
Efficient and Correct 
Programs that Share 

DENNIS SHASHA 

Execution of Parallel 
Memory 

Courant Institute of Mathematical Sciences, New York University 
and 
MARC SNIR 

IBM T. J. Watson Research Center 

In this paper we consider an optimization problem that arises in the execution of parallel programs 
on shared-memory multiple-instruction-stream, multiple-data-stream (MIMD) computers. A program 
on such machines consists of many sequential program segments, each executed by a single processor. 
These segments interact as they access shared variables. Access to memory is asynchronous, and 
memory accesses are not necessarily executed in the order they were issued. An execution is correct 
if it is sequentially consistent: It should seem as if all the instructions were executed sequentially, in 
an order obtained by interleaving the instruction streams of the processors. Sequential consistency 
can be enforced by delaying each access to shared memory until the previous access of the same 
processor has terminated. For performance reasons, however, we want to allow several accesses by 
the same processor to proceed concurrently. Our analysis finds a minimal set of delays that enforces 
sequential consistency. The analysis extends to interprocessor synchronization constraints and to 
code where blocks of operations have to execute atomically. We use a conflict graph similar to that 
used to schedule transactions in distributed databases. Our graph incorporates the order on operations 
given by the program text, enabling us to do without locks even when database conflict graphs would 
suggest that locks are necessary. Our work has implications for the design of multiprocessors; it offers 
new compiler optimization techniques for parallel languages that support shared variables. 
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1. INTRODUCTION 

There is a well-established programming paradigm for serial computers: A stream 
of instructions is executed serially; the execution of each instruction is atomic 
and terminates before the execution of the succeeding instruction starts. In 
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Segment 1 Segment 2 

test&setl(LOCI<) test&setP(LOCK) 

readl(X) read?(X) 

writel(X) write?(X) 

resetl(LOCI<) resetS(LOCIi) 

Fig. 1. Serialization routines. 

practice, the execution of several succeeding instructions may overlap in time. In 
particular, memory accesses may be pipelined, in order to overcome the high 
memory latency. In some machines it is even possible for accesses to occur in 
memory in an order that is different from the order they were issued by the 
processor. This concurrency is hidden from the user; he or she should not be 
aware that memory is accessed out of order. The control logic of the machine 
achieves this by enforcing an execution order that respects data dependencies: 
An instruction that uses a value returned from memory is delayed until this value 
is available; successive accesses to the same memory location occur in the order 
they were issued. 

A shared-memory MIMD computer, such as the NYU Ultracomputer [9] or 
the IBM RP3 [ 161, consists of a set of processors connected to a shared memory. 
Each processor executes independently a (possibly distinct) serial program. Some 
of the instructions in these programs may be for load, store, or read-modify-write 
operations that access a shared-memory location. We call the code executed by 
each processor a sequential program segment; the union of all these segments is 
the parallel code executed by the machine as a whole. 

The programming paradigm for such machines is provided by the interleaving 
semantics for parallel code: 

The outcome of an execution of a parallel code is as if all the instructions were executed 
sequentially and atomically. Instructions in the same program segment are executed in 
the order specified by this segment; the order of execution of instructions belonging to 
distinct segments is arbitrary [12, 141. 

That is, the outcome of an execution is as if the instructions were all executed 
in an order obtained by arbitrarily interleaving the streams produced by the 
distinct program segments. We follow [12] and [14] in calling this condition 
sequential consistency. 

In order to enforce sequential consistency, it is not sufficient to consider data 
dependencies within each program segment; interdependencies have to be taken 
into account as well. Suppose two program segments in a parallel program update 
a variable X, but serialize their accesses using 1ocks.l The serialization routines 
are written as shown in Figure 1. The reset instruction is just a regular store. 
There is no data dependency between the writel(X) and the resetl(LOCK) 
instructions in the first program segment. Suppose these two memory accesses 
are allowed to occur out of order. Then the memory accesses of the parallel 

1 Our theory encompasses cases where access to shared variables need not be serialized as well. 
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program may occur in memory in the following order: 

test&setl(LOCK) readl(X) resetl(LOCK) test&set2(LOCK) read2(X) 
writel(X) write2(X) reset2(LOCK). 

The serialization failed, since both processors read the original value of X and 
only the update performed by the second processor is reflected in the shared 
data. This execution is not sequentially consistent. In a sequentially consistent 
execution, writel(X) should seem to occur before resetl(LOCK); this is not true 
of the execution above. Note that each operation was executed correctly in 
memory, and the instructions within each program segment were executed in an 
order that preserves data dependencies within the segment (test&set(LOCK) 
occurs in memory before reset(LOCK), and read(X) before write(X)). 

Such hazards can be prevented by enforcing that accesses occur in memory in 
the order they are issued by the processors. One approach is that a processor 
does not initiate a new access to shared memory before the previous access has 
terminated. (This can be easily enforced if each memory request, including stores, 
returns a reply.) Another approach, suggested by Lamport [ 121, is that all memory 
requests are handled by one memory controller; the controller receives requests 
one at a time and processes them in FIFO order. 

The shared memory of the NYU Ultracomputer and IBM RP3 machines 
consists of a set of memory modules; a packet switched multistage interconnection 
network connects processors to memory modules. A processor need not wait for 
a reply to its previous request to shared memory before issuing a new one, and 
several memory requests issued by the same processor may simultaneously 
proceed through the network. 

Requests that arrive simultaneously to the same memory module conflict; 
further conflicts may occur in the network. These conflicts delay requests by 
unpredictable amounts. As a result, requests issued by a processor to distinct 
memory modules may execute out of order. Similarly, a memory module may 
execute a request m before it executes a request m’, even though m’ was issued 
first (m and m’ are issued by different processors). Thus, the NYU Ultracomputer 
and IBM RP3 machines do not conform to the programming paradigm provided 
by interleaving semantics; “incorrect” executions, such as illustrated in our 
previous example, may occur on them. The same situation is likely to occur with 
other large shared-memory MIMD machines. Pipelining of memory requests is 
required in order to mask the (relatively) large latency of the interconnection 
network, and the throughput is greatly reduced if all accesses are delayed 
whenever a conflict delays some access. 

While the NYU Ultracomputer and IBM RP3 do not enforce sequential 
consistency in hardware, they both provide control mechanisms that allow them 
to do so in software. For example, the IBM RP3 has a fence instruction; the 
execution of this instruction by a processor causes it to wait until all outstanding 
references to shared memory have completed. 

1 .l Our Goal 

A parallel computer architecture that is not sequentially consistent is extremely 
hard to understand; it does not fit a programming paradigm that can be com- 
fortably used by software or programmer. We postulate that parallel programs 
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April 1988. 
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are created for an idealized parallel architecture, where machine instructions are 
executed atomically (an access to shared memory involves only one word). Such 
programs may come from two sources: They may be directly written by users, 
when efficiency dictates a programming style close to the machine architecture; 
or they may be the intermediate output of a compiler that compiles code for a 
shared-memory parallel computer. We consider the next compilation phase that 
maps this intermediate code into the real architecture: Control instructions such 
as fences are added so that the resulting code will execute on the real machine 
with the same behavior as the source code has on the idealized machine. The 
control instructions delay the execution of some shared-memory accesses until 
previous accesses have terminated. Since delays slow the program down, we seek 
to minimize the number of delays enforced. 

An analysis of interdependencies can reduce the number of delays used. A 
simple observation is that hazards can be due only to variables that are shared 
read-write (i.e., accessed by more than one program segment and modified by at 
least one such segment). It is sufficient to delay each access to a shared read- 
write variable until the previous access to a shared read-write variable by the 
same processor has completed [8]. This policy, however, is still not optimal. The 
first goal of our work is to determine the minimal set of delays that enforce 
sequential consistency. 

The second part of our work considers cases where several memory accesses 
have to behave atomically. We assume code is produced for an idealized machine 
that has “high-level” atomic operations. For example, the language may provide 
atomic accesses and assignments to structured variables (such as arrays or 
complex numbers); the hardware guarantees atomicity of accesses only at the 
word level. When the idealized code is mapped on the real architecture, extra 
synchronization code-for example, to acquire and release locks-is needed. As 
synchronization code is expensive and locking reduces concurrency, we desire to 
use locking as parsimoniously as possible. The second goal of our work is to 
minimize both locks and delays for this more general case. Note that this work 
is relevant even for machines that conform to the model provided by interleaving 
semantics. 

The generalization to multiaccess atomicity bears strong resemblance to 
database concurrency control [4-61, but surprisingly our solution requires far less 
locking than database concurrency control theory would lead one to expect. The 
reason is that we make strong use of knowledge that is not available to the 
concurrency control designer. Since our algorithms run as part of a compilation 
stage, we know what accesses each program segment makes. The concurrency 
control designer, by contrast, does not normally know the analogous information, 
that is, what transactions will run concurrently with a given transaction. 

