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In this paper we consider an optimization problem that arises in the execution of parallel programs
on shared-memory multiple-instruction-stream, multiple-data-stream (MIMD) computers. A program
on such machines consists of many sequential program segments, each executed by a single processor.
These segments interact as they access shared variables. Access to memory is asynchronous, and
memory accesses are not necessarily executed in the order they were issued. An execution is correct
if it is sequentially consistent: It should seem as if all the instructions were executed sequentially, in
an order obtained by interleaving the instruction streams of the processors. Sequential consistency
can be enforced by delaying each access to shared memory until the previous access of the same
processor has terminated. For performance reasons, however, we want to allow several accesses by
the same processor to proceed concurrently. Qur analysis finds a minimal set of delays that enforces
sequential consistency. The analysis extends to interprocessor synchronization constraints and to
code where blocks of operations have to execute atomically. We use a conflict graph similar to that
used to schedule transactions in distributed databases. Our graph incorporates the order on operations
given by the program text, enabling us to do without locks even when database conflict graphs would
suggest that locks are necessary. Our work has implications for the design of multiprocessors; it offers
new compiler optimization techniques for parallel languages that support shared variables.
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1. INTRODUCTION

There is a well-established programming paradigm for serial computers: A stream
of instructions is executed serially; the execution of each instruction is atomic
and terminates before the execution of the succeeding instruction starts. In
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Segment 1 Segment 2
test&set1(LOCK) - test&set2(LOCK)
read1(X) read2(X)
writel(X) write2(X)
reset1(LOCK) reset2(LOCK)

Fig. 1. Serialization routines.

practice, the execution of several succeeding instructions may overlap in time. In
particular, memory accesses may be pipelined, in order to overcome the high
memory latency. In some machines it is even possible for accesses to occur in
memory in an order that is different from the order they were issued by the
processor. This concurrency is hidden from the user; he or she should not be
aware that memory is accessed out of order. The control logic of the machine
achieves this by enforcing an execution order that respects data dependencies:
An instruction that uses a value returned from memory is delayed until this value
is available; successive accesses to the same memory location occur in the order
they were issued.

A shared-memory MIMD computer, such as the NYU Ultracomputer [9] or
the IBM RP3 [16], consists of a set of processors connected to a shared memory.
Each processor executes independently a (possibly distinct) serial program. Some
of the instructions in these programs may be for load, store, or read-modify-write
operations that access a shared-memory location. We call the code executed by
each processor a sequential program segment; the union of all these segments is
the parallel code executed by the machine as a whole.

The programming paradigm for such machines is provided by the interleaving
semantics for parallel code:

The outcome of an execution of a parallel code is as if all the instructions were executed
sequentially and atomically. Instructions in the same program segment are executed in
the order specified by this segment; the order of execution of instructions belonging to
distinct segments is arbitrary [12, 14].

That is, the outcome of an execution is as if the instructions were all executed
in an order obtained by arbitrarily interleaving the streams produced by the
distinct program segments. We follow [12] and [14] in calling this condition
sequential consistency.

In order to enforce sequential consistency, it is not sufficient to consider data
dependencies within each program segment; interdependencies have to be taken
into account as well. Suppose two program segments in a parallel program update
a variable X, but serialize their accesses using locks.! The serialization routines
are written as shown in Figure 1. The reset instruction is just a regular store.
There is no data dependency between the writel(X) and the resetl(LOCK)
instructions in the first program segment. Suppose these two memory accesses
are allowed to occur out of order. Then the memory accesses of the parallel

! Our theory encompasses cases where access to shared variables need not be serialized as well.
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program may occur in memory in the following order:

test&setl(LOCK) readl(X) resetl(LOCK) test&set2(LOCK) read2(X)
writel(X) write2(X) reset2(LOCK).

The serialization failed, since both processors read the original value of X and
only the update performed by the second processor is reflected in the shared
data. This execution is not sequentially consistent. In a sequentially consistent
execution, writel(X) should seem to occur before reset1(LLOCK); this is not true
of the execution above. Note that each operation was executed correctly in
memory, and the instructions within each program segment were executed in an
order that preserves data dependencies within the segment (test&set(LOCK)
occurs in memory before reset(LOCK), and read(X) before write(X)).

Such hazards can be prevented by enforcing that accesses occur in memory in
the order they are issued by the processors. One approach is that a processor
does not initiate a new access to shared memory before the previous access has
terminated. (This can be easily enforced if each memory request, including stores,
returns a reply.) Another approach, suggested by Lamport [12], is that all memory
requests are handled by one memory controller; the controller receives requests
one at a time and processes them in FIFO order.

The shared memory of the NYU Ultracomputer and IBM RP3 machines
consists of a set of memory modules; a packet switched multistage interconnection
network connects processors to memory modules. A processor need not wait for
a reply to its previous request to shared memory before issuing a new one, and
several memory requests issued by the same processor may simultaneously
proceed through the network.

Requests that arrive simultaneously to the same memory module conflict;
further conflicts may occur in the network. These conflicts delay requests by
unpredictable amounts. As a result, requests issued by a processor to distinct
memory modules may execute out of order. Similarly, a memory module may
execute a request m before it executes a request m’, even though m’ was issued
first (m and m’ are issued by different processors). Thus, the NYU Ultracomputer
and IBM RP3 machines do not conform to the programming paradigm provided
by interleaving semantics; “incorrect” executions, such as illustrated in our
previous example, may occur on them. The same situation is likely to occur with
other large shared-memory MIMD machines. Pipelining of memory requests is
required in order to mask the (relatively) large latency of the interconnection
network, and the throughput is greatly reduced if all accesses are delayed
whenever a conflict delays some access.

While the NYU Ultracomputer and IBM RP3 do not enforce sequential
consistency in hardware, they both provide control mechanisms that allow them
to do so in software. For example, the IBM RP3 has a fence instruction; the
execution of this instruction by a processor causes it to wait until all outstanding
references to shared memory have completed.

1.1 Our Goal

A parallel computer architecture that is not sequentially consistent is extremely
hard to understand; it does not fit a programming paradigm that can be com-
fortably used by software or programmer. We postulate that parallel programs
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are created for an idealized parallel architecture, where machine instructions are
executed atomically (an access to shared memory involves only one word). Such
programs may come from two sources: They may be directly written by users,
when efﬁciency dictates a programming style close to the machine architecture;
or Lney may be the intermediate output of a compner that compnes code for a
shared-memory parallel computer. We consider the next compilation phase that
maps this intermediate code into the real architecture: Control instructions such
as fences are added so that the resulting code will execute on the real machine
with the same behavior as the source code has on the idealized machine. The
control instructions delay the execution of some shared-memory accesses until
previous accesses have termmated. Since delays slow the program down, we seek
to minimize the number of delays enforced.

An analysis of interdependencies can reduce the number of delays used. A
simple observation is that hazards can be due only to variables that are shared
read-write (i.e., accessed by more than one program segment and modified by at
least one such segment). It is sufficient to delay each access to a shared read-
write variable until the previous access to a shared read-write variable by the

same processor has completed [8]. This policy, however, is still not optimal. The

first goal of our work is to determme the minimal set of delays that enforce
sequential consistency.

The second part of our work considers cases where several memory accesses
have to behave atomically. We assume code is produced for an idealized machine
that has “high-level” atomic operations. For example, the language may provide
atomic accesses and assignments to structured variables (such as arrays or
complex numbers); the hardware guarantees atomicity of accesses only at the
word level. When the idealized code is uxappcu on the real a1uubt:t,uu1r:, extra
synchronization code—for example, to acquire and release locks—is needed. As
synchronization code is expensive and locking reduces concurrency, we desire to
use locking as parsimoniously as possible. The second goal of our work is to
minimize both locks and delays for this more general case. Note that this work
is relevant even for machines that conform to the model provided by interleaving
semantics.

