io(Q) for all SC executions Q of P (Definition 8).

Let clo(P) represent the set of AO processes obtained from P by
zero or more applications of the given transformation. We take the
observations of a process P to be the set of i/o functions of P, io(P)
defined as the set { f | f ∈ sc(Q),Q ∈ clo(P),Qcomplete}.4 We say

that O ∈ io(P) has a proof of size n if there is an
X−→ sequence of

length n from P to a completed process Q such that O ∈ sc(Q).

LEMMA 17. For all AO processes P,Q if P is well-behaved and

P
X−→ Q then:

Good behavior is X−→-invariant. Q is well-behaved.

SC behavior is X−→-invariant. sc(Q) ⊆ sc(P).

IO behavior is X−→-invariant. io(Q) ⊆ sc(P).

THEOREM 18 (FUNDAMENTAL PROPERTY). Let P be a well-
behaved AO process. Then io(P) ⊆ sc(P).

3. Examples
We consider some examples. Note: In analyzing the test cases
below we shall usually omit the initial step in the AO process.
Further, we shall not be combining (through CO) two steps both of
which have incoming links. In such cases it is possible to replace t
with t† whenever a new link (s,t,x,v) is added to the link-set.

3.1 Single-thread reordering

EXAMPLE 7 (TC 7) We illustrate the use of CO, DR and AU to
obtain single-thread reordering. Consider the program:

x,y,z=0,0,0;(r1=z;r2=x;y=r2|r3=y;z=r3;x=1)

Is behavior r1==r2==r3==1 exhibited? Single-thread opti-
mization could permit r1=z to be moved to the end of the thread,
and x=1 to the beginning of the thread. The result would then fol-
low by an SC execution.

Formally this can be analyzed as follows. We show a chain
of AO processes each obtained from the previous by applying
the noted transformation. The last process exhibits the desired
behavior.

Consider the steps r1=z;r2=x;y=r2. These may be col-
lapsed into a single step using CO to yield r1,r2,y=z,x,x. But
this step can be decomposed into r2,y=x,x;r1=z—this is the
code motion discussed above. Similarly r3=y;z=r3;x=1 yields
through CO and DR x=1;r3,z=y,y. Now we can interleave the
steps in the appropriate order using AU to accomplish the desired
result.

EXAMPLE 8 (TC 2) See also Fig 5 in [10]. This example illus-
trates that CO, DL and AU can simulate the effect of redundant
read elimination. Consider the program:

x,y=0,0;(r1=x;r2=x;y=(r1==r2)?1|r3=y;x=r3)

This should exhibit r1==r2==r3==1 since redundant read elimi-
nation could result in simplifying r1==r2 to true. Subsequently
y=1 could be moved early.

This reasoning is readily formalized as follows. In each step we
specify only the links added at that step. By convention the links
associated with a step are the union of all the links associated with
previous steps, together with the links added at that step.

4 The two definitions of io for SC processes coincide.

x,y=0,0;(r1,r2=x,x;y=(r1==r2)?1|r3=y;x=r3) (CO)
x,y=0,0;(r1,r2,y=x,x,1|r3=y;x=r3) (CO)
x,y=0,0;(s0:r1,r2,y=x,x,1|s1:r3=1;x=r3)

(LI,(s0,s1))
x,y=0,0;(r1,r2,y=x,x,1|r3,x=1,1) (CO)

This example shows that the RAO model permits two reads to
be answered by the same write without determining what that
write is. This is just a consequence of CO—by composing all the
steps of Thread 1, we ensure that the reads into r1 and r2 will
be answered from the input store (for the composite step). Hence
they must have the same value. Thus the steps of the first thread are
equivalent (as functions) to the single step r1,r2,y=x,x,1.

EXAMPLE 9 (TC 3) This example illustrates that the application
of CO, DR and AU is not affected by the presence of additional
threads. Consider the program:

x,y=0,0;(r1=x;r2=x;y=(r1==r2)?1|r3=y;x=r3;|x=2

The behavior r1==r2==r3==1 can be exhibited, using the same
reasoning as in Test 8. The additional thread does not interfere with
the application of CO and LI.