To see how this can make a difference, suppose there are three program 
segments: Segment 1 writes x and y atomically, segment 2 reads x and some 
private variables, and segment 3 reads y and some private variables. We can 
ensure the atomicity of the accesses without requiring any locks. A concurrency 
control designer, asked to design a locking protocol for a transaction that writes 
x and y atomically, would be forced to use locking, because he or she would 
not know whether there were concurrent transactions that might access both 
x and y. 
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This example used knowledge of the global set of accesses. We also use the 
known order of occurrence of these accesses (e.g., see the discussion of Figures 6 
and 7 in Section 3). 

In the next section, we develop a precise formalism to reason about serializa- 
bility and atomicity of concurrent code. This formalism is strongly influenced by 
the work of Lamport [ll, 131, and Lynch and Fisher [14]. In Section 3 we consider 
systems with no atomicity constraints; a minimal set of delays that enforce 
sequential consistency is found. This work is extended in Section 4 to restricted 
systems with atomicity constraints where delays are sufficient to enforce sequen- 
tial consistency. In Section 5 general solutions using locking and delays are 
analyzed. In Section 6 we consider practical issues in the implementation of our 
code transformations, and further applications. Section 7 concludes this paper. 

2. PRELIMINARIES 

We consider the concurrent execution of a program on a parallel machine. The 
program consists of instructions, each specifying the execution of one operation. 
Every operation in the program accesses one or more storage locations, or 
uariables. These may be memory locations, general-purpose registers, or special- 
purpose registers-for example, an instruction counter or status register. An 
access is a write if it updates the value of the variable accessed, it is a read 
otherwise. Operations communicate only by accessing the same variable. We 
assume the state of the machine is completely defined by the value of its variables; 
the effect of each operation is defined as a mapping from the (old) values of the 
variables read by the operation to the (new) values of the variables written by 
the operation (the two sets of variables may overlap). Each operation’s access to 
a variable is serialized (i.e., two accesses to the same variable behave as if they 
occur serially in some order). This implies the atomicity of operations that make 
one access to a single location. 

Two accesses to the same variable conflict if at least one is a write; two 
operations conflict if they execute conflicting accesses. (More restrictively, two 
accesses conflict if the final value of the variable accessed, or the values computed 
by the accessing instructions may change when the order of accesses is reversed; 
two update accesses that commute, such as “increment counter,” do not conflict, 
even though both are writes.) The execution order specifies the order in which 
conflicting accesses are executed. This order determines the behavior of the 
computation: Any sequential execution of the accesses in an order that extends 
the execution order (i.e., a topological sort of the execution order) exhibits the 
same behavior. Conflicting accesses are executed in the same relative order in 
any such sequence, so that the same final state is reached by all these sequences. 

Operations should appear to execute atomically: for any two operations u and 
u, either all variable accesses of u appear to occur before any access of u, or vice 
versa. Hence, the effect of an execution should be as if the instructions were 
executed in some sequential order, with variable accesses of an instruction 
starting only after all variable accesses of the previous instruction have termi- 
nated. In addition, the program prescribes an order for the instructions (called 
the program order). We assume this order is fixed, there is no data-dependent 
branch of control (later we shall remove this restriction). For a parallel machine, 
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the operations on each processor are ordered sequentially, but there is no 
restriction on the order of operations executed by distinct processors. The 
program order, therefore, is the union of several disjoint chains. More general 
program orders may be used to represent synchronization constraints across 
processors; our results are valid for arbitrary order relations. 

The program order imposes restrictions on the execution order: If u precedes 
u in the program order, then the execution order should make it appear as if u 
executes all its storage accesses before u executes any of its accesses. A compu- 
tation is correct if operations appear to execute atomically, in the order specified 
by the program order. 

In addition, one may have restrictions on the order storage accesses are 
executed within an operation (e.g., operands are read before results are written 
back). Such restrictions usually follow from the semantics of the operation, and 
are often enforced by the computer architecture, as part of a correct implemen- 
tation of these operations. A correct execution must also respect this ordering of 
accesses within operations. 

2.1 Definitions 

We use in the sequel the following definitions and results: A (partial) order is an 
irreflexive, asymmetric, transitive relation. Such a relation is represented by a 
directed acyclic graph (DAG) with the property that if a directed path connects 
node u to node u then uu is an edge of the graph. An order is total, or linear, if 
every two distinct elements are ordered. 

In the following definitions, it may help to think of C as the conflict relation 
on accesses, of E as the execution order, of P as the program order, and as A as 
the atomicity constraint (z&u if (u, U) should appear to execute atomically). We 
make this association explicit in Section 2.2. 

Let C be a symmetric relation. The relation E is an orientation of C if whenever 
uCv then either uEv or vEu holds. The relation E is a proper orientation of C if 
E is an acyclic orientation of C. 

Let P be an irreflexive relation and A be an equivalence relation on the same 
set U.P/A is the irreflexive relation induced by P on the family U/A of equiva- 
lence classes of A: u P/A v if u # v and there exist u E u, u E v such that uPu. 
If P is transitive, then P/A is transitive. The relation P is closed under A if 

UPU, uAu’, vAu’, 1uAu implies V’PV’. 

P is closed under A iff, for any u, u, [u]P/A[u] implies uPu. 
Let P, be an irreflexive relation on U/A, and P2 _C A be an irreflexive relation 

within the equivalence classes of A. The lexicographic product P = PI X P, of 
these two relations is the relation defined on U by 

UPV if either (i)luAu and [u]P,[u] 
or (ii) UAU and uP2u. 

If PI and P2 are both partial orders, then their lexicographic product is a partial 
order. P is closed under A iff P = P/A X P fl A. 

Two relations P and R are consistent if P U R can be extended to a total 
ordering. A relation can be extended to a total ordering iff its transitive closure 
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is irreflexive. Thus, P is consistent with R iff the graph of the relation P U R has 
no cycles. 

Let A be an equivalence relation, and P be a partial order. A relation E is 
consistent with P and A if it can be extended to a total order ,!? that fulfills the 
following two conditions: 

(2.1) P G E, so that if uPv then u occurs before u in the sequence defined by i?; 
and 

(2.2) equivalent elements occur in consecutive locations in the sequence defined 
by I!?; that is, if uAv, but -UAW, then either wi?u and w&, or UEW and 
VEW. 

When A is trivial (i.e., A is the equality relation), then this new definition of 
consistency reduces to the previous one: E is consistent with P and = iff it is 
consistent with P. 

We have the following lemma: 

LEMMA 2.1 Let A be an equivalence relation, P be a partial order, and E be a 
relation on the same set. Then the following assertions are equivalent: 

(1) E is consistent with P and A; 

(2) (i) E is consistent with P, and (ii) E/A is consistent with P/A; 

(3) (i) E FU A is consistent with P FU A, and (ii) E/A is consistent with P/A; and 

(4) (i) (E rl A) U (P n A) has no cycles, and (ii) all cycles of E U A U P are 
contained in A. 

PROOF. Assume (1). Take a total order E that extends E and fulfills conditions 
(2.1) and (2.2). According to condition (2.1), P G E, so that P is consistent with 
E. Condition (2.2) implies that E induces a total order ,!?/A on the set of 
equivalence classes of A; this order extends both E/A and P/A; it follows that 
these two relations are consistent. Hence, (1) + (2). 

Clearly, (2) * (3). 
E n A is consistent with P n A iff (E n A) U (P n A) has no cycles; hence, 

(3i) and (4i) are equivalent. Any cycle of E/A U P/A corresponds to a cycle of E 
U P U A that is not wholly contained within an equivalence class of A; conversely, 
any such cycle in E U P U A induces a cycle of length ~2 in E,‘A U P/A. Hence, 
(3ii) is equivalent to (4ii), and (3) w (4). 

Assume (3) holds true. One can order the equivalence classes of A in a linear 
order E, that extends E/A U P/A; within each class, one can order the elements 
in a linear order E2 that extends (E n A) U (P n A). Let E = E, x Ez. Then ,!? 
is a linear order that extends E and fulfills conditions (2.1) and (2.2). Hence, 
(3) -0). 0 

To simplify discussion in the sequel, we identify a relation with its underlying 
graph, and a graph with its set of edges. A simple cycle in a graph will inter- 
changeably be represented as a cyclic list of nodes or as a set of edges. 

2.2 The Model 

We characterize the code by a tuple (V, A, P, C). V is the set of variable accesses 
executed by the program. The variable accesses are partitioned into sets, each 
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Segment 1 

al: X := 1; 

bl: Y := 1; 

Segment 2 

a2: y := Y; 

b2: x := X; 

Fig. 2. Parallel code. 

set consisting of the accesses executed by one atomic operation. This partition is 
represented by an equivalence relation A on V; the equivalence classes of A are 
the set of accesses of atomic operations. P is the order on variable accesses 
required by the program and by the semantics of the individual operations; it is 
a partial order on V. The order P is closed under A; that is, 

uPv; uAu’, vAv ‘, 1uAv implies U’PV’. 

Intuitively, if one access of an operation u is required to precede an access of an 
operation v, and u # v, then all accesses of u are required to precede any access 
of v. 