The generalization to multiaccess atomicity bears strong resemblance to
database concurrency control [4-6}, but surprisingly our solution requires far less
locking than database concurrency control theory would lead one to expect. The
reason is that we make strong use of knowledge that is not available to the
concurrency control designer. Since our algorithms run as part of a compilation
stage, we know what accesses each program segment makes. The concurrency
control degioner by contrast does not normallv know the analogous information

QILTOL QesiEied, COIIAasy, QDes 1100 110114y RIIOW LIlC allalo wus 1105111401011,

that is, what transactions will run concurrently with a given transaction.

To see how this can make a difference, suppose there are three program
segments: Segment 1 writes x and y atomically, segment 2 reads x and some
private variables, and segment 3 reads y and some private variables. We can
ensure the atomicity of the accesses without requiring any locks. A concurrency
control designer, asked to design a locking protocol for a transaction that writes
x and y atomically, would be forced to use lockmg, because he or she would

not know whether there were concurr
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This example used knowledge of the global set of accesses. We also use the
known order of occurrence of these accesses (e.g., see the discussion of Figures 6
and 7 in Section 3).

In the next section, we develop a precise formalism to reason about serializa-
bility and atomicity of concurrent code. This formalism is strongly influenced by
the work of Lamport [11, 13], and Lynch and Fisher [14]. In Section 3 we consider
systems with no atomicity constraints; a minimal set of delays that enforce
sequential consistency is found. This work is extended in Section 4 to restricted
systems with atomicity constraints where delays are sufficient to enforce sequen-
tial consistency. In Section 5 general solutions using locking and delays are
analyzed. In Section 6 we consider practical issues in the implementation of our
code transformations, and further applications. Section 7 concludes this paper.

2. PRELIMINARIES

We consider the concurrent execution of a program on a parallel machine. The
program consists of instructions, each specifying the execution of one operation.
Every operation in the program accesses one or more storage locations, or
variables. These may be memory locations, general-purpose registers, or special-
purpose registers—for example, an instruction counter or status register. An
access is a write if it updates the value of the variable accessed; it is a read
otherwise. Operations communicate only by accessing the same variable. We
assume the state of the machine is completely defined by the value of its variables;
the effect of each operation is defined as a mapping from the (old) values of the
variables read by the operation to the (new) values of the variables written by
the operation (the two sets of variables may overlap). Each operation’s access to
a variable is serialized (i.e., two accesses to the same variable behave as if they
occur serially in some order). This implies the atomicity of operations that make
one access to a single location.

Two accesses to the same variable conflict if at least one is a write; two
operations conflict if they execute conflicting accesses. (More restrictively, two
accesses conflict if the final value of the variable accessed, or the values computed
by the accessing instructions may change when the order of accesses is reversed;
two update accesses that commute, such as “increment counter,” do not conflict,
even though both are writes.) The execution order specifies the order in which
conflicting accesses are executed. This order determines the behavior of the
computation: Any sequential execution of the accesses in an order that extends
the execution order (i.e., a topological sort of the execution order) exhibits the
same behavior. Conflicting accesses are executed in the same relative order in
any such sequence, so that the same final state is reached by all these sequences.

Operations should appear to execute atomically: for any two operations u and
v, either all variable accesses of u appear to occur before any access of v, or vice
versa. Hence, the effect of an execution should be as if the instructions were
executed in some sequential order, with variable accesses of an instruction
starting only after all variable accesses of the previous instruction have termi-
nated. In addition, the program prescribes an order for the instructions (called
the program order). We assume this order is fixed; there is no data-dependent
branch of control (later we shall remove this restriction). For a parallel machine,
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the operations on each processor are ordered sequentially, but there is no
restriction on the order of operations executed by distinct processors. The
program order, therefore, is the union of several disjoint chains. More general
program orders may be used to represent synchronization constraints across
processors; our results are valid for arbitrary order relations.

The program order imposes restrictions on the execution order: If u precedes
v in the program order, then the execution order should make it appear as if u
executes all its storage accesses before v executes any of its accesses. A compu-
tation is correct if operations appear to execute atomically, in the order specified
by the program order.

In addition, one may have restrictions on the order storage accesses are
executed within an operation (e.g., operands are read before results are written
back). Such restrictions usually follow from the semantics of the operation, and
are often enforced by the computer architecture, as part of a correct implemen-
tation of these operations. A correct execution must also respect this ordering of
accesses within operations.

2.1 Definitions

We use in the sequel the following definitions and results: A (partial) order is an
irreflexive, asymmetric, transitive relation. Such a relation is represented by a
directed acyclic graph (DAG) with the property that if a directed path connects
node u to node v then wv is an edge of the graph. An order is total, or linear, if
every two distinct elements are ordered.

In the following definitions, it may help to think of C as the conflict relation
on accesses, of E as the execution order, of P as the program order, and as A as
the atomicity constraint (uAv if {u, v} should appear to execute atomically). We
make this association explicit in Section 2.2.

Let C be a symmetric relation. The relation E is an orientation of C if whenever
uCv then either uEv or vEu holds. The relation E is a proper orientation of C if
E is an acyclic orientation of C.

Let P be an irreflexive relation and A be an equivalence relation on the same
set U.P/A is the irreflexive relation induced by P on the family U/A of equiva-
lence classes of A: u P/A v if u # v and there exist u € u, v € v such that uPv.
If P is transitive, then P/A is transitive, The relation P is closed under A if

uPuv uAu’ vAv’, —wAv implies v'Pv’.
b b

P is closed under A iff, for any u, v, [u]P/A[v] implies uPuv.

Let P, be an irreflexive relation on U/A, and P; € A be an irreflexive relation
within the equivalence classes of A. The lexicographic product P = P; X P, of
these two relations is the relation defined on U by

uPv if either (i) uwAv and [u]Pyfv]
or (i) uAv and uP,v.
If P, and P; are both partial orders, then their lexicographic product is a partial
order. P is closed under A iff P = P/A X P N A.

Two relations P and R are consistent if P U R can be extended to a total
ordering. A relation can be extended to a total ordering iff its transitive closure
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is irreflexive. Thus, P is consistent with R iff the graph of the relation P U R has
no cycles.

Let A be an equivalence relation, and P be a partial order. A relation E is
consistent with P and A if it can be extended to a total order E that fulfills the
following two conditions:

(2.1) P C E, so that if uPv then u occurs before v in the sequence defined by E;
and

2.2) equi_valent elements occur in consecutive locatiorls in the sequence geﬁned
by E; that is, if uAv, but “uAw, then either wEu and wEv, or ukw and
vEw.

When A is trivial (i.e., A is the equality relation), then this new definition of
consistency reduces to the previous one: E is consistent with P and = iff it is
consistent with P.

We have the following lemma:

LEMMA 2.1 Let A be an equivalence relation, P be a partial order, and E be a
relation on the same set. Then the following assertions are equivalent:

(1) E is consistent with P and A;
{2) (i) E is consistent with P, and {ii) E/A is consistent with P/A;
(3) (1) EN A is consistent with P N A, and (ii) E/A is consistent with P/A; and

(4) (1) (E N A) U (P N A) has no cycles, and (it) all cycles of E U A U P are
contained in A.

PROOF. Assume (1). Take a total order E that extends E and fulfills conditions
(2.1) and (2.2). According to condition (2.1), P C E, so that P is consistent with
E. Condition (2.2) implies that E induces a total order E/A on the set of
equivalence classes of A; this order extends both E/A and P/A; it follows that
these two relations are consistent. Hence, (1) = (2).

Clearly, (2) = (3).

E N A is consistent with P N A iff (E N A) U (P N A) has no cycles; hence,
(31) and (41) are equivalent. Any cycle of E/A U P/A corresponds to a cycle of E
U P U A that is not wholly contained within an equivalence class of A; conversely,
any such cycle in E U P U A induces a cycle of length =2 in E/A U P/A. Hence,
(3ii) is equivalent to (4ii), and (3) < (4).