EXAMPLE 10 (TC 17) Consider the AO process:

x,y=0,0;(r3=x;x=(r3!=42)?42;r1=x;y=r1|r2=y;x=r2)

It should be able to exhibit r1==r2==r3==42 since

r3 = x;x = (r3! = 42)?42;r1 = x

and

r3 = x;x = (r3! = 42)?42;r1 = 42

have identical i/o functions. But the second program can permit the
propagation of r1=42 to the beginning of the program, resulting
in the desired behavior. The RAO analysis mirrors this reasoning:

r3=x;x=(r3!=42)?42;r1=x;y=r1|r2=y;x=r2
r3,x=x,(x!=42)?42;r1=x;y=r1|r2=y;x=r2 (CO)
r3,x,r1=x,(x!=42)?42,42;y=r1|r2=y;x=r2 (CO#)
r3,x,r1,y=x,(x!=42)?42,42,42|r2=y;x=r2 (CO)
r3,x=x,(x!=42)?42;s0:r1,y=42,42|s1: r2=y;x=r2 (DL)
r3,x=x,(x!=42)?42;s0:r1,y=42,42|s1:r2=42;x=r2

(LI, s0->s1)
r3,x=x,(x!=42)?42;so:r1,y=42,42|s1:r2,x=42,42 (CO)
s3:r3=42;s0:r1,y=42,42|s1:r2,x=42,42 (LI, s1->s3)

(#) In the above example,

r3,x,r1 = x,x! = 42?42,x! = 42?42 : x

and

r3,x,r1 = x,x! = 42?42,42

denote the same step. In the last line the write to x will never be
performed by the first step, and hence the write is dropped.

3.1.1 Inter-thread reasoning—the use of PR

We now consider some examples that illustrate the use of PR.

EXAMPLE 11 (TC 1) This example shows inter-thread reasoning—
the use of CO, DE, AU, PR. Consider the RAO process generated
from P0:

x,y = 0,0;(r1 = x;y = (r1 >= 0)?1|r2 = y;x = r2)

Arguably, RAO(P0) should be able to exhibit r1==r2==1.
The compiler may determine that x and y are always non-negative,
and hence simplify r1>=0 to true. This allows y=1 to be moved
early. We can formalize this in RAO thus:

r1,y=x,r1>=0?1|r2=y;x=r2 (CO)
r1,y=x,1|r2=y;x=r2 (PR#)

168

r1=x;s1:y=1|s2:r2=y;x=r2 (DL)
r1=x;s1:y=1|s2:r2=1;x=r2 (LI, s1->s2)
s0:r1=x;s1:y=1|s2:r2,x=1,1 (CO)
s0:r1=1;s1:y=1|s2:r2,x=1,1 (LI, s2->s0)

(PR#) Replace r1,y=x,(x>=0?1) with the x>=0-equivalent
step r1,y=x,1.

EXAMPLE 12 (TC 18) See also [10, Fig 12]. The program:

x,y=0,0;(r3=x;x=(r3==0)?1;r1=x;y=r1|r2=y;x=r2)

should permit the behavior r1==r2==r3==1. A compiler may
determine through whole program analysis that the only possible
values for x are 0 and 1. Hence if r3 !=0 it must be the case
that r3==1. Hence transforming r1=x into r1=1 is legal from
the viewpoint of a single thread. But this write can be propagated
earlier and SC execution will yield the desired result. The RAO
analysis permits this, following the reasoning above.

r3,x=x,(x==0)?1;r1=x;y=r1|r2=y;x=r2 (CO)
r3,x,r1=x,(x==0)?1,(x==0)?1:x;y=r1|r2=y;x=r2 (CO)
r3,x,r1=x,(x==0)?1,1; y=r1|r2=y;x=r2

(PR;x in {0,1}
r3,x,r1,y=x,(x==0)?1,1,1|r2=y;x=r2 (CO)
r3,x=x,(x==0)?1;s0: r1,y=1,1|s1: r2=y;x=r2 (DL)
r3,x=x,(x==0)?1;s0: r1,y=1,1|s1: r2=1;x=r2