C is the conflict relation on accesses; it is a symmetric relation on V. C is 
irreflexive, but not necessarily transitive. For example, if u and w are read 
operations and v is a write operation, all accessing the same variable, then we 
have uCv and vCw, but -uCw. 

The order relation P represents both order required on operations by the 
program and order required on accesses within each operation by the semantics 
of these operations. The requirement that P be closed with respect to A implies 
that P/A is a partial order on the set V/A of atomic operations. Conversely, one 
can characterize a code by a tuple (V, A, P1, Pz, C), where P, is a partial order 
on the set V/A of atomic operations, and P2 G A is a partial order on accesses 
within each operation; P is the lexicographic product of Pi and PZ as defined 
above. 

An execution E is a proper orientation of the conflict relation C. Informally, 
uEv if u and v are conflicting accesses (i.e., they both access the same variable 
and at least one of them is a write), and the access u occurs in storage before the 
access v. 

An execution order E is correct if it is consistent with P and A; that is, E is 
correct if it can be extended to a linear order such that the accesses occur in this 
linear sequence in the order indicated by P, and accesses that belong to one 
operation are executed consecutively, not interrupted by other accesses. The first 
condition states that the order of execution of the operations is consistent with 
the order specified by the program. The second condition implies that the effect 
of the execution is as if each atomic operation were executed indivisibly. 

One may think of the tuple (V, A, P) as a specification for correct execution. 
A correct execution is one that behaves as a linear ordering of V that is consistent 
with P and A: Accesses occur in the order specified by P, and all accesses from 
an equivalence class of A are contiguous. The conflict relation C specifies the 
external interface of an execution: The observable behavior of an execution is 
determined by the orientation it induces on C. Therefore, we may take an 
execution to consist of just this orientation. 

Example. Consider the program segments in Figure 2 (the example is taken 
from Collier [7]). X and Y are variables shared by both program segments, and 
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(.,;.,,,. ,021: ,;A, Y 

\ / 
\ a221 WRITE y 

I ‘,< 

/ 
El ’ \ / \ / \ J. 

b21: READ X 

b22: WRITE x 

Fig. 3. Code specification. 

Fig. 4. Incorrect execution. 

x and y are different registers. Assume that initially X = Y = 0. Each operation 
consists of a single assignment statement. No interleaving of these operations 
consistent with the order in each program can lead to a state where x = 0 and 
y = 1; such an execution would not be consistent with P/A. Indeed, if x = 0 then 
operation b2 was executed before al; but then a2 should take effect before bl, so 
that y = 0. 

The accesses executed by this code are shown in Figure 3. Here, and in the 
following figures, full arrows indicate the program order P, broken lines indicate 
conflict edges of C, and boxes enclose accesses of the same operation that should 
execute atomically. If the accesses to shared memory in either the first program 
segment or the second program segment are executed out of order, then it is 
quite possible to obtain this inconsistent result (Figure 4). For this case, E = 
((bl, a21), (b21, al)]. So, E U P has a cycle (al, bl, a21, a22, b21, al). 

Note, however, that this is the only inconsistent result. For example, the access 
pattern a21, bl, al, b21 would yield x = 1 and y = 0. This would be entirely 
ACM Transactions on Programming Languages and Systems, Vol. 10, No. 2, April 1988. 
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acceptable, since it produces the same results as the interleaving al, a21, a22, 
b21, b22, bl.’ For this case, E = ((al, b21), (a21, bl)), and E U P is acyclic. 

One can control the order of execution of operations by introducing delays. A 
delay between two storage accesses u and v forces access u to complete before 
access v begins. The delay is enforced by the control logic of the computer, for 
example, by mechanisms that postpone the execution of a memory access until 
some previous load returned a value or a previous store was acknowledged. We 
denote by uDv the fact that access v is delayed until access u is executed. The 
relation D is a partial order. 

If uEv then access u is executed earlier than access v; if uDv then access u is 
executed earlier than v; the temporal order of execution of accesses is clearly 
acyclic, and extends E and D. This implies the following lemma: 

DELAY LEMMA. For any execution, E is consistent with D. 

A delay relation D can be seen as a specification of the effect of some control 
mechanism: It restricts the executions to those that are consistent with D. 
A delay relation D enforces correctness if any execution order E that is consistent 
with D is correct (i.e., is consistent with P and A). A delay relation that enforces 
correctness is a control strategy that enforces correct execution of a given 
program. Such a delay relation always exists: One can force serial execution of 
all the storage accesses, in an order that fulfills conditions (2.1) and (2.2). This 
is not a very interesting solution, as it achieves correctness at the expense of 
complete loss of intraprocessor or inter-processor concurrency. We shall be 
interested in delay relations D that fulfill D G P. This restriction has two 
motivations: If D C P, any computation order that is consistent with P is also 
consistent with D, and D does not prohibit a computation that could occur 
within the constraints of the code. Also, in the situation where P represents the 
ordering within sequential program segments executed by distinct processors, 
then constraints in P are constraints on the order of accesses executed by the 
same processor; these can be enforced by control logic local to the processor. A 
delay pair that is not in P puts a constraint on the order of two accesses that are 
performed by distinct processors; the enforcement of such constraint requires 
expensive interprocessor coordination. 

3. SYSTEMS WITH NO ATOMICITY CONSTRAINTS 

A delay relation D G P that enforces correctness does not always exist: Delays 
cannot always guarantee atomicity of operations. Consider, for example, the code 
in Figure 5. The first operation atomically reads the record (X, Y), whereas the 
second operation atomically updates this record. Even if a correct order of 
accesses is enforced, one can still have an execution order al, a2, b2, bl that 
violates the atomicity of the operations; the read returns a half updated record. 

In this section we examine the situation where each operation performs a 
unique storage access; that is, each equivalence class of A is a singleton (A is the 
equality relation). In this case the issue of atomicity does not arise; E is correct 

‘The reader may observe that the sequential consistency requirement is much weaker than the 
serialization principle addressed in database theory [lo], which would forbid this second outcome. 
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:_:J:::$?F 

Fig. 5. Code with atomicity constraints. 

al: write X -------- a2: read X 

Fig. 6. Code that does not require delays. 
1 i 

bl: write Y ------- b2: read Y 

al: write X \ 
\ 

/ 02: read Y 
/ 

i ‘,< Fig. 7. Code that requires delays. 

/ ‘\ 
1 

bl: write Y / 1 b2: read X 

iff it is consistent with P. This is a simple case where a delay relation D G P 
that enforces correctness exists, namely, D = P. In many cases a proper subset 
of P can, too, enforce correctness. We shall be looking for a minimal delay 
relation D C P that enforces correctness. 

We give a constructive proof that there exists a unique minimal partial order 
relation D C P that enforces correctness. Our strategy for finding it is based on 
the following reasoning: An execution E is incorrect if P U E has cycles. Since 
E is an orientation of C, all such cycles are also cycles of the graph of P U C. 
This graph is known in advance, so its cycles indicate potential violations of 
correctness at run time. Suppose we enforce a delay uDu for every pair of 
operations uu such that UPU, and uu is an edge on a cycle of P U C. Then every 
cycle of P U C is also a cycle of D U C. It follows that every cycle of P U E 
would also be a cycle of D U E. D U E, however, is acyclic by the delay lemma. 
So choosing delays in this way ensures P U E is acyclic and E is correct. Consider, 
for example, the code of Figure 6. Here, P U C has no cycles; the four storage 
accesses may occur in arbitrary order, with no perceived violation of the required 
program order. In Figure 7 we have switched the order of the two reads; this is 
essentially the same code as presented in Figure 2. The graph of P U C has one 
directed cycle, (al, bl, a2, b2, al). This cycle indicates a possible incorrect 
execution: the execution where E = ((bl, a2), (b2, al)). If delays are imposed on 
the pairs (al, bl) and (a2, b2), however (these are the P edges on this cycle), 
then the incorrect execution cannot occur as it would be inconsistent with the 
delays. In this case we must enforce all the order constraints given by P in order 
to enforce correct execution. Figure 6 was an example where this is not the case. 

In order to construct D, it is sufficient but not necessary to consider all cycles 
of C U P; rather, one can consider “minimal counterexamples,” that is, acyclic 
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subsets of C that are “minimally incorrect.” Let Qi be the family of acyclic subsets 
of C that are not consistent with P; S E + if S C C is acyclic and P U S contains 
a cycle. We call a minimal element of Cp a minimal inconsistent execution 
(minimality is by set containment). The family @ of sets is closed under contain- 
ment: If S E + and S ’ > S, then S ’ E Cp. Hence, S E @ iff it contains a minimal 
inconsistent execution. We have the following theorem: 

THEOREM 3.1 Let D be a delay relation. Then D enforces correctness iff, for 
every minimal inconsistent execution S, D U S has a cycle. 

We need the following lemma to prove the theorem: 

LEMMA 3.2 Let G = (V, E) be a directed acyclic graph, and u and v be two 
nonadjacent nodes of G. Then either G1 = (V, E U (uv)) or Gz = (V, E U {vu)) is 
an acyclic graph. 