Assume (3) holds true. One can order the equivalence classes of A in a linear
order E, that extends E/A U P/A; within each class, one can order the elements
in a linear order E, that extends (E N A) U (PN A). Let E = E, X E,. Then E
is a linear order that extends E and fulfills conditions (2.1) and (2.2). Hence,
3)=1). O

To simplify discussion in the sequel, we identify a relation with its underlying
graph, and a graph with its set of edges. A simple cycle in a graph will inter-
changeably be represented as a cyclic list of nodes or as a set of edges.

2.2 The Model

We characterize the code by a tuple (V, A, P, C). V is the set of variable accesses
executed by the program. The variable accesses are partitioned into sets, each
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Segment 1 Segment 2
al: X:=1; a2 y:=1Y; Fig. 2. Parallel code.
bl: Y =1, b2: x =X;

set consisting of the accesses executed by one atomic operation. This partition is
represented by an equivalence relation A on V; the equivalence classes of A are
the set of accesses of atomic operations. P is the order on variable accesses
required by the program and by the semantics of the individual operations; it is
a partial order on V. The order P is closed under A; that is,

uPuv; uAu’, vAv’, wAv implies u’'Pv’.

Intuitively, if one access of an operation u is required to precede an access of an
operation v, and u # v, then all accesses of u are required to precede any access
of v,

C is the conflict relation on accesses; it is a symmetric relation on V. C is
irreflexive, but not necessarily transitive. For example, if © and w are read
operations and v is a write operation, all accessing the same variable, then we
have uCv and vCw, but "uCw.

The order relation P represents both order required on operations by the
program and order required on accesses within each operation by the semantics
of these operations. The requirement that P be closed with respect to A implies
that P/A is a partial order on the set V/A of atomic operations. Conversely, one
can characterize a code by a tuple (V, A, P,, P,, C), where P, is a partial order
on the set V/A of atomic operations, and P, C A is a partial order on accesses
within each operation; P is the lexicographic product of P; and P, as defined
above.

An execution E is a proper orientation of the conflict relation C. Informally,
uEv if u and v are conflicting accesses (i.e., they both access the same variable
and at least one of them is a write), and the access u occurs in storage before the
access v.

An execution order E is correct if it is consistent with P and A; that is, E is
correct if it can be extended to a linear order such that the accesses occur in this
linear sequence in the order indicated by P, and accesses that belong to one
operation are executed consecutively, not interrupted by other accesses. The first
condition states that the order of execution of the operations is consistent with
the order specified by the program. The second condition implies that the effect
of the execution is as if each atomic operation were executed indivisibly.

One may think of the tuple (V, A, P) as a specification for correct execution.
A correct execution is one that behaves as a linear ordering of V that is consistent
with P and A: Accesses occur in the order specified by P, and all accesses from
an equivalence class of A are contiguous. The conflict relation C specifies the
external interface of an execution: The observable behavior of an execution is
determined by the orientation it induces on C. Therefore, we may take an
execution to consist of just this orientation.

Example. Consider the program segments in Figure 2 (the example is taken
from Collier [7]). X and Y are variables shared by both program segments, and
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al: WRITE X N p a2l: RfAD Y

\\ // a22' WRITE y

N
l X
N
yd AN i
e AN
bl: WRITE Y7 N b2l: READ X
|
b22: WRITE x

Fig. 3. Code specification.

~. Ve
“ \ / 3

al: WRITE X \ a2l: READ Y

\ / )
\>/ a22: WRITE y

l / \
/ \\ ¢
/ \

bl: WRITE Y / M b2i: ReAD X

_‘// \//' ¢
b22: WRITE x

Fig. 4. Incorrect execution.

x and y are different registers. Assume that initially X = Y = 0. Each operation
consists of a single assignment statement. No interleaving of these operations
consistent with the order in each program can lead to a state where x = 0 and
y = 1; such an execution would not be consistent with P/A. Indeed, if x = 0 then
operation b2 was executed before al; but then a2 should take effect before b1, so
that y = 0.

The accesses executed by this code are shown in Figure 3. Here, and in the
following figures, full arrows indicate the program order P, broken lines indicate
conflict edges of C, and boxes enclose accesses of the same operation that should
execute atomically. If the accesses to shared memory in either the first program
segment or the second program segment are executed out of order, then it is
quite possible to obtain this inconsistent result (Figure 4). For this case, E =
{(b1, a21), (b21, al)}. So, E U P has a cycle (al, b1, a21, a22, b21, al).

Note, however, that this is the only inconsistent result. For example, the access
pattern a21, b1, al, b21 would yield x = 1 and y = 0. This would be entirely
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acceptable, since it produces the same results as the interleaving al, a2l, a22,
b21, b22, b1.? For this case, E = {(al, b21), (a21, bl)}, and E U P is acyclic.

One can control the order of execution of operations by introducing delays. A
delay between two storage accesses u and v forces access u to complete before
access v begins. The delay is enforced by the control logic of the computer, for
example, by mechanisms that postpone the execution of a memory access until
some previous load returned a value or a previous store was acknowledged. We
denote by uDv the fact that access v is delayed until access u is executed. The
relation D is a partial order.

If uEv then access u is executed earlier than access v; if uDv then access u is
executed earlier than v; the temporal order of execution of accesses is clearly
acyclic, and extends E and D. This implies the following lemma:

DELAY LEMMA. For any execution, E is consistent with D.

A delay relation D can be seen as a specification of the effect of some control
mechanism: It restricts the executions to those that are consistent with D.
A delay relation D enforces correctness if any execution order E that is consistent
with D is correct (i.e., is consistent with P and A). A delay relation that enforces
correctness is a control strategy that enforces correct execution of a given
program. Such a delay relation always exists: One can force serial execution of
all the storage accesses, in an order that fulfills conditions (2.1) and (2.2). This
is not a very interesting solution, as it achieves correctness at the expense of
complete loss of intraprocessor or interprocessor concurrency. We shall be
interested in delay relations D that fulfill D C P. This restriction has two
motivations: If D C P, any computation order that is consistent with P is also
consistent with D, and D does not prohibit a computation that could occur
within the constraints of the code. Also, in the situation where P represents the
ordering within sequential program segments executed by distinct processors,
then constraints in P are constraints on the order of accesses executed by the
same processor; these can be enforced by control logic local to the processor. A
delay pair that is not in P puts a constraint on the order of two accesses that are
performed by distinct processors; the enforcement of such constraint requires
expensive interprocessor coordination.

3. SYSTEMS WITH NO ATOMICITY CONSTRAINTS

A delay relation D C P that enforces correctness does not always exist: Delays
cannot always guarantee atomicity of operations. Consider, for example, the code
in Figure 5. The first operation atomically reads the record (X, Y), whereas the
second operation atomically updates this record. Even if a correct order of
accesses is enforced, one can still have an execution order al, a2, b2, bl that
violates the atomicity of the operations; the read returns a half updated record.
In this section we examine the situation where each operation performs a
unique storage access; that is, each equivalence class of A is a singleton (A is the
equality relation). In this case the issue of atomicity does not arise; E is correct

2 The reader may observe that the sequential consistency requirement is much weaker than the
serialization principle addressed in database theory [10], which would forbid this second outcome.
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al: read X — - ————1— a2:write X
bl: read Y — — ———————L— b2: write Y

Fig. 5. Code with atomicity constraints.

al: write X ———————— a2: read X
Fig. 6. Code that does not require delays. l l
bl: write ¥ - — — — — —— b2: read Y
al: write X ~ - a2:read Y
~ e
~_ -
l /\/\ 1 Fig. 7. Code that requires delays.
yd \\
bl: write Y -~ ™ b2: read X

iff it is consistent with P. This is a simple case where a delay relation D C P
that enforces correctness exists, namely, D = P. In many cases a proper subset
of P can, too, enforce correctness. We shall be looking for a minimal delay
relation D C P that enforces correctness.