(LI, s0->s1)
s2: r3,x=x,(x==0)?1;s0: r1,y=1,1|s1: r2,x=1,1(CO)
s2: r3=1;s0: r1,y=1,1|s1: r2,x=1,1 (LI, s1->s2)

EXAMPLE 13 (Fig 11 of [10]) This test case is not permitted by
the Java Memory Model described in [10], but is permitted by
RAO. Consider the program:

x,y=0,0;(r3=x;x=(r3==0)?1|r1=x;y=r1|r2=y;x=r2)

Test Case 18 can be obtained from this program by inlining Thread
2 after Thread 1.

x,y=0,0;(r3=x;x=(r3==0)?1|r1=x;y=r1|r2=y;x=r2)
x,y=0,0;(r3=x;x=(r3==0)?1;r1=x;y=r1|r2=y;x=r2)(AU)

The rest of the derivation follows Case 18.

3.2 Cross-coupling behaviors

We now consider examples that illustrate cross-over.

DEFINITION 19 (CROSS-OVER). Let A be an AO process. A
cross-over is a set of steps in A that forms a loop in the graph
whose nodes are steps and whose edges are links (directed from
source to target) or hb-edges.

Naturally, the presence of races, and the use of LI, is critical in
establishing a cross-over. The other transformations (CO, DX,
IM, AU and PR) are compatible with a totally-ordered notion of
memory—memory is a global set of locations from which every
read fetches the current value and every write modifies the current
value. In our model, such a totally-ordered notion of memory is
modelled by the extra condition that n particular, these other trans-
formations are closed on the subset of AO processes satisfying the
condition that the linkset is a subset of the happens-before relation.
LI does not preserve this additional condition, whereas the other
transformations (CO, DX, IM, AU and PR) do.

EXAMPLE 14 (TC 16) See also Fig 1 in [10]. The program:

x,y=0,0;(r1=x;x=1|r2=x; x=2)

should be able to exhibit the behavior r1==2; r2==1. RAO
permits it thus:

x,y=0,0;(s0:r1=x;s1:x=1|s2:r2=x;s3:x=2)
x,y=0,0;(s0:r1=x;s1:x=1|s2:r2=1;s3:x=2)

(LI, s1->s2)
x,y=0,0;(s0:r1=2;s1:x=1|s2:r2=1;s3:x=2)

(LI, s3->s0)

The final process illustrates the crossover {s0,s1,s2,s3}.

For an example that shows the interleaving of LI and PR is
critical, we refer the reader to the full paper.

3.3 No Thin Air Reads behaviors

The following examples involving no thin air reads discuss alterna-
tive definitions of the decomposition rule and their consequences.
This analysis supports the claim that RAO provides a flexible
framework for a programming language designer.

EXAMPLE 15 (TC 4) See also Fig 2 in [10]. Consider the AO
process:

x,y=0,0;(r1=x;y=r1|r2=y;x=r2)

This process should not exhibit r1==r2==1 even though there is
a race. The value 1 cannot be read from thin air.

LI, PR and AU cannot produce the desired result, as can be
established by systematically applying them.

Now let us consider various decomposition rules. DO (and
hence DL) can establish r1==r2==1 by:

x=0;y=0;(r1=x;y=r1|r2=y;x=r2)
x=0;y=0;(r1=x;y=1;y=r1|r2=y;x=r2) (DW)
x=0;y=0;(y=1;r1=x;y=r1|r2=y;x=r2) (DO)
x=0;y=0;y=1;r2=y;x=r2;r1=x;y=r1 (AU*)
y=1;r2=1;r1=1;x=1 (DO*)

However, DR and DO cannot; there is no way of creating the
phantom write.

EXAMPLE 16 (TC 5) Consider the program:

x,y,z=0,0,0;(r1=x;y=r1|r2=y;x=r2|z=1|r3=z;x=r3)

The behavior r1==r2==1, r3==0 should be forbidden.
RAO Analysis: As in Test Case 15. The only use of LI will re-

place r3=z with r3=1—and this will not give the desired result.
An exhaustive case analysis shows that none of the other transfor-
mations can produce the desired behavior.