PROOF. If both G1 and GP contain cycles, then there is a path in G from u to v 
and a path from v to u. Hence, G contains a cycle-a contradiction. 0 

PROOF OF THEOREM 3.1 + Let E be an inconsistent execution. E contains a 
minimal inconsistent execution S. By assumption, S U D has a cycle, implying 
that E U D have a cycle; but the latter is impossible. 

e= Assume there exists a minimal inconsistent execution S such that S U D is 
acyclic. By repeated application of Lemma 3.2, S can be extended to an execution 
order E such that E U D is acyclic. Since S C E, and S is inconsistent, then E is 
inconsistent; so D does not enforce correctness. 0 

In the next subsection, we shall build delay relations that enforce consistency 
using the following, generic construction: Let \k be a family of cycles in P U C 
such that each minimal inconsistent execution is contained in a cycle of \k; let D 
be the set of P edges on the cycles in Q. Then S U D has a cycle for each minimal 
inconsistent execution S, and hence, D enforces correctness. 

3.1 Critical Pairs 

A set 0 is a critical cycle of (P, C) if it is a simple cycle of P U C and has no 
chords in P (rs E U, uv E g, ru E P implies s = u). 

An edge uv E P is a critical pair (of (P, C)) if it occurs in a critical cycle. 

LEMMA 3.3 Let S be a minimal inconsistent execution, and u be a shortest cycle 
in S U P (i.e., a cycle with fewest number of edges). Then (r is a critical cycle. 

PROOF. Let u = (vO, . . . , ~~-1, ~0). If vi = vi, with i < j, then (~0, vi, vj+l, 

v,-~, v,,) is a shorter cycle in P U S; hence, c is simple. If UiPVj, with i < j, 
then (~0, . . . , vi, vj, . . . , ~~-1, ~0) is a shorter cycle in P U S; if UiPVj, withj < i 
(and i,j # n - 1, 0), then (vj, Uj+l, . . . , vi, Uj) is a shorter cycle in P U S. Hence, 
g has no P chords. 

COROLLARY 3.4 Let D be the “critical pair” relation. If E is an execution order 
that is consistent with D, then E is consistent with P. 

PROOF. The previous lemma implies that each minimal inconsistent execution 
S is contained in a critical cycle. Making D consist of all critical pairs ensures 
that no such execution can come to pass. q 
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Q: read A 

J. ‘\\ 

b: read B, \ 

Fig. 8. Intraprocess data dependencies. 1 
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1 Y’ 1 /\ Fig. 9. Interprocess data dependencies. 
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cl: read C / 
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, c2: write D 

/ /‘\ 1 
/ \ 

dl: read D / ‘d2: write A 

3.2 Examples 
Figure 8 illustrates that data dependencies within one program segment are 
handled correctly as a particular case of critical pairs. We have a critical cycle 
(a, d, a) and a critical cycle (b, c, b). The pairs ad and bc are critical pairs, so 
that d is delayed until a terminates, and c is delayed until b terminates. 

Figure 9 illustrates that use of critical pairs can save delays. We have four 
simple cycles in P U C (see Figure 10): 

(i) (al, bl, ~2, b2, cl, dl, ~2, d2, al), 
(ii) (al, bl, ~2, d2, al), 

(iii) (al, cl, b2, d2, al), and 
(iv) (al, dl, ~2, d2, al). 

The first cycle is not critical, as it has P chords-for example, (al, cl). In fact, 
this cycle properly contains the edges from C - P of each of the remaining three 
cycles and does not define a minimal inconsistent execution. The remaining 
three cycles are critical. The critical pairs are D = ((al, bl), (al, cl), (al, dl), 
(a2, d2), (b2, d2), (~2, d2)). This set of delays enforces consistency. In the first 
program segment, the last three operations are delayed until al is executed. In 
the second program segment, d2 is delayed until all the other operations have 
been executed. On the other hand, the last three accesses in the first program 
segment and the first three accesses in the second program segment can be 
executed in arbitrary order, even though these are accesses to shared read-write 
variables. 
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al: read A f a2: write B 
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\ 
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dl: read D d2: write A d2: write A 

(III) (IV) 

Fig. 10. Cycles and critical pairs. 

3.3 Minimality 

We have shown that each minimal inconsistent execution is contained in a 
critical cycle. We show now that the converse holds: The edges from C - P in 
a critical cycle are a minimal inconsistent execution. It follows that the critical 
pair relation is a minimal delay relation that enforces correctness. 

LEMMA 3.5 (i) Let u be a critical cycle of (P, C), and let S = u - P. Let x be an 
arbitrary simple cycle in S U P. Then r is obtained from u by replacing each P 
edge of (r by a simple path of P edges; all S edges of u occur in ir (see Figure 11). 

(ii) The lust result holds true even if P is an arbitrary transitive relation (not 
necessarily acyclic), provided that r fl S # 0. That is, if S n x # 0 then S C ?F. 

PROOF. Let u = (v,,, . . . , vnel, ~0). In (i) P is acyclic so that 7r must contain 
an edge from S, call it nini+l; such an edge is assumed to exist in (ii). Let vkvk+l 
be the following edge from S on the cycle 7~ (k = i if there is no other edge from 
S). Now there are two cases: 

(1) If k = i + 1 then ui+lui+p is an S edge that immediately follows uivi+l on a; 
since 7r is simple, ni+lui+z also immediately follows Uiu;+I on r. 

(2) If k # i + 1 then Vi+1 is connected in x to vk by a simple path of P edges. 
It follows that ni+1Pnk since P is transitive, and since u has no P chords, k = 
i + 2. UiUi+l is immediately followed on u by the P edge Ui+lUi+z, which is 
immediately followed by the S edge Ui+2ni+3; on R, nini+l is immediately followed 
by a simple path of P edges, which is immediately followed by the S edge Ui+2vi+3. 

The claim follows by induction. Cl 
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Fig. 11. Any simple cycle replaces P edges by simple paths of P edges. The nonprogram order 
conflict edges remain the same. 

COROLLARY 3.6 Let c be a critical cycle, and S = g - P. Then S is a minimal 
inconsistent execution, and o is the unique critical cycle in S U P. 

PROOF. By the previous lemma, S is contained in the set of edges of any cycle 
in S U P, so that S is a minimal inconsistent execution. If a is a critical cycle 
in S U P, then x is obtained from u by replacing P edges by paths of P edges. 
But ?r has no chords in P, so that each such path has length 1. It follows that 
7r=u. cl 

THEOREM 3.7 Let R C P be a relation that enforces consistency with P. Then 
the critical pair relation D is contained in R+, the irreflexive, transitive closure 
ofR. 

PROOF. Let c be a critical cycle, and uv E P be an edge of U. Let S be the set 
of edges from C - P in G. Then S is a minimal inconsistent execution by Corollary 
3.6. Since R enforces correctness, R U S contains a cycle by Theorem 3.1. It 
follows, by Lemma 3.5, that uv E R+. Cl 

3.4 Simplified Definitions of Critical Cycles 

The definition of a critical cycle can be further restricted, without affecting the 
definition of the critical relation D. First, we can ignore cycles in C U P that do 
not contain P edges; these do not contribute critical pairs. Second, we may 
require that critical cycles do not contain chords in C, with the exception of 
“trivial” chords consisting of the reversal of an edge on the cycle. Indeed, let 
u = (vo, . . . , L&-l, vo) be a critical cycle, and assume ViCVj, where j # i k 1. 
Then g1 = (vo, . . . , vi, Uj, ~~-1, ~0) and ~2 = (vi, ~i+l, . . . , Vj, vi) are simple cycles 
of P U C with no P chords (Figure 12); they both are critical cycles. Hence, all 
P edges of c are P edges of these shorter critical cycles. 

Examples. Consider the code shown in Figure 13. We have three critical cycles: 
(al, bl, a2, b2, al), (al, bl, a2, al), and (al, a2, b2, al). The first cycle has a 
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vi 

a- 

I---II::: 

C 

Vi (I) 

Fig. 12. Deleting C chords from critical 
cycles. 

al -,------- a2 

+ 

bl /’ --- b2 

Fig. 13. Simplified critical cycles. 

al . . ,H a2\ 

Fig. 14. Code for two critical cycles. 4 . . A== .-- /. I\ 4 ) 
bl --’ --- ,,2// 

nontrivial C chord (al, a2) and can be ignored. We get, from the remaining two 
cycles, that D = ((al, bl), (a2, b2)j. 

In the code shown in Figure 14, we have two critical cycles: (al, bl, a2, b2, al) 
and (a2, b2, a2). We get D = ((al, bl), (a2, b2)j. The first cycle cannot be ignored, 
even though it has a (trivial) C chord, namely, (b2, a2); note, too, that a critical 
cycle may nodewise contain another critical cycle. 

When storage accesses are the usual read and write operations, such that a 
write access conflicts with any other access to the same variable and read accesses 
do not conflict, the situation depicted in Figure 14 cannot occur: If p1CpZCp3Cp, 
then all accesses involve the same variable and either pz or p3 is a write; but then 
either p, Cp, or pzCp,. This “semitransitivity” of C implies the following result: 

LEMMA 3.8 Let C be the conflict relation for ordinary read and write operations. 
Then a pair uv E P of accesses is critical iff it occurs on a cycle of P U C with a 
minimal set of nodes. 