We give a constructive proof that there exists a unigque minimal partial order
relation D C P that enforces correctness. OQur strategy for finding it is based on
the following reasoning: An execution E is incorrect if P U E has cycles. Since
E is an orientation of C, all such cycles are also cycles of the graph of P U C.
This graph is known in advance, so its cycles indicate potential violations of
correctness at run time. Suppose we enforce a delay uDv for every pair of
operations uv such that uPv, and uv is an edge on a cycle of P U C. Then every
cycle of P U C is also a cycle of D U C. It follows that every cycle of P U E
would also be a cycle of D U E. D U E, however, is acyclic by the delay lemma.
So choosing delays in this way ensures P U E is acyclic and E is correct. Consider,
for example, the code of Figure 6. Here, P U C has no cycles; the four storage
accesses may occur in arbitrary order, with no perceived violation of the required
program order. In Figure 7 we have switched the order of the two reads; this is
essentially the same code as presented in Figure 2. The graph of P U C has one
directed cycle, (al, bl, a2, b2, al). This cycle indicates a possible incorrect
execution: the execution where E = {(bl, a2), (b2, al))}. If delays are imposed on
the pairs (al, b1) and (a2, b2), however (these are the P edges on this cycle),
then the incorrect execution cannot occur as it would be inconsistent with the
delays. In this case we must enforce all the order constraints given by P in order
to enforce correct execution. Figure 6 was an example where this is not the case.

In order to construct D, it is sufficient but not necessary to consider all cycles
of C U P; rather, one can consider “minimal counterexamples,” that is, acyclic
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subsets of C that are “minimally incorrect.” Let ¢ be the family of acyclic subsets
of C that are not consistent with P; S € ® if S C C is acyclic and P U S contains
a cycle. We call a minimal element of ® a minimal inconsistent execution
(minimality is by set containment). The family ® of sets is closed under contain-
ment: If SE ®and S’ D S, then S’ € &. Hence, S € & iff it contains a minimal
inconsistent execution. We have the following theorem:

THEOREM 3.1 Let D be a delay relation. Then D enforces correctness iff, for
every minimal inconsistent execution S, D U S has a cycle.

We need the following lemma to prove the theorem:

LEMMA 3.2 Let G = (V, E) be a directed acyclic graph, and u and v be two
nonadjacent nodes of G. Then either G, = {V, E U {uv}) or G = (V, EU {vu}) is
an acyclic graph.

ProOOF. If both G, and G; contain cycles, then there is a path in G from u to v
and a path from v to u. Hence, G contains a cycle—a contradiction. O

ProOF OF THEOREM 3.1 = Let E be an inconsistent execution. E contains a
minimal inconsistent execution S. By assumption, S U D has a cycle, implying
that E U D have a cycle; but the latter is impossible.

<= Assume there exists a minimal inconsistent execution S such that SU D is
acyclic. By repeated application of Lemma 3.2, S can be extended to an execution
order E such that E U D is acyclic. Since S C E, and S is inconsistent, then E is
inconsistent; so D does not enforce correctness. [

In the next subsection, we shall build delay relations that enforce consistency
using the following, generic construction: Let ¥ be a family of cycles in P U C
such that each minimal inconsistent execution is contained in a cycle of ¥; let D
be the set of P edges on the cycles in ¥. Then S U D has a cycle for each minimal
inconsistent execution S, and hence, D enforces correctness.

3.1 Critical Pairs

A set ¢ is a critical cycle of (P, C) if it is a simple cycle of P U C and has no
chords in P (rs € o, uv € o, ru € P implies s = u).
An edge uv € P is a critical pair (of (P, C)) if it occurs in a critical cycle.

LEMMA 3.3 Let S be a minimal inconsistent execution, and ¢ be a shortest cycle
in SU P (i.e., a cycle with fewest number of edges). Then o is a critical cycle.

PrOOF. Let ¢ = (vo, ..., Up1, Vo). If v; = v;, with { < j, then (vo, vi, V41,
Un—1, Uo) is a shorter cycle in P U S; hence, ¢ is simple. If v;Pv;, with i < j,
then (vo, ..., Us, Uj, - .., Un1, Vo) is a shorter cycle in P U S; if v, Pu;, with j < ¢
(and i, j # n — 1, 0), then (v;, vj41, . . ., U;, U;) is a shorter cycle in P U S. Hence,
o has no P chords.

COROLLARY 3.4 Let D be the “critical pair” relation. If E is an execution order
that is consistent with D, then E is consistent with P.

ProOOF. The previous lemma implies that each minimal inconsistent execution
S is contained in a critical cycle. Making D consist of all critical pairs ensures
that no such execution can come to pass. [
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a: read A\
\
| \
b: read B \
\\ \
Fig. 8. Intraprocess data dependencies. l /J }
c: read B/ /
l /
/
d: read A7
al: read A - a2: write B
\ e
AN |
e
bl: read B 7 \ - b2: write C
N7
l />\/ l Fig.9. Interprocess data dependencies.
~
¢l: read C 7 \\// c2: write D
~
! N
- \
dl: read D -~ 92: write A

3.2 Examples

Figure 8 illustrates that data dependencies within one program segment are
handled correctly as a particular case of critical pairs. We have a critical cycle
{(a, d, a) and a critical cycle (b, ¢, b). The pairs ad and bc are critical pairs, so
that d is delayed until a terminates, and c is delayed until b terminates.

Figure 9 illustrates that use of critical pairs can save delays. We have four
simple cycles in P U C (see Figure 10):

(i) (al, bl, a2, b2, cl, d1, 2, d2, al),
(ii) (al, b1, a2, d2, al),
(iii) (al, cl, b2, d2, al), and
(iv) (al,dl,c2, d2, al).

The first cycle is not critical, as it has P chords—for example, (al, c1). In fact,
this cycle properly contains the edges from C — P of each of the remaining three
cycles and does not define a minimal inconsistent execution. The remaining
three cycles are critical. The critical pairs are D = {(al, b1), (al, cl), (al, d1),
(a2, d2), (b2, d2), (c2, d2)}. This set of delays enforces consistency. In the first
program segment, the last three operations are delayed until a1 is executed. In
the second program segment, d2 is delayed until all the other operations have
been executed. On the other hand, the last three accesses in the first program
segment and the first three accesses in the second program segment can be
executed in arbitrary order, even though these are accesses to shared read-write
variables.
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al: read A /u2; write B al: read A »~02: write B
X - X -
bl:read B~ \  _ b2: write C bl read B -7\ b2: write C
\ .~ \
cl:read ¢~ \»C2: write D cl: read C \\ c2: write D
v //\ v \\
dl:read D~ Nd2: write A di: read D d2: write A
(1) (n)
al: read A a2: write B8 al: read A a2: write B
\\ LN
bl: read B\ e b2: write C bl: read B \\ b2: write C
\.~
X \ .
cl:read C7  \ ©¢2: write D cl: read C \ _,C2: write D
\ A\ 1,
\ - \
dl: read D d2: write A dl:read D d2: write A
() (V)
Fig. 10. Cycles and critical pairs.
3.3 Minimality

We have shown that each minimal inconsistent execution is contained in a
critical cycle. We show now that the converse holds: The edges from C — P in
a critical cycle are a minimal inconsistent execution. It follows that the critical
pair relation is a minimal delay relation that enforces correctness.

LEMMA 3.5 (i) Let o be a critical cycle of (P, C), and let S = ¢ — P. Let 7 be an
arbitrary simple cycle in S U P. Then = is obtained from ¢ by replacing each P
edge of o by a simple path of P edges; all S edges of o occur in = (see Figure 11).