EXAMPLE 17 (TC 10) Consider the AO program P:

x=0;y=0;z=0;
(r1=x;y=(r1==1)?1|r2=y;x=(r2==1)?1
|z=1|r3=z;x=(r3==1)?1)

The behavior r1==r2==1, r3==0 should not be possible.
This is indeed the case. PR cannot be used to discharge any

of the conditionals. CO/DE cannot be used to perform any of the
steps of a thread in parallel since there is a read/write dependency.
AU can be used to totally order these steps (as would be done in an
sc execution). But no sc execution will give the desired result. LI
can be used to replace r3=z with r3=1, but this will not give the
desired result.

EXAMPLE 18 (Fig 10, [10]) Consider the program:

x=0;y=0;z=0;
(z=1|r1=z;x=(r1==0)?1|r2=x;y=r2|r3=y;x=r3)

It should not be possible to observe r1==r2==r3==1, since in
any “execution” which could exhibit this behavior only Threads 3
and 4 write to x and y, and hence they cannot manufacture the
value 1 out of thin air.

The RAO model validates this reasoning. It is not possible to
use PR to reduce x=(r1==0)?1 to x=1 (except by using AU to

169

place z=1 after the conditional assignment to x—but in that case
r1=z hb z=1 hence r1 can never see the value 1). Without that,
the only way r2 can be 1 is for r1=0 to have been executed before
it, but then r1 !=1.

LI can be used to transfer z=1 into r1=z; to obtain r1=1.
However, this will disable the conditional write to x. The resulting
process cannot produce 1 for r2 or r3 since the only writes
available produce 0.

EXAMPLE 19 (Example 2 revisited) Consider the program

x=0;y=0;(r1=x;r2=x;y=(r1==r2)?1|r3=y;x=r3)

Such a program should not exhibit r1==0,r2==1,r3==1, since
the only justification for r3=1 appears to require r1==r2.

The use of DR (and hence DL) permits r1==0;r2==1,r3==1.

x=0;y=0;(r1=x;r2=x;y=(r1==r2)?1|r3=y;x=r3)
x=0;y=0;(r1=x;r2=x;y=1|r3=y;x=r3) (DR)
x=0;y=0;(r1=x;y=1;r2=x|r3=y;x=r3) (CO*;DO)
x=0;y=0;r1=x;y=1;r3=y;x=r3;r2=x (AU*)
r1=0;y=1;r3=1;x=1;r2=1 (CO*;DO)

DW also permits the observation:

x=0;y=0;(r1=x;r2=x;y=(r1==r2)?1|r3=y;x=r3)
x=0;y=0;(r1=x;r2=x;y=1;y=(r1==r2)?1|r3=y;x=r3)(DW)
x=0;y=0;(r1=x;y=1;r2=x;y=(r1==r2)?1|r3=y;x=r3)

(CO*;DO)
x=0;y=0;r1=x;y=1;r3=y;x=r3;r2=x;y=(r1==r2)?1 (AU*)
r1=0;y=1;r3=1;x=1;r2=1 (CO*;DO)

However, DO alone cannot exhibit this behavior.

EXAMPLE 20 (Strength reduction) Consider the program:

x=1; (r=x;s=x;x=2*r | x=3); u=x

Can it yield u=4? Here is a derivation:

x=1;(r=x;s=x;x=2*r | x=3);u=x
x=1;(r=x;s=x;x=r+r | x=3);u=x (DO, x=2*r->x=r=r)
x=1;(r=x;s=x;x=r+s | x=3);u=x (DR)
x=1;r=x;x=3;s=x;x=r+s;u=x (AU*)
r=1;s=3;x=4;u=4 (CO*;DO*)

The use of DR replaces r=x;s=x;x=r+rwith r=x;s=x;x=r+s;
DW and hence DO cannot accomplish this.