Critical cycles are particularly easy to characterize when code consists of the 
union of disjoint serial chains of accesses, and accesses are usual reads and 
writes. We leave to the reader the proof of the following result: 

THEOREM 3.9 A cycle CJ in P U C is critical iff it fulfills the following conditions: 

(i) IS contains at most two accesses from any chain; these accesses occur at 
successive locations in a. 
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Fig. 15. Critical cycle in parallel program segments. 

(ii) c contains either zero, two, or three accesses to any variable; the accesses 
occur in consecutive locations on u. The possible configurations are read x + 
write x, write x + read x, write x + write x, or read x +- write x + read x. 
This is illustrated in Figure 15. 

4. USING DELAYS IN GENERAL SYSTEMS 

We now consider general systems (V, A, P, C), with nontrivial atomicity 
requirements (A is an equivalence relation, but is not the equality relation). We 
seek a delay relation D that enforces correctness; we shall relax our previous 
requirements on D. In our generic situation, that of parallel serial program 
segments, the accesses of an atomic operation are executed by one processor; 
delays between such accesses can be easily enforced by the control logic of the 
processor executing them, with no loss of interprocessor concurrency. Therefore, 
D is allowed now to be an arbitrary (acyclic) subset of P U A. 

The derivation of a solution is obtained by extending the definitions and results 
of the previous section. A set 5’ G C is a minimal inconsistent execution if it 
fulfills the following two conditions: 

(1) S is not consistent with P and A; and 
(2) S’ is consistent with P and A, for any proper subset S’ of S.3 

The family of sets inconsistent with P and A is closed under containment. 
Therefore, Theorem 3.1 is valid for this extended definition: D enforces correct- 
ness iff D U S has a cycle for every minimal inconsistent execution S. 

According to Lemma 2.1, a set S C C is inconsistent with P and A if either 
S II A is inconsistent with P n A or S/A is inconsistent with P/A. Hence, S is 
a minimal inconsistent execution iff either S C A and S is a minimal inconsistent 
execution with respect to the program order P n A, or S/A is a minimal 
inconsistent execution with respect to the program order P/A, and S n A = 0. 
The first type of inconsistencies (wrong execution order inside operations) can 
be prevented by critical delays as defined in Section 3.1. In order to handle the 
second type of inconsistencies (wrong execution order across operations), we 
consider how critical cycles of operations are related to cycles of accesses. 

Let u be a cycle of a relation R on V. The projection of u on A is the cycle u of 
the relation R/A obtained by replacing each vertex by its equivalence class under 
A and deleting self-loops. 

3 Recall from Section 2.1 that S is consistent with P and A if there is a topological sort of S U P with 
A related elements clustered together. 
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LEMMA 4.1 Let a be a critical cycle of (P U A, C - A), and u be the projection 
of g on A. Then a is a critical cycle of (P/A, C/A). Conversely, every critical cycle 
a of (P/A, C/A) is the projection of a critical cycle a of (P U A, C - A). Moreover, 
if a is the projection of a cycle vr in P U A U C, then a can be chosen such that the 
edges of c from C - P U A are the same as the edges of ir from C - P U A. 

PROOF. + Let u = (vO, . . . , vnel, vO) be a critical cycle of (P U A, C - A), and 
a be the projection of a. a has no chords in A, SO that UiAvj only if j = i + 1. It 
follows that a is simple. If [ui]P/A[vj] then, since P is closed under A, ViPvj, and 
j = i + 1. It follows that a has no chords in P/A. 

* Let a = (vO, . . . , v,-~, vO) be a critical cycle of (P/A, C/A). Let 7r = 
(h, . . . , v,-~, u,,) be a cycle in P U C U A such that u is the projection of x. If 
vi Aui+l and vi+1 Avi+z 3 then these two edges can be replaced by one edge, 
UiUi+z E A, without changing the projection of r. If viAvi+i and vi+iPvi+z, 
then, since P is closed under A, viPUi+p, and Uivi+i, Ui+lvi+p can be replaced by 
UiUi+p. The same holds true if viPvi+l and Ui+lAUi+ze Repeating this process, we 
obtain a cycle a = (uO, . . . , ukel, uO) such that u is the projection of U, and 
an edge from A is not preceded or followed by an edge from A or P in cr. 
c coincides with ?r on C - P U A. 

If uiAuj and j # i + 1, then a is not simple; if UiPU; and j # i + 1, then Q has a 
P/A chord. Hence, a is a critical cycle of (P U A, C - A). 0 

THEOREM 4.2 Let DA be the set of critical pairs of (P n A, C rl A), let DA be 
the set of critical pairs of (P U A, C - A), and let Do = DA U DA. Then each 
minimal inconsistent execution S is contained in a simple cycle of S U Do; in 
particular, Do enforces correctness. 

PROOF. Let S be a minimal inconsistent execution. If S G A, and S is not 
consistent with P n A, then there is a critical cycle c of (P rl A, C n A) such 
that S = a - P. But a n P C DA C Do, so that c is a simple cycle in S U Do that 
contains S. 

If S n A = 0, and S/A is not consistent with P/A, then there is a critical 
cycle a of (P/A, C/A) such that S/A = a - P/A. By the previous lemma, there 
exists a critical cycle (r of (P U A, C - A) such that a is the projection of cr on 
A, and S = c - P U A. But a n (P U A) G DA C Do, so that u is a simple cycle 
in S U Do that contains S. Cl 

4.1 Examples 

Consider the code shown in Figure 16. We have one critical cycle of (P n A, 
C rl A), the cycle (a3, b3, a3). Hence, DA = ((a3, b3)); this delay enforces correct 
execution within atomic sets. We have one critical cycle of (P U A, C - A), the 
cycle (al, bl, a2, b2, al). Hence, DA = {(al, bl), (a2, b2)). This set of delays 
enforces correct execution across atomic sets. We obtain Do = ((al, bl), (a2, b2), 
(a3, b3)). If these three delays are enforced, any execution will look as if ai 
occurred before bi, i = 1, . . . ,3, and the first and last program segments executed 
atomically, even though no locking was done to enforce atomicity. Note that 
Do G P in this example. 

The code of Figure 17 consists of the first two program segments of the previous 
example; however, we do not require any more than al occurs before bl. We still 
get the same “external” critical cycle (al, bl, a2, b2, al) and the critical pairs 
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~/#g$ pJ 

Fig. 16. Example code for nontrivial atomicity constraints. 

al: write A 1 

Fig. 17. Code for the first two program segments of Figure 16. 

Do = ((al, bl), (~2, b2)]. In this case we have to impose a delay between pairs 
of accesses that are not P related. If these delays are enforced, then the outcome 
of any execution will be as if (al, bl) were executed atomically, even though no 
locking is used. Note that the accesses may occur in the order al, a2, b2, bl. This 
does not result in a perceived violation of atomicity as it leads to the same state 
as the sequence a2, al, bl, b2. 

The code of Figure 18 is identical to the first two program segments of Fig- 
ure 16, except that the accesses in the first program segment are required to occur 
in the reverse order. We still get the same critical cycle (of (P U A, C - A)) 
(al, bl, 132, b2, al) and the same set of critical pairs Do = {(al, bl), (~2, b2)j. In 
this case, in order to enforce a correct execution, we force accesses to occur in 
an order that is the reverse of the order specified by the program! This apparent 
paradox can be understood by going back to the example in Figure 6 and the 
discussion therein. The code given there differs from the code of Figure 18 only 
in its atomicity requirements. No execution order can lead to a violation of the 
program order requirements; hence, we are free to reorder accesses in an arbitrary 
manner. On the other hand, an execution of bl before al may lead to a violation 
of atomicity, for example, if the accesses occur in the order bl, ~2, b2, al. No 
violation of atomicity may occur when al executes before bl (and a2 before b2). 

We conclude by going back to the code shown in Figure 5. In this example we 
have two critical cycles, (al, ~22, b2, bl, al) and (al, bl, b2, ~2, al)(one cycle is 
the reversal of the other). The set of critical pairs is Do = ((al, bl), (bl, al), 
(~2, b2), (b2, ~2)). Do requires delaying bl until al occurred, and vice-versa; 
this is clearly impossible. 

The delay relation Do we defined is a subset of P U A; A has cycles, and D,, 
may also have cycles. If Do has cycles, then it cannot be physically enforced. 
Theorem 4.2 is still formally correct: Any execution order that is consistent with 
Do is consistent with P. If Do has cycles, however, then no execution order is 
consistent with Do; the antecedent is always false, and the implication is vacuous. 
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bl: write B - - 

al: write A -- --- 

Fig. 18. For this example, delays must force accesses to be in reverse of program order. 

We shall later show that Do is the minimal subset of P U A that enforces 
correctness. If DO has cycles, then correct executions cannot be enforced using 
only delays in P U A; some other mechanism, such as locking, is required. This 
is examined in Section 5. The pairs of “contradictory” delays obtained by the 
critical pair analysis will be used to determine where locking is necessary. 