(i) The last result holds true even if P is an arbitrary transitive relation (not
necessarily acyclic), provided that # NS # Q. That is, if SN« # D then S C 7.

PRrROOF. Let ¢ = (vg, ..., Un-1, Vo). In (i) P is acyclic so that = must contain
an edge from S, call it v,v;41; such an edge is assumed to exist in (ii). Let v vpsq
be the following edge from S on the cycle = (k = i if there is no other edge from
S). Now there are two cases:

(1) If k=i + 1 then v;41 Vi is an S edge that immediately follows v;v;4; on o;
since 7 is simple, U4 U:+2 also immediately follows v;v;4; on .

(2) If k # i+ 1 then v;4, is connected in 7 to v, by a simple path of P edges.
It follows that v,.,Puv, since P is transitive, and since ¢ has no P chords, k =
i + 2. v;ui, is immediately followed on ¢ by the P edge vi+10:42, Which is
immediately followed by the S edge v;420:43; on 7, v;U:4; is immediately followed
by a simple path of P edges, which is immediately followed by the S edge vi12Uis3.

The claim follows by induction. [
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m

Fig.11. Any simple cycle replaces P edges by simple paths of P edges. The nonprogram order
conflict edges remain the same.

COROLLARY 3.6 Let o be a critical cycle, and S = ¢ — P. Then S is a minimal
inconsistent execution, and ¢ is the unique critical cycle in S U P.

PrOOF. By the previous lemma, S is contained in the set of edges of any cycle
in S U P, so that S is a minimal inconsistent execution. If 7 is a critical cycle
in § U P, then = is obtained from ¢ by replacing P edges by paths of P edges.
But = has no chords in P, so that each such path has length 1. It follows that
=9 [

THEOREM 3.7 Let R C P be a relation that enforces consistency with P. Then
the critical pair relation D is contained in R”, the irreflexive, transitive closure
of R.

PROOF. Let o be a critical cycle, and uv € P be an edge of ¢. Let S be the set
of edges from C — P in ¢. Then S is a minimal inconsistent execution by Corollary
3.6. Since R enforces correctness, R U S contains a cycle by Theorem 3.1. It
follows, by Lemma 3.5, that uv € R*. [

3.4 Simplified Definitions of Critical Cycles

The definition of a critical cycle can be further restricted, without affecting the
definition of the critical relation D. First, we can ignore cycles in C U P that do
not contain P edges; these do not contribute critical pairs. Second, we may
require that critical cycles do not contain chords in C, with the exception of
“trivial” chords consisting of the reversal of an edge on the cycle. Indeed, let
o = (Vo, ..., Un—1, Vo) be a critical cycle, and assume v,Cv;, where j # i = 1.
Then o1 = (vo, - . ., Vi, Uj, Un-1, Vo) and o2 = (v;, Uity, - . . , Uj, U;) are simple cycles
of P U C with no P chords (Figure 12); they both are critical cycles. Hence, all
P edges of o are P edges of these shorter critical cycles.

Examples. Consider the code shown in Figure 13. We have three critical cycles:
(al, b1, a2, b2, al), (al, bl, a2, al), and (al, a2, b2, al). The first cycle has a
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Vi
o
Vi
! (n
Fig. 12. Deleting C chords from critical
cycles.
()
0|<\~———'—————/—: a2
— — -
¥ P { Fig. 13. Simplified critical cycles.
— T —
bl ~p2
al — - 02\
Fig. 14. Code for two critical cycl T~ ‘
.14. Code for two critical cycles. P
g or two criti y ) //// —~ } /;
bl T b2/

nontrivial C chord (a1, a2) and can be ignored. We get, from the remaining two
cycles, that D = {(al, b1), (a2, b2)}.

In the code shown in Figure 14, we have two critical cycles: (al, b1, a2, b2, al)
and (a2, b2, a2). We get D = {(al, bl), (a2, b2)}. The first cycle cannot be ignored,
even though it has a (trivial) C chord, namely, (b2, a2); note, too, that a critical
cycle may nodewise contain another critical cycle.

When storage accesses are the usual read and write operations, such that a
write access conflicts with any other access to the same variable and read accesses
do not conflict, the situation depicted in Figure 14 cannot occur: If p;Cp,Cp:;Cp,4
then all accesses involve the same variable and either p, or p; is a write; but then
either p;Cp; or p2Cp,. This “semitransitivity” of C implies the following result:

LEMMA 3.8 Let C be the conflict relation for ordinary read and write operations.
Then a pair uv € P of accesses is critical iff it occurs on a cycle of P U C with a
minimal set of nodes.

Critical cycles are particularly easy to characterize when code consists of the
union of disjoint serial chains of accesses, and accesses are usual reads and
writes. We leave to the reader the proof of the following result:

THEOREM 3.9 A cycle o in P U C is critical iff it fulfills the following conditions:

(i) o contains at most two accesses from any chain; these accesses occur at
successive locations in o.
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V v ' ¥ ¥
read D write A write B———>read B write C
/ A / bl
¢ / | s i s y
read A/ read B/ write C/ write D
yd
\ ¢ ’ b
\\ //

Fig. 15. Critical cycle in parallel program segments.

(if) o contains either zero, two, or three accesses to any variable; the accesses
occur in consecutive locations on ¢. The possible configurations are read x —
write x, write x — read x, write x — write x, or read x — write x — read x.
This is tllustrated in Figure 15.

4. USING DELAYS IN GENERAL SYSTEMS

We now consider general systems (V, A, P, C), with nontrivial atomicity
requirements (A is an equivalence relation, but is not the equality relation). We
seek a delay relation D that enforces correctness; we shall relax our previous
requirements on D. In our generic situation, that of parallel serial program
segments, the accesses of an atomic operation are executed by one processor;
delays between such accesses can be easily enforced by the control logic of the
processor executing them, with no loss of interprocessor concurrency. Therefore,
D is allowed now to be an arbitrary (acyclic) subset of P U A.

The derivation of a solution is obtained by extending the definitions and results
of the previous section. A set S C C is a minimal inconsistent execution if it
fulfills the following two conditions:

(1) S is not consistent with P and A; and
(2) S’ is consistent with P and A, for any proper subset S’ of S.?

The family of sets inconsistent with P and A is closed under containment.
Therefore, Theorem 3.1 is valid for this extended definition: D enforces correct-
ness iff D U S has a cycle for every minimal inconsistent execution S.

According to Lemma 2.1, a set S C C is inconsistent with P and A if either
S N A is inconsistent with P N A or S/A is inconsistent with P/A. Hence, S is
a minimal inconsistent execution iff either S € A and S is a minimal inconsistent
execution with respect to the program order P N A, or S/A is a minimal
inconsistent execution with respect to the program order P/A, and SN A = @.
The first type of inconsistencies (wrong execution order inside operations) can
be prevented by critical delays as defined in Section 3.1. In order to handle the
second type of inconsistencies (wrong execution order across operations), we
consider how critical cycles of operations are related to cycles of accesses.

Let ¢ be a cycle of a relation R on V. The projection of ¢ on A is the cycle o of
the relation R/A obtained by replacing each vertex by its equivalence class under
A and deleting self-loops.

% Recall from Section 2.1 that S is consistent with P and A if there is a topological sort of S U P with
A related elements clustered together.
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LEMMA 4.1 Let o be a critical cycle of (P U A, C — A), and o be the projection
of o on A. Then ¢ is a critical cycle of (P/A, C/A). Conversely, every critical cycle
o of (P/A, C/A) is the projection of a critical cycle o of (P U A, C — A). Moreover,
if o is the projection of a cycle w in P U A U C, then ¢ can be chosen such that the
edges of o from C — P U A are the same as the edges of = from C — P U A.