4. Synchronization constructs
Synchronization constructs are defined in the RAO model by in-
troducing extra structure to the model, and, if necessary, adding re-
strictions on the application of various transformations. The basic
idea behind synchronization constructs is to introduce mechanisms
by which the programmer may reliably communicate values from
one thread to another without introducing races, i.e. the possibil-
ity of cross-overs. We illustrate by considering different flavors of
volatile variables.

4.1 JLS 2 volatiles

The informal requirement for JLS 2 volatiles is that the read of a
variable x by a step s must be answered by a step t ordered before
s. This can be formalized in RAO as follows. First, we distinguish
between raw variables and volatile variables in the model: the
underlying set V of variables is partitioned into Vr (the subset of raw
variables) and Vv (the subset of volatile variables). An additional
restriction is introduced on the applicability of transformations to
volatile variables:

JLS 2 Volatility Condition: LI may not be used to link
volatile variables.

Therefore the only way to connect a write by a step s to a read
by a different, unordered step t is to use AU to hb-order s before t,
and use CO to compose the steps.

EXAMPLE 21 (Fig 21) Consider the AO process:

v=0; (v=1 | r1=v; r2=v)

If v is not volatile this process may exhibit r1==1,r2==0:

s0:v=0;(s1:v=1|s2:r1=v;s3:r2=v)
s0:v=0;(s1:v=1|s2:r1=v;s3:r2=0)(LI, s0->s3)
s0:v=0;(s1:v=1|s2:r1=1;s3:r2=1)(LI, s1->s2)

However, if v is volatile the application of LI is not permitted. For
r1 to read 1, s1 must be ordered before s2. And it must lie after
s0. But this will force r2==1.

However, JLS 2 volatiles do not guarantee reliable visibility of
writes to raw variables through a volatile write/read pair.

EXAMPLE 22 (Fig 8) Consider the AO process, with v volatile:

x=0; v=false; (x=1; v=true | r1=v; r2=r1?x)

It is desired that if the write to r2 executes, it writes 1. That is,
a write on a raw variable x can be communicated reliably through
the synchronization offered by the write to the volatile variable v.

Unfortunately, this behavior is not guaranteed. For instance:

x=0;v=false;(x,v=1,true|r1=v;r2=r1?x)(CO)
x=0;v=false;(v=true;x=1|r1=v;r2=r1?x)(DE)
x=0;v=false;(v=true;r1=v;r2=r1?x;x=1)(AU, AU)
x=0;v=false;(v,r1,r2=true,true,x;x=1)(CO,CO,CO)
x,v,r1,r2=0,true,true,0;x=1 (CO,CO)
x,v,r1,r2=1,true,true,0 (CO)

Examples also demonstrate that JLS 2 volatiles do not satisfy
the Fundamental Property—see full version of the paper.

4.2 DX-restricted Volatiles

The root cause of this problem is that writes to raw variables are
permitted to be reordered with writes to volatile variables. This can
be prevented in RAO by requiring in addition to the condition in
the previous section:

DX Restriction: DX may not be used to decompose f
if f reads or writes a volatile variable.

EXAMPLE 23 (Fig 8, revisited) Consider the AO process, with
v volatile:

x=0;v=false;(x=1;v=true|r1=v;r2=r1?x)

Now the desired behavior (if the write to r2 executes, it writes
1) can be guaranteed. The only way for r1=v to see v=true
is through an AU (preceded optionally by a CO of x=1 and
v=true), followed by a CO. But then it must be the case that
x=1 hb r2=r1?x (or x,v=1,true hb r2=r1?x), and the de-
sired behavior is guaranteed.