4.2 Systems Where Delays Enforce Correctness 

Let Do be the delay relation defined in Theorem 4.2. D,, is acyclic, and hence 
enforceable whenever Do C P. An edge uv E A - P may occur in DO only if it 
occurs in a critical cycle u of (P U A, C - A). Let ru and VW be, respectively, 
the preceding and following edges on g. Since u is critical, we have ru, VW E 
C - P U A. We define below a natural condition that prevents the occurrence 
of such a situation. 

An access u is called external if there exists another access v such that luAv, 
UCV, but neither UPV nor VPU. An access is external iff it conflicts with an access 
of another operation and the code does not specify the order of execution of these 
two conflicting accesses. Such an access represents a nondeterministic interaction 
with another operation. A code has the single external access property if each 
operation contains at most one external access. 

In the case of a parallel program that consists of several sequential program 
segments, accesses executed by the same program segment are ordered by P. An 
access is external iff it conflicts with an access executed by another program 
segment. This implies that an access is external iff it accesses a shared read- 
write variable. The code has the single external access property iff each operation 
accesses at most one shared read-write variable. 

LEMMA 4.3 Suppose cr is a critical cycle of (P U A, C - A), in a program with 
the single external access property. Then c does not contain edges from A. 

PROOF. Let u = (vO, . . . , v,-~, vO) be a critical cycle of (P U A, C - A). Assume 
UiAvi+l. If Ui-lPUi then, since P is closed under A, vi-1 vP~+~, and u has a P chord. 
If UiPVi-l then UiUi-1 is a P chord of U. It follows that lvi-1PVi and lUiPU;-1. 
Similarly, neither vi+lPUi+a, nor vi+aPvi+l. Thus, both Ui and vi+1 are external 
accesses-a contradiction. Cl 

COROLLARY 4.4 Let E be an execution order for a code with the single external 
access property. If E is consistent with P, then E/A is consistent with P/A. 
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\ 
\ 

/ \ 

Fig. 19. Code with single external access property. 

PROOF. If E/A is not consistent with P/A, then (P U A, E - A) has a critical 
cycle. This cycle has no A edges by the previous lemma and, hence, is a cycle in 
P U E. Thus, E is not consistent with P. 0 

Thus, in a code with the single external access property, an execution order 
that respects program order constraints also respects atomicity constraints. 
Violation of atomicity constraints may occur only when an operation has two 
distinct accesses that conflict nondeterministically with other operations. 

When a code has the single external access property, atomicity constraints can 
be ignored. It follows that the critical pair relation defined in Section 3.2 enforces 
correctness; this relation will coincide with the relation Do defined in the current 
section. 

Example. Consider the code in Figure 19. This code has the single external 
access property. There is one internal critical cycle, the cycle (al, bl, al). It 
defines the internal delay (al, bl). There are two external critical cycles, (al, el, 
a2, b2, al) and (cl, dl, cl) (remember that P is closed under A). These cycles 
define the external delays (al, el), (cl, dl), and (a2, b2). These delays enforce 
correct execution. The same delays would be obtained by ignoring A and com- 
puting critical pairs for (P, C). 

4.3 Minimality 

We prove in this subsection that the delay relation defined in Theorem 4.2 is 
minimal. The proof is similar to the proof of Theorem 3.7 (which handles the 
case where there are no atomicity constraints). 

LEMMA 4.5 Let u be a critical cycle of (P U A, C - A), and let S = c - P U A. 
Then S is a minimal inconsistent execution. 

PROOF. Clearly, S is not consistent with P and A. We shall show that any 
proper subset of S is consistent with P and A. 
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Let 0 be the projection of u. Then u is a critical cycle of (P/A, C/A), be 
Lemma 4.1. We have S/A = o - P/A, so that S/A, the projection of S, is a 
minimal inconsistent execution (with respect to P/A). If rs, uu are two distinct 
edges in S, then TrAu, since u has no A chords. Thus, no two edges from S are 
equivalent under A, and the mapping from S to S/A is one-to-one. 

Let S’ be a proper subset of S. Then S’/A is a proper subset of S/A and, 
hence, consistent with P/A. It follows that S’ is consistent P and A. Cl 

THEOREM 4.6 Let Do be the delay relation defined in Theorem 4.2. Let R C 
P U A be a relation such that for any minimal inconsistent execution S there is a 
simple cycle K of R U S and K p R. Then Do is contained in the transitive, 
irreflexive closure of R. 

COROLLARY 4.7 Let R G P U A be an acyclic relation that enforces correctness 
(with respect to P and A). Then Do C R+. 

PROOF. Let S be a minimal inconsistent execution. Then S is inconsistent 
with R, and S U R has a simple cycle u. Since R is acyclic, then u g R. Hence, R 
fulfills the condition of Theorem 4.6, so that Do G R+. Cl 

PROOF OF THEOREM 4.6. Let uu E Do. There are two cases to consider: 

(i) uu E P n A occurs in a critical cycle u of (P fl A, C n A). Then S = 
u - P is a minimal independent execution, by Corollary 3.6. Thus, R U S con- 
tains a simple cycle x, and 7r g R. By Lemma 3.5 ii, it follows that UIJ E R+. 

(ii) uu E P U A occurs in a critical cycle u of (P U A, C - A). By Lemma 4.5, 
S = u - P U A is a minimal independent execution. Thus, R U S contains a 
simple cycle r such that x g R. By Lemma 3.5 ii, this implies uu E R+. Cl 

The last result implies that, if Do contains a cycle, then there exists no acyclic 
delay relation R G P U A that enforces correctness. Indeed, R+ would contain 
Do and, hence, would contain a cycle; but then R itself contains a cycle. Hence, 
when the delay relation defined by Theorem 4.2 is not enforceable, one either 
has to use delays that are outside P U A, or use a different mechanism to enforce 
correctness. 

5. LARGE ATOMIC OPERATIONS AND LOCKS 

In this section we consider the problem of enforcing correct execution for code 
when delays do not suffice. For example, we consider a concurrent execution of 
program segments where an operation may access more than one shared variable. 
We assume two mechanisms can be used to enforce correctness: 

(1) An access may be delayed until some other access has terminated (these are 
the delays used in the previous sections). 

(2) A locking protocol may be used to guarantee atomic execution of sets of 
accesses; the accesses in the code are partitioned into disjoint locking sets, 
and the protocol protects the execution of the accesses in each locking set. 
We represent that partition by an equivalence relation L; the locking sets 
are the equivalence classes of L. 
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Atomic execution of sets of accesses can be obtained using locks. A lock is set 
on a variable on behalf of a locking set. Several read locks may be set simulta- 
neously on a variable; a write lock on a variable is exclusive of any other lock. 
We use the following protocol to execute these accesses: 

Let u be a locking set. A lock on behalf of u is set on all variables accessed by u 
before the execution of any access from u. A read lock is secured on each variable 
for which there are only read accesses in u; a write lock is secured on each 
variable that is updated in u. After execution of all accesses in u, the locks are 
released. 

This protocol guarantees that a locking set accesses a variable only if it has a 
lock on it, and a locking set updates a variable only if it has a write lock on it. 
(If all the locks cannot be obtained, they are released, and we try again, avoiding 
the possibility of deadlock.) 

A locking protocol can be combined with the enforcement of a delay rela- 
tion D. We assume D and D/L are acyclic. Delays on locking sets are enforced 
by suitably ordering the acquisition and release of locks: If uD/Lv, locks on 
behalf of v are secured only after all locks on behalf of u have been released. 
Delays within locking sets are enforced by suitably ordering the accesses. 

Note that if uDv and 1uLv then each access in the locking set of v is delayed 
until all accesses in the locking set of u have taken place. This enforces a set D 
of delays that may be larger than D; D is the closure of D under L; that is, D = 
D/L x (D n L), where x is the lexicographic product defined in Section 2.1. 

DELAY AND LOCKING LEMMA. Assume the previous locking protocol is used for 
D and L. Then any execution E is consistent with D and L. 

PROOF. Assume E is not consistent with D and L. According to Lemma 2.1, 
there are two cases to consider: 

(i) (E n L) U (D n L) has a cycle. Then E is not consistent with D, which is 
impossible by the delay lemma. 

(ii) E U L U D has a cycle CJ = (vO, . . . , vnel, vO) that is not contained in an 
equivalence class of L. If viEui+l then access V. &+, occurs after access vi; the same 
holds true if UiDUi+I. 

If vi-iLviEvi+l and lUiLUi+l, then vi and vi+1 are conflicting accesses and 
require the acquisition of conflicting locks. The lock on behalf of [vi] is secured 
before vi-1 occurs and released after vi occurs. It follows that either both vi-1 and 
vi occur before vi+1 or both occur after ui+l. Since uiEvi+l, the former is the case. 
Similarly, if vi-1EviLvi+l and lvi-1Lvi, then vi-1 and ui both occur before ui+l. 