PrROOF. = Let 6 = (v, . .., Un-1, Vo) be a critical cycle of (P U A, C — A), and
o be the projection of o. ¢ has no chords in A, so that v;Av;only if j =i + 1. It
follows that ¢ is simple. If [v;]P/A[v;] then, since P is closed under A, v;Pv;, and
j =1+ 1. It follows that ¢ has no chords in P/A.

< Let ¢ = (vo, ..., Va1, Vo) be a critical cycle of (P/A, C/A). Let 7 =
(vo, ..., Un—1, Up) be a cycle in P U C U A such that ¢ is the projection of =. If
v;Aviy; and v Av;2, then these two edges can be replaced by one edge,
LiVive € A, without changing the projection of n. If v;Av; and v Puiys,
then, since P is closed under A, v;Pv;4s, and v;v;41, Uir10iv2 can be replaced by
U;V;+2. The same holds true if v;Pv;y, and v+, Av;.2. Repeating this process, we
obtain a cycle ¢ = (ug, ..., Us—1, Up) such that ¢ is the projection of ¢, and
an edge from A is not preceded or followed by an edge from A or P in o.
o coincides with m on C — P U A.

If u;Au; and j # i + 1, then o is not simple; if w;Pu;andj # i+ 1, then ¢ has a
P/A chord. Hence, ¢ is a critical cycleof (PU A, C — A). O

THEOREM 4.2 Let Dy be the set of critical pairs of (P N A, C N A), let D* be
the set of critical pairs of (P U A, C — A), and let D, = Dy U D?. Then each
minimal inconsistent execution S is contained in a simple cycle of S U Dy; in
particular, Dy enforces correctness.

PROOF. Let S be a minimal inconsistent execution. If S C A, and S is not
consistent with P N A, then there is a critical cycle ¢ of (P N A, C N A) such
that S= ¢ — P.But s NP C D, C Dy, so that ¢ is a simple cycle in S U D, that
contains S.

If SN A =, and S/A is not consistent with P/A, then there is a critical
cycle o of (P/A, C/A) such that S/A = ¢ — P/A. By the previous lemma, there
exists a critical cycle ¢ of (P U A, C — A) such that ¢ is the projection of ¢ on
A,andS=6—-PUA.Buto N (P U A) C D*C D,, so that ¢ is a simple cycle
in S U D, that contains S. O

4.1 Examples

Consider the code shown in Figure 16. We have one critical cycle of (P N A,
C N A), the cycle (a3, b3, a3). Hence, D4 = {(a3, b3)}; this delay enforces correct
execution within atomic sets. We have one critical cycle of (P U A, C — A), the
cycle (al, bl, a2, b2, al). Hence, DA = {(al, bl), (a2, b2)}. This set of delays
enforces correct execution across atomic sets. We obtain D, = {(al, b1), (a2, b2),
(a3, b3)]. If these three delays are enforced, any execution will look as if ai
occurred before bi, i = 1,. .., 3, and the first and last program segments executed
atomically, even though no locking was done to enforce atomicity. Note that
Do C P in this example.

The code of Figure 17 consists of the first two program segments of the previous
example; however, we do not require any more than al occurs before b1. We still
get the same “external” critical cycle (al, b1, a2, b2, al) and the critical pairs
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al: write A\ a2:read B a3: read C\
yd \
' > } ' )

bl: write B~ ~b2: read A b3: write C

Fig. 16. Example code for nontrivial atomicity constraints.

al: write A ~ P a2:read B
o _
-~
><_ |
—
~T ™~ I~
bl: write 8 ™~ b2:read A

Fig. 17. Code for the first two program segments of Figure 16.

Do = {(al, bl), (a2, b2)}. In this case we have to impose a delay between pairs
of accesses that are not P related. If these delays are enforced, then the outcome
of any execution will be as if (al, b1) were executed atomically, even though no
locking is used. Note that the accesses may occur in the order al, a2, b2, b1. This
does not result in a perceived violation of atomicity as it leads to the same state
as the sequence a2, al, b1, b2.

The code of Figure 18 is identical to the first two program segments of Fig-
ure 16, except that the accesses in the first program segment are required to occur
in the reverse order. We still get the same critical cycle (of (P U A, C — A))
(al, b1, a2, b2, al) and the same set of critical pairs D, = {(al, b1), (a2, b2)}. In
this case, in order to enforce a correct execution, we force accesses to occur in
an order that is the reverse of the order specified by the program! This apparent
paradox can be understood by going back to the example in Figure 6 and the
discussion therein. The code given there differs from the code of Figure 18 only
in its atomicity requirements. No execution order can lead to a violation of the
program order requirements; hence, we are free to reorder accesses in an arbitrary
manner. On the other hand, an execution of b1 before al may lead to a violation
of atomicity, for example, if the accesses occur in the order b1, a2, b2, al. No
violation of atomicity may occur when al executes before b1 (and a2 before 2).

We conclude by going back to the code shown in Figure 5. In this example we
have two critical cycles, (al, a2, b2, b1, al) and (al, b1, b2, a2, al)(one cycle is
the reversal of the other). The set of critical pairs is D, = {(el, b1), (b1, al),
(a2, b2), (b2, a2)}. Dy requires delaying b1 until al occurred, and vice-versa;
this is clearly impossible.

The delay relation D, we defined is a subset of P U A; A has cycles, and D,
may also have cycles. If D, has cycles, then it cannot be physically enforced.
Theorem 4.2 is still formally correct: Any execution order that is consistent with
Dy is consistent with P. If D, has cycles, however, then no execution order is
consistent with Dy; the antecedent is always false, and the implication is vacuous.
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bl: write B —— +————-1—— 02:read B
al: write A — —f—~——— — —— b2:read A

Fig. 18. For this example, delays must force accesses to be in reverse of program order.

We shall later show that Dy is the minimal subset of P U A that enforces
correctness. If D, has cycles, then correct executions cannot be enforced using
only delays in P U A; some other mechanism, such as locking, is required. This
is examined in Section 5. The pairs of “contradictory” delays obtained by the
critical pair analysis will be used to determine where locking is necessary.

4.2 Systems Where Delays Enforce Correctness

Let D, be the delay relation defined in Theorem 4.2. D, is acyclic, and hence
enforceable whenever D, C P. An edge uv € A — P may occur in D, only if it
occurs in a critical cycle ¢ of (P U A, C — A). Let ru and vw be, respectively,
the preceding and following edges on o. Since o is critical, we have ru, vw €
C — P U A. We define below a natural condition that prevents the occurrence
of such a situation.

An access u is called external if there exists another access v such that "uAuv,
uCuv, but neither uPv nor vPu. An access is external iff it conflicts with an access
of another operation and the code does not specify the order of execution of these
two conflicting accesses. Such an access represents a nondeterministic interaction
with another operation. A code has the single external access property if each
operation contains at most one external access.

In the case of a parallel program that consists of several sequential program
segments, accesses executed by the same program segment are ordered by P. An
access is external iff it conflicts with an access executed by another program
segment. This implies that an access is external iff it accesses a shared read-
write variable. The code has the single external access property iff each operation
accesses at most one shared read-write variable.

LEMMA 4.3 Suppose o is a critical cycle of (P U A, C — A), in a program with
the single external access property. Then ¢ does not contain edges from A.

PRrROOF. Let o = (v, ..., Un-1, Ug) be a critical cycle of (PU A, C — A). Assume
U;Av;¢1. If v;-Pv; then, since P is closed under A, v;_,vP;,,, and ¢ has a P chord.
If v,Pv;,_, then v,v;_; 1s a P chord of ¢. It follows that —w;_,Pv; and —w,Pv;_,.
Similarly, neither v;+;Puv;42, nor v;42Pv;y;. Thus, both v; and vi4; are external
accesses—a contradiction. 0O

COROLLARY 4.4 Let E be an execution order for a code with the single external
access property. If E is consistent with P, then E/A is consistent with P/A.
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/oh write A \
{ i \
\ \
‘bl: read A
_ AN
,Cl write B N
/ AN
!’ h
\ l \\ _ a2:read C
\
\ X
~dl: read B PN
// l
| id N b2: read A
7
el: write C 7

Fig. 19. Code with single external access property.