4.3 JLS 3 volatiles

EXAMPLE 24 (Fig 22) Consider the process:

x=0; y=0; v=0;
(r1=x;v=0;r2=v;y=1 | r3=y;v=0;r4=v;x=1)

where only the variable v is volatile. The model permits the behav-
ior r1==r3==1 per the following derivation:

170

x=0;y=0;v=0;
(r1=1;v=0;r2=v;y=1|r3=1;v=0;r4=v;x=1)(LI,LI)
x=0;y=0;v=0;
(r1,v,r2,y=1,0,0,1|r3,v,r4,x=1,0,0,1) (CO*)

The resulting process is a completed execution, with a cross-over.
Note that all the reads of the volatile variable v have not been totally
ordered in the above example. The JLS 3[6] design for volatiles
solves this problem by requiring a a total synchronization order
(SO) on all reads and writes of volatile variable x. Further, there is
required to be an hb-edge between a write of a volatile variable x
and all SO-subsequent reads of x.

Formally, this requirement is implemented in RAO exactly as
stated above. In addition to the requirements of the previous two
sections, we redefine the notion of completed execution as follows:

JLS 3 Volatility Condition: An AO process is a com-
pleted execution iff all its steps are completed and there ex-
ists a total order on all steps that read or write volatile vari-
ables (the synchronization order, SO) and there is an hb-
edge between a write of a volatile variable x and all SO-
subsequent reads of x.

Modulo this change, the notion of SC execution is unchanged from
Definition 8. To satisfy this requirement hb-edges may need to be
added, using AU. 5 With these conditions all three Test Cases—(21,
22 and 24)—are satisfied.

EXAMPLE 25 (Fig 22, revisited) Consider the process:

x=0;y=0;v=0;(r1=x;v=0;r2=v;y=1|r3=y;v=0;r4=v;x=1)

where only v is volatile. Consider:

x=0;y=0;v=0;
(s0: r1=x; v1: v=0; v2: r2=v; s1: y=1
| s2: r3=y; v3: v=0; v4: r4=v; s3: x=1)

x=0;y=0;v=0;
(s0: r1=1; v1: v=0; v2: r2=v; s1: y=1
|s2: r3=1; v3: v=0; v4: r4=v; s3: x=1)

(LI s3->s0,s1->s2)

The resulting process is not a completed execution. There must be a
total synchronization order on the steps v1,v2,v3,v4 satisfying
the desired condition. Either v2 must lie after v3 or v4 must lie
after v1. Any attempts to add hb-edges to satisfy the condition
above will result in the conditions for one of the links to be violated:
the target of a link will be hb its source. Therefore it is not possible
to complete this process.

4.4 Main theorem

Let V l range over the definitions of volatiles (excluding JLS 2,
which does not satisfy the Fundamental Property, as discussed
above). Let the notion of an RAO(Vl) (AO(Vl)) model stand for
the notion of an RAO (AO) model on top of a set of variables
which are partitioned into raw and volatile variables, and for which
the application of transformations on volatile variables is restricted
per V l, and the definition of completed execution is changed (if
necessary) as per V l. The following results carry over from AO.

LEMMA 20. For all AO(Vl) processes P,Q if P is well-behaved and

P
X−→ Q then:

5 The addition of AU edges may not be possible because of the presence
of links. Thus it is possible that starting with an AO process P, there is a
sequence of linkings resulting in a process which cannot be completed into
an execution. A safe strategy is to first introduce AU edges as needed to
satisfy the condition above, and then add LI links.

Good behavior is X−→-invariant. Q is well-behaved.

SC behavior is X−→-invariant. sc(Q) ⊆ sc(P).

IO behavior is X−→-invariant. io(Q) ⊆ sc(P).

THEOREM 21 (FUNDAMENTAL PROPERTY). Let P be a well-
behaved AO(Vl) process. Then io(P) ⊆ sc(P).

5. Conclusion and future work
We believe this paper is a first step towards establishing a system-
atic understanding of weak memory models.

We anticipate three major ways in which the work presented in
this paper will be extended in future work. First, a programming
language designer may wish to use a more “localized” notion of
visibility of steps, replacing the global hb partial order with more
refined “per processor” partial orders [9]. We believe the results in
this paper can be extended to cover this case. Second, we believe
it will be possible to develop a parametrized family of models
RAO(Ξ), where Ξ is a family of SC transformations satisfying
certain conditions, in such a way that all models in this family
satisfy the requirements in Section 1. For instance this would help
in treating languages for which the language designer does not
wish to permit AU. Third, we believe that different concurrency
and synchronization constructs (e.g. X10’s async and finish
and various flavors of locks and isolated and atomic execution) can
be modeled on top of this framework.