If ui-lLviDui+l and lUiLUi+l, then the locks acquired on behalf of [vi] are 
released after vi-1 occurred, but before v. ,+1 occurs. Hence, vi-1 and vi both occur 
before vi+ 1. Similarly, if vi-lDviLvi+l and lUi-lLUi, then Ui-1 and vi both occur 
before vi+1 . 

Let V&y . . . , VieI be the subset of nodes in c such that lVijLUij+l. Since v is not 
contained in one locking set, this list has length ~2. The previous argument 
implies that vi, occurs before vi,,,, j = 0, . . . , r - 1 (addition is taken modulo r); 
this is a contradiction since “occurs before” is irreflexive and transitive. 17 
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The pair of relations (D, L) can be seen as a specification of the effect of some 
control mechanism: It restricts the executions to those that are consistent with 
L and D. The following discussion does not make any assumption on the protocol 
used, our results hold for any protocol for which the delay and locking lemma is 
valid. (D and D/L should be acyclic, but it is not required that D be closed 
under L.) 

The problem is formalized as follows: As before, a program is represented by a 
tuple (V, A, P, C). An execution E is a proper orientation on C. Correctness of 
execution is enforced using a delay relation D and a locking relation L. 

The pair of relations (D, L) enforces correctness if any execution order that is 
consistent with D and L is correct (i.e., consistent with P and A). Such a pair 
always exists: (A, P) enforces correctness. We show in this section how to 
improve on this trivial solution. Following the spirit of the previous sections, we 
seek a solution (D, L) such that L G A and (i) D G P, or (ii) D G P U A, and D 
is acyclic. In case (i) no extraneous atomicity or order constraints are imposed 
on the accesses; any execution order that is correct is consistent with D and L. 
In case (ii) the constraint imposed by D and L may rule out correct computations, 
but are still easy to enforce in the case that interests us in particular; that is, 
when the code consists of the disjoint union of chains (serial program segments) 
and each operation is contained in a segment (an atomic “operation” consists of 
code executed by one processor). Accesses within a locking set are executed by 
one processor; this processor will acquire and release locks for this access; it is 
sufficient to label a lock with the identifier of the processor that acquires it. 
Delays also occur between accesses executed by the same processor and are 
enforced by the control logic of that processor. 

The major constraint on concurrency is locking; this is also likely to be the 
more expensive operation. Therefore, we shall seek a solution that is lexicograph- 
ically minimal: L is the smallest possible locking relation, and given L, D is the 
smallest possible delay relation. 

LEMMA 5.1 Let L G A be a locking relation, and D C P U A be a delay relation 
such that (L, D) enforces correctness. Then Do 5 (L U D)‘, where DO is the 
relation defined in Theorem 4.2. 

PROOF. Let S be a minimal inconsistent execution. Then S is inconsistent 
with D and L. Thus, either S C L, and S is contained in a simple cycle of 
(S n L) U (D fl L), or S n L = 0, and S is contained in a simple cycle of S U 
L U D. In either case S is contained in a simple cycle of S U (D U L). Since 
D U L c P U A, this implies, by Theorem 4.6, that D,, G (D U L)‘. Cl 

Let L c A be a fixed locking relation. The previous lemma suggests the 
following construction for D, a delay relation that enforces correctness together 
with L: 

(5.1) Let DL = Do - L, 

(5.2) let DL be the set of P edges on critical cycles of (P n L, C n L), and 
(5.3) let D(L) = DL U DL. 
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Note that DL G Do C P U A and Dt C P n L; hence, D(L) G P U A. We now 
present the following theorem: 

THEOREM 5.2 Let L C A be a locking relation, and let D(L) be defined by (5.1)- 
(5.3). Then, 

(i) the pair of relations (D(L), L) enforces correctness; and 

(ii) let D’ C P U A be an acyclic relation such that (D’, L) enforces correctness; 
then L U D(L) C (L U D’)+; and if we furthermore have L n D’ C P, then 
(L n D(L)) C (L n D’)+. 

PROOF. (i) Let S be a minimal inconsistent execution. By Theorem 4.2, S is 
contained in a simple cycle u of S U Do. Since Do C D(L) U L, CJ is a cycle of 
S U D(L) U L. If u $Z L then, according to Lemma 2.1, S is not consistent with 
D(L) and L. If (T _C L then S C L _C A. This implies that S is not consistent with 
P. But, if S U P has a cycle, then S U (P fl L) has a cycle. Thus, S is not 
consistent with P n L so that, by Corollary 3.4, S is not consistent with DL and, 
hence, with D(L). It follows that (D(L), L) enforces correctness. 

(ii) According to Theorem 5.1, we have Do c (L U D’)+. It follows that 
L U D(L) = L U Do G (D’ U L)+. Assume D’ n L G P. D’ n L enforces con- 
sistency with P n L. This implies, by Theorem 3.7, that D’ n L G (DL)+ C 
(D(L) n L)+. Cl 

The last theorem shows that D(L) is a minimal delay relation that enforces 
correctness, together with L. We show now how to construct a minimal locking 
relation L. Suppose we require that D(L) G P. 

THEOREM 5.3 Let L be the symmetric, transitive closure of Do - P. Let D(L) 
be defined by (5.1)-(5.3). Then, 

(i) L G A, D(L) C P, and (L, D(L)) enforce correctness; and 
(ii) if (L’, D’) enforces correctness, where L’ G A and D’ C P, then L C L’. 

PROOF. (i) We have Do G P U A; hence, Do - P G A, so that L G A. We have 
DL = Do - L G P, so that D(L) G P. According to Theorem 5.2, (D(L), L) 
enforces correctness. 

(ii) We have, according to Lemma 5.1, Do G (L’ U D’)+. But (L’ U D’)+ ii 
L’UP,thus,D,,-PGL’.ItfollowsthatLCL’. 0 

Suppose we merely require that D(L) be enforceable; that is, D(L) and 
D(L)/L are acyclic. 

THEOREM 5.4 Let L be the relation defined by ULU if u and v are in the same 
strongly connected component of Do. (ULU if both uv E Do+ and uu E Di.) Let 
D(L) be defined by (5.1)-(5.3). Then, 

(i) L G A, D(L) G P U A, and D(L) and D(L)/L are acyclic; and (D(L), L) 
enforces correctness; and 

(ii) if (D’, L’) enforces correctness, where L’ C A, D’ G P U A, and both D’ and 
D’/L are acyclic, then L C L’. 

PROOF. (i) We have Do G P U A. Any strongly connected component of Do is 
contained in a strongly connected component of P U A; since P/A is a partial 
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order, any strongly connected component of P U A is contained in an equivalence 
class of A. It follows that L G A. A graph induces an acyclic orientation on its 
strongly connected components; hence, D(L)/L = Do/L is acyclic. Also, D(L) FU 
L = Dn G P is acyclic. It follows that D(L) is acyclic. By Theorem 5.2, (D(L), 
L) enforce correctness. 

(ii) We have, by Lemma 5.1, (Do)+ G (L’ U D’)+. Let D be the closure of D’ 
under L’; that is, D = D’/L’ X D’ n L. Then D is acyclic, and (L’ U D’)+ = 
L’ U (D)‘. Assume both uu E Dl and uu E Do+. Since (D)’ is acyclic, either 
uu E L’, or uu E L’. It follows that L C L’. 0 

Example. Consider anew the code in Figure 18. We have Do = ((al, bl), 
(a2, b2)). If we insist that D(L) G P, we take L to be the symmetric, transitive 
closure of Do - P = (al, bl). The locking sets are (al, blj, (a2), and (b2), and 
there is one delay pair, (a2, b2). 

On the other hand, if we allow delays in A - P, then we take the locking sets 
to be the strongly connected components of Do. In this case Do is acyclic, so that 
all locking sets are singletons, and D(L) = ((al, bl), (a2, b2)). Note that this 
delay relation prevents some correct executions, such as a2, b2, bl, al. 

6. FROM ABSTRACT CODE TO REAL PROGRAMS 

6.1 Delay and Locking Mechanisms 

The preceding sections provided a framework for the detection and prevention 
of hazards in concurrent code. The actual use of this framework will depend on 
the extent of information that can be extracted from the code at compile time, 
and on the control mechanisms provided by the machine. We shall first address 
the second factor, and then turn to the first. 

Suppose that a delay relation D that enforces correctness has been computed, 
and suppose that UDV, vDw, and uDw. Then it is not necessary to record and 
enforce the delay UDW, as it will be implied by the delays uDv and UDW. In 
general, any delay relation D’ such that D is contained in the transitive closure 
of D’ will do. In particular, one can take the transitive reduction of D, which is 
the smallest relation R with the property that R G D C R+: R consists of all pairs 
uu E D such that the longest path from u to u in the graph of D has length 1 [2]. 
The same idea applies in the general case, where locks are used. 

In some cases the hardware (or firmware) of the machine may impose a set D, 
of delays; for example, the hardware may ensure correct ordering of accesses 
within atomic operations. One needs then to find a minimal relation D2 such 
that D, U Dz enforces correctness. Let D be a minimal delay relation that 
enforces correctness, let D’ = (D U D1)‘, and let R’ be the transitive reduction 
of D’. Finally, let D, = R ’ - D,. Then Dz is a minimal delay relation that 
enforces correctness, together with D,. 