Proor. If E/A is not consistent with P/A, then (P U A, E — A) has a critical
cycle. This cycle has no A edges by the previous lemma and, hence, is a cycle in
P U E. Thus, E is not consistent with P. [

Thus, in a code with the single external access property, an execution order
that respects program order constraints also respects atomicity constraints.
Violation of atomicity constraints may occur only when an operation has two
distinct accesses that conflict nondeterministically with other operations.

When a code has the single external access property, atomicity constraints can
be ignored. It follows that the critical pair relation defined in Section 3.2 enforces
correctness; this relation will coincide with the relation D, defined in the current
section.

Example. Consider the code in Figure 19. This code has the single external
access property. There is one internal critical cycle, the cycle (al, b1, al). It
defines the internal delay (al, b1). There are two external critical cycles, (al, el,
a2, b2, al) and (c1, d1, c1) (remember that P is closed under A). These cycles
define the external delays (al, el), (c1, d1), and (a2, b2). These delays enforce
correct execution. The same delays would be obtained by ignoring A and com-
puting critical pairs for (P, C).

4.3 Minimality

We prove in this subsection that the delay relation defined in Theorem 4.2 is
minimal. The proof is similar to the proof of Theorem 3.7 (which handles the
case where there are no atomicity constraints).

LEMMA 4.5 Let ¢ be a critical cycleof  PUA,C — A),andlet S= ¢ — P U A.
Then S is a minimal inconsistent execution.

PrROOF. Clearly, S is not consistent with P and A. We shall show that any
proper subset of S is consistent with P and A.
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Let o be the projection of o. Then o is a critical cycle of (P/A, C/A), be
Lemma 4.1. We have S/A = o — P/A, so that S/A, the projection of S, is a
minimal inconsistent execution (with respect to P/A). If rs, uv are two distinct
edges in S, then —rAu, since ¢ has no A chords. Thus, no two edges from S are
equivalent under A, and the mapping from S to S/A is one-to-one.

Let S’ be a proper subset of S. Then S’/A is a proper subset of S/A and,
hence, consistent with P/A. It follows that S’ is consistent P and A. O

THEOREM 4.6 Let D, be the delay relation defined in Theorem 4.2. Let R C
P U A be a relation such that for any minimal inconsistent execution S there is a
simple cycle # of R U S and ©# € R. Then D, is contained in the transitive,
irreflexive closure of R.

COROLLARY 4.7 Let R C P U A be an acyclic relation that enforces correctness
(with respect to P and A). Then D, C R™.

PROOF. Let S be a minimal inconsistent execution. Then S is inconsistent
with R, and S U R has a simple cycle ¢. Since R is acyclic, then ¢ & R. Hence, R
fulfills the condition of Theorem 4.6, so that D, C R*. O

PROOF OF THEOREM 4.6. Let uv € D,. There are two cases to consider;

(i) uw € P N A occurs in a critical cycle ¢ of (P N A, C N A). Then S =
¢ — P is a minimal independent execution, by Corollary 3.6. Thus, R U S con-
tains a simple cycle 7, and # € R. By Lemma 3.5 ii, it follows that uv € R*.

(ii) uv € P U A occurs in a critical cycle o of (P U A, C — A). By Lemma 4.5,
S =g¢ — P U A is a minimal independent execution. Thus, R U S contains a
simple cycle = such that = € R. By Lemma 3.5 ii, this implies uv € R*. O

The last result implies that, if D, contains a cycle, then there exists no acyclic
delay relation R C P U A that enforces correctness. Indeed, R* would contain
D, and, hence, would contain a cycle; but then R itself contains a cycle. Hence,
when the delay relation defined by Theorem 4.2 is not enforceable, one either
has to use delays that are outside P U A, or use a different mechanism to enforce
correctness.

5. LARGE ATOMIC OPERATIONS AND LOCKS

In this section we consider the problem of enforcing correct execution for code
when delays do not suffice. For example, we consider a concurrent execution of
program segments where an operation may access more than one shared variable.
We assume two mechanisms can be used to enforce correctness:

(1) An access may be delayed until some other access has terminated (these are
the delays used in the previous sections).

(2) A locking protocol may be used to guarantee atomic execution of sets of
accesses; the accesses in the code are partitioned into disjoint locking sets,
and the protocol protects the execution of the accesses in each locking set.
We represent that partition by an equivalence relation L; the locking sets
are the equivalence classes of L.
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Atomic execution of sets of accesses can be obtained using locks. A lock is set
on a variable on behalf of a locking set. Several read locks may be set simulta-
neously on a variable; a write lock on a variable is exclusive of any other lock.
We use the following protocol to execute these accesses:

Let u be a locking set. A lock on behalf of u is set on all variables accessed by u
before the execution of any access from u. A read lock is secured on each variable
for which there are only read accesses in u; a write lock is secured on each
variable that is updated in u. After execution of all accesses in u, the locks are
released.

This protocol guarantees that a locking set accesses a variable only if it has a
lock on it, and a locking set updates a variable only if it has a write lock on it.
(If all the locks cannot be obtained, they are released, and we try again, avoiding
the possibility of deadlock.)

A locking protocol can be combined with the enforcement of a delay rela-
tion D. We assume D and D/L are acyclic. Delays on locking sets are enforced
by suitably ordering the acquisition and release of locks: If uD/Lv, locks on
behalf of v are secured only after all locks on behalf of u have been released.
Delays within locking sets are enforced by suitably ordering the accesses.

Note that if uDv and "wLv then each access in the locking set of v is delayed
until all accesses in the locking set of u have taken place. This enforces a set D
of delays that may be larger than D; D is the closure of D under L; that is, D =
D/L x (D N L), where X is the lexicographic product defined in Section 2.1.

DELAY AND LOCKING LEMMA. Assume the previous locking protocol is used for
D and L. Then any execution E is consistent with D and L.

PrROOF. Assume E is not consistent with D and L. According to Lemma 2.1,
there are two cases to consider:

(i) (ENL) U (D NL)has a cycle. Then E is not consistent with D, which is
impossible by the delay lemma.

(ii) EUL UD has a cycle ¢ = (vo, ..., Un1, Ug) that is not contained in an
equivalence class of L. If v;Ev;.; then access v;,; occurs after access v;; the same
holds true if v;Dv,. .

If vi_,Lv;Eviy; and —w;Lv;,, then v; and v, are conflicting accesses and
require the acquisition of conflicting locks. The lock on behalf of {v;] is secured
before v;_; occurs and released after v; occurs. It follows that either both v;_; and
v; occur before v;.; or both occur after v;.,. Since v;Ev;+;, the former is the case.
Similarly, if v;—, Ev;Lv;,, and —w;_,Luv;, then v;_, and v; both occur before v, ;.

If v;-1Lv;Dv;y; and —w;Lv;+;, then the locks acquired on behalf of [v;] are
released after v;—, occurred, but before v;., occurs. Hence, v;—; and v; both occur
before v,.;. Similarly, if v;,_;Dv;Lv;+; and —w,_,Luv;, then v;-; and v; both occur
before v;4;.

Let vy, ..., v;_, be the subset of nodes in ¢ such that —w; Lv, +,. Since ¢ is not
contained in one locking set, this list has length =2. The previous argument
implies that v;, occurs before v;,,,j =0, ..., r — 1 (addition is taken modulo r);
this is a contradiction since “occurs before” is irreflexive and transitive. [
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The pair of relations (D, L) can be seen as a specification of the effect of some
control mechanism: It restricts the executions to those that are consistent with
L and D. The following discussion does not make any assumption on the protocol
used; our results hold for any protocol for which the delay and locking lemma is
valid. (D and D/L should be acyclic, but it is not required that D be closed
under L.)