We plan to report on these ideas in subsequent work.

Acknowledgements We gratefully acknowledge extended dis-
cussions with Doug Lea, Bill Pugh, Jeremy Manson, Allan Kiel-
stra, Vivek Sarkar, Suresh Jagannathan, Tony Hoare, Hans Boehm
and the participants of the Java Memory Model list. Comments
from PPoPP reviewers were very helpful. Vijay Saraswat, Maged
Michael and Christoph von Praun were supported in part by
DARPA under contract No. NBCH30390004. Radha Jagadeesan
was supported in part by NSF 0430175.

References
[1] Arvind and J.-W. Maessen. Memory model = instruction reording

+ store atomicity. In Proceedings of 33d Annual International
Symposium on Computer Architecture, 2006.

[2] H.-J. Boehm. Threads cannot be implemented as a library. In PLDI,
pages 261–268, 2005.

[3] P. Charles, C. Donawa, C. Grothoff, K. Ebcioglu, A. Kielstra,
V. Saraswat, V. Sarkar, and C. von Praun. X10: An object-oriented
approach to non-uniform cluster computing. In OOPSLA, pages
519–538, 2005.

[4] G. Gao and V. Sarkar. Location Consistency – A New Memory Model
and Cache Consistency Protocol. IEEE Transactions on Computers,
49(8):798–813, August 2000.

[5] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta, and
J. Hennessy. Memory consistency and event ordering in scalable
shared-memory multiprocessors. In Proceedings of the International
Symposium on Computer Architecture (ISCA’90), pages 15–26, June
1990.

[6] J. Gosling, W. Joy, G. Steele, and G. Bracha. The Java Language
Specification, Third Edition. Addison Wesley, 2005.

[7] J. Hoeflinger and B. de Supinsky. The OpenMP memory model. June
2005.

[8] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Transactions on Computers,
28(9), 1979.

[9] D. Lea. Alternatives to SC. Message to C++ threads standardization
list, Thu Jan 11 2007.

171

[10] J. Manson, B. Pugh, and S. Adve. The Java Memory Model. In POPL
’05. Proceedings of the 32d ACM SIGPLAN-SIGACT on Principles
of programming languages, Jan. 2005.

[11] M. M. Michael and M. L. Scott. Simple, fast, and practical non-
blocking and blocking concurrent queue algorithms. In PODC ’96:
Proceedings of the fifteenth annual ACM symposium on Principles of
distributed computing, pages 267–275. ACM Press, 1996.

[12] W. Pugh. Java Memory Model Causality Test Cases. Tech-
nical report, U Maryland, 2004. On www.cs.umd.edu, as
˜pugh/java/memoryModel/.

[13] V. Saraswat. Concurrent Constraint-Based Memory Machines: A
Framework for Java Memory Models. In ASIAN, pages 494–508,
2004.

[14] V. Saraswat and R. Jagadeesan. Concurrent Clustered Programming.
In Concur, pages 353–367, 2005.

[15] D. Shasha and M. Snir. Efficient and Correct Execution of Parallel
Programsthat Share Memory. ACM Transactions on Programming
Languages and Systems, 10(2):282–312, April 1988.

[16] Z. Sura, X. Fang, C.-L. Wong, S. P. Midkiff, J. Lee, and D. A. Padua.
Compiler techniques for high performance sequentially consistent
Java programs. In PPOPP, pages 2–13, 2005.

[17] J. E. Vuillemin. Proof-techniques for recursive programs. PhD thesis,
1974.

[18] C. Wallace, G. Tremblay, and J. Amaral. The Tamability of the
Location Consistency Memory Model, 2002.

[19] K. Yelick, D. Bonachea, and C. Wallace. A Proposal for a UPC
Memory Consistency Model, v1.1. Technical Report LBNL Technical
Report (draft), 2004.

172