On the other hand, the control mechanisms of the computer may not enforce 
arbitrary delays. We then look for a minimal delay relation that is enforceable 
by the machine, and contains the relation D in its transitive closure. For example, 
the RP3 has a fence instruction that delays the execution of the following 
memory access until all preceding accesses have executed. We wish to minimize 
the number of “fences” used. 
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The fences in the code of a processor divide the instructions of this processor 
into a disjoint sequence So, . . . , S, of sets such that all accesses in Si are executed 
before any access in Si+l; r is the number of fences used. Thus, given a delay 
relation D, we wish to find a minimal partition such that, if UDU, u E Si, u E Sj, 
then i < j. Such a partition is easy to compute: Let Zeuel(u) be the length of the 
longest path reaching u in the graph of D. Define Si to be the set of nodes at 
level i. The partition S1, SZ, . . . then has the required property. The number of 
fences required equals the length of the longest path in the graph of D, and this 
is optimal. 

Computers may also differ in their support for locking protocols. Locking may 
often be optimized when locking sets contain a unique access. Since such a 
locking set is executed atomically, it is sufficient to check that the location 
accessed by that operation is not currently locked by another processor. (In fact, 
we can do even better: If the operation only reads the location, then it is only 
necessary to check that no other processor holds a write lock on that location.) 
This has the same effect as a lock, access, and unlock, so our previous theorems 
still hold with this optimization. If memory is tagged, and hardware supports 
“test-and-load” and “test-and-store” operations, then only one access to memory 
is needed. In the even more special case when a location is always accessed by 
an equivalence class of size 1, no locks on that location are needed at all. 

6.2 Conflicts and Branching Programs 

We assumed the conflict relation C is known in advance. More often, a compiler 
can do only a partial job in extracting this relation: Data dependency analysis 
yields a set of pairs of instructions that contains all conflict pairs; we use this set 
as our conflict relation, and perform a conservative, safe optimization. 

More important, we have assumed that code is straight line; in the general 
case, our program segments will contain jump statements, due to branch and 
loop constructs. We represent possible control flow in each program segment by 
a flow graph (see [l]). An execution of a program corresponds to a (possibly self- 
crossing) path in the flow graph. 

To simplify the discussion, we consider code with no atomicity constraints; 
storage access operations are regular reads and writes. One can reduce this 
general setting to the case of straight-line code by requiring that the execution 
of a new block does not start until memory references issued by instructions in 
other blocks of this program segment have been satisfied: A fence is set at the 
entry of each block. For each tuple of blocks, each belonging to another program 
segment, delays are introduced that enforce correct concurrent execution of these 
blocks. 

It is also possible to do global optimization of delays. Delays are introduced 
between pairs of instructions; each such instruction may have several executing 
instances. If a delay is inserted between instructions u and v, then instruction v 
is not issued as long as there is an executing instance of instruction u; a delay 
uDu indicates that instruction u is not issued as long as the execution of the 
previous instance of u has not terminated. A delay relation D enforces correctness 
if for any choice of an execution path within each program segment the concurrent 
execution of these paths is correct. 
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Let UPU if u and u are instructions in the same program segment, and there is 
a path from u to u in the flow graph of this program. P is transitive. P, however, 
may not be acyclic; in particular, we may have UPU. The conflict relation C is 
defined as usual. 

An execution path of a program segment corresponds to a (possibly self- 
crossing) path in the graph of P. A critical cycle c for a set of parallel execution 
paths corresponds to a cycle u in P U C. The cycle u is not necessarily simple. 
The delay relation D enforces correctness if all P edges of such cycles occur in 
D. We may use the characterization given in Theorem 3.9 to identify these cycles. 

THEOREM 6.1 Let D be the set of P edges in cycles u of P U C with the following 
properties : 

(i) a contains at most two instructions from the same program segment; these 
instructions are consecutive in u. 

(ii) (r contains either zero, two, or three accesses to each variable; these accesses 
are consecutive in c. The possible configurations are read x + write x, write x 
+ read x, write x + write x, or read x + write x +- read x. 

Then D enforces correctness. 

It may not always be possible to resolve references and exactly identify 
conflicting accesses. In this case, one has to consider all cycles that have the 
above form, for some possible resolution of the references. 

6.3 Code Motion 

The delay analysis of the previous sections can be helpful even if the computer 
enforces sequential consistency, that is, there is no overlapping of successive 
memory accesses. The performance of the code can be enhanced by changing the 
order in which operations are executed. Indeed, code motion is a standard 
optimization technique for sequential code: Computations are moved out of loops, 
memory loads are executed earlier in order to mask memory latency, etc. Such 
optimizations are safe if they do not change the order in which conflicting 
operations are executed. 

Our analysis of parallel code shows that this safety criterion is not sufficient 
any more when a program segment interacts with others via shared variables. 
For example, in the code shown in Figure 6 there are no data dependencies within 
the program segments; if we reverse the order of the operations in the second 
segment, we get the code shown in Figure 7. A (sequentially consistent) execution 
of this second code may yield an outcome that is incorrect for the first code. 

A naive approach to local optimization would be to assume that any two 
accesses to shared variables potentially conflict and the order of two such 
operations cannot be reversed. The delay analysis yields a more accurate criterion: 
If there is no delay between operations u and u of the same program segment, 
then the order of execution of these two operations in memory is arbitrary. In 
particular, we can interchange the order they are issued. Any order of issuing 
that satisfies the requirement that if uD+u then u is not issued until u has been 
completed is acceptable. 
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Segment 1 Segment 2 

al: read A a2: read B 

barrier 

bl: write B 

barrier 

b2: write B 

Segment 3 

a3: read C 

barrier 

b3: write D 

Fig. 20. Barrier example. 

6.4 Synchronization Operations 

Our abstract code model can be used to represent synchronization operations 
across processes; these are represented as order constraints between operations 
in distinct program segments. For example, suppose a communication event 
between two processes is represented by two operations: a send operation in one 
segment and a receive operation in another segment. If the communication 
mechanism is asynchronous, then we have the added constraint 

sendpreceive. 

If the communication is synchronous, we have the following stronger constraints: 

uPsend iff upreceive, and 
sendPu iff receivePu. 

This extends to a barrier that is a synchronization involving an arbitrary 
number of processors. If bl, . . . , bk are the barrier synchronization operations in 
the different processes, then we have 

UPbi iff UPbj, and 
biPu iff bjPU. 

Consider the example in Figure 20. The barrier implies that 

P = {(al, bl), (a2, b2), (a3, b3)) 
U ((al, b2), (al, b3), W, bl), W, W, (a% bl), (a3, b2)). 

where the second set of P relationships comes from the barrier. The P ordering 
can be implemented by creating the delay relation D = ((a2, bl), (a2, b2)). 

We thus obtain a weaker synchronization constraint than suggested by P; one 
only needs to delay bl and b2 until a2 has terminated. This can be used to reduce 
the strength of the synchronization operations, thus increasing concurrency and 
decreasing synchronization overhead, without changing the meaning of the 
program. 

7. CONCLUSION 

This paper presents a method of enforcing efficient and sequentially consistent 
execution of concurrent processes on a shared-memory multiprocessor when 
memory access is asynchronous. Our method determines when consecutive op- 
erations in the same program segment of a parallel program may execute 
concurrently, without violating the programmer’s view that each segment 
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executes in its given program order. An actual implementation of this method 
depends on two factors that were not discussed. 

First, one should be able to detect data dependencies. This is a problem faced 
by any optimizing compiler, and sophisticated methods have been developed for 
that purpose [l, 151. In particular, index analysis to discover data dependencies 
across loop iterations [3] are relevant to our purpose. In general, the compiler 
will not be able to detect existing data dependencies accurately, but will have to 
assume further dependencies. These extra data dependencies reduce the efficiency 
of the code produced, but do not affect its correctness. 

Second, one has to find all the minimal cycles in a graph. This requires time 
exponential in the number of nodes in a general graph. The graphs arising from 
program segments, however, have a constrained structure that makes the problem 
easier. The characterization of critical cycles given in Theorem 3.9 implies the 
existence of a polynomial-time algorithm for detection of critical pairs in a code 
that consists of a fixed number of serial program segments; this algorithm extends 
to the code obtained from a fixed number of high-level language program 
segments with bounded nesting of loops and conditionals. 

Our analysis presupposes that the processor has the ability to delay the issuing 
of an instruction until some previous instruction has been executed. Pipelined 
processors often have such locking mechanisms. The processor detects data 
dependencies by itself and enforces correct sequencing of data-dependent 
operations. 

The results of this paper suggest that such a mechanism is inadequate in a 
shared-memory parallel computer. Instead, it would be useful to be able to tag 
the serial machine code with dependency information; the processor would 
enforce correct sequencing of tagged instructions. Such a mechanism could be 
used to enforce both data dependencies in serial code, and delays needed to avoid 
hazards in parallel code. 
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