The problem is formalized as follows: As before, a program is represented by a
tuple (V, A, P, C). An execution E is a proper orientation on C. Correctness of
execution is enforced using a delay relation D and a locking relation L.

The pair of relations (D, L) enforces correctness if any execution order that is
consistent with D and L is correct (i.e., consistent with P and A). Such a pair
always exists: (A, P) enforces correctness. We show in this section how to
improve on this trivial solution. Following the spirit of the previous sections, we
seek a solution (D, L) suchthat LC Aand (i) DCP,or(ii) DCPUA,and D
is acyclic. In case (i) no extraneous atomicity or order constraints are imposed
on the accesses; any execution order that is correct is consistent with D and L.
In case (ii) the constraint imposed by D and L may rule out correct computations,
but are still easy to enforce in the case that interests us in particular; that is,
when the code consists of the disjoint union of chains (serial program segments)
and each operation is contained in a segment (an atomic “operation” consists of
code executed by one processor). Accesses within a locking set are executed by
one processor; this processor will acquire and release locks for this access; it is
sufficient to label a lock with the identifier of the processor that acquires it.
Delays also occur between accesses executed by the same processor and are
enforced by the control logic of that processor.

The major constraint on concurrency is locking; this is also likely to be the
more expensive operation. Therefore, we shall seek a solution that is lexicograph-
ically minimal: L is the smallest possible locking relation, and given L, D is the
smallest possible delay relation.

LEMMA 5.1 Let L C A be a locking relation, and D C P U A be a delay relation
such that (L, D) enforces correctness. Then Dy © (L U D)*, where Dy is the
relation defined in Theorem 4.2.

ProOF. Let S be a minimal inconsistent execution. Then S is inconsistent
with D and L. Thus, either S C L, and S is contained in a simple cycle of
SNL)UMNL),or SNL =g, and S is contained in a simple cycle of S U
L U D. In either case S is contained in a simple cycle of S U (D U L). Since
D UL CPUA, this implies, by Theorem 4.6, that D,C (DU L)*. O

Let L € A be a fixed locking relation. The previous lemma suggests the
following construction for D, a delay relation that enforces correctness together
with L:

(56.1) Let D* =D, — L,

(5.2) let Dy be the set of P edges on critical cycles of (P N L, C N L), and
(5.3) let D(L) = D" U Dy..
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Note that DV C D, C P U A and D;, CP N L; hence, D(L) C P U A. We now
present the following theorem:

THEOREM 5.2 Let L C A be « locking relation, and let D(L) be defined by (5.1)-
(5.3). Then,

(i) the pair of relations (D(L), L) enforces correctness; and

(i) let D’ C P U A be an acyclic relation such that (D’, L) enforces correctness;
then L U D(L) C (L U D’)"; and if we furthermore have L N D’ C P, then
LLNDL) C(LND)*".

PRrROOF. (i) Let S be a minimal inconsistent execution. By Theorem 4.2, S is
contained in a simple cycle ¢ of S U Dy. Since D, € D(L) U L, ¢ is a cycle of
SUD(L) UL.If ¢ €L then, according to Lemma 2.1, S is not consistent with
D(L) and L. If ¢ C L then S C L C A. This implies that S is not consistent with
P. But, if S U P has a cycle, then S U (P N L) has a cycle. Thus, S is not
consistent with P N L so that, by Corollary 3.4, S is not consistent with Dy, and,
hence, with D(L). It follows that (D(L), L) enforces correctness.

(ii) According to Theorem 5.1, we have D, C (L U D’)*. It follows that
LUDL)=LUD,C (D' UL)". Assume D’ "L C P. D’ N L enforces con-
sistency with P N L. This implies, by Theorem 3.7, that D’ N L C (Dy)* C
OEL)yNnL)*. O

The last theorem shows that D(L) is a minimal delay relation that enforces
correctness, together with L. We show now how to construct a minimal locking
relation L. Suppose we require that D(L) C P.

THEOREM 5.3 Let L be the symmetric, transitive closure of Dy, — P. Let D(L)
be defined by (5.1)-(5.3). Then,

(i) LC A, D(L) CP, and (L, D(L)) enforce correctness; and
(it) if (L', D’) enforces correctness, where L’ C A and D' CP, then LCL’.

PROOF. (i) We have D, C P U A; hence, Dy — P C A, so that L C A. We have
D =D, — L C P, so that D(L) C P. According to Theorem 5.2, (D(L), L)
enforces correctness.

(ii) We have, according to Lemma 5.1, D, C (I’ U D’)*. But (” U D’)* C
L’ U P;thus, Dy — PC L’. It follows that LC L’. O

Suppose we merely require that D(L) be enforceable; that is, D(L) and
D(L)/L are acyclic.

THEOREM 5.4 Let L be the relation defined by uLv if u and v are in the same
strongly connected component of Dy. (ulv if both uv € D§ and vu € Dj.) Let
D(L) be defined by (5.1)-(5.3). Then,

(i) LC A D(L) CPU A, and D(L) and D(L)/L are acyclic; and (D(L), L)
enforces correctness; and

(it) if (D', L) enforces correctness, where .’ C A, D’ C P U A, and both D’ and
D’/L are acyclic, then L C L.

ProOOF. (i) We have D, C P U A. Any strongly connected component of Dy is
contained in a strongly connected component of P U A; since P/A is a partial
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order, any strongly connected component of P U A is contained in an equivalence
class of A. It follows that L. C A. A graph induces an acyclic orientation on its
strongly connected components; hence, D(L)/L = Dy/L is acyclic. Also, D(L) N
L = Dy C P is acyclic. It follows that D(L) is acyclic. By Theorem 5.2, (D(L),
L) enforce correctness.

(ii) We have, by Lemma 5.1, (D,)* C (L’ U D’)*. Let D be the closure of D’
under L’; that is, D = D’/L’ X D’ N L. Then D is acyclic, and (L’ U D’)* =
L’ U (D)*. Assume both uv € D¢ and vu € D§. Since (D)* is acyclic, either
u € L',orvu e L’. It follows that LCL’. O

Example. Consider anew the code in Figure 18. We have D, = {(al, bl),
(a2, b2)}. If we insist that D(L) C P, we take L to be the symmetric, transitive
closure of Dy — P = (al, b1). The locking sets are {al, bl}, {a2}, and {2}, and
there is one delay pair, (a2, b2).

On the other hand, if we allow delays in A — P, then we take the locking sets
to be the strongly connected components of D,. In this case Dy is acyclic, so that
all locking sets are singletons, and D(L) = {(al, b1), (a2, b2)}. Note that this
delay relation prevents some correct executions, such as a2, b2, bl, al.

6. FROM ABSTRACT CODE TO REAL PROGRAMS

6.1 Delay and Locking Mechanisms

The preceding sections provided a framework for the detection and prevention
of hazards in concurrent code. The actual use of this framework will depend on
the extent of information that can be extracted from the code at compile time,
and on the control mechanisms provided by the machine. We shall first address
the second factor, and then turn to the first.

Suppose that a delay relation D that enforces correctness has been computed,
and suppose that uDv, vDw, and uDw. Then it is not necessary to record and
enforce the delay uDw, as it will be implied by the delays uDv and vDw. In
general, any delay relation D’ such that D is contained in the transitive closure
of D’ will do. In particular, one can take the transitive reduction of D, which is
the smallest relation R with the property that R C D C R*: R consists of all pairs
uv € D such that the longest path from u to v in the graph of D has length 1 [2].
The same idea applies in the general case, where locks are used.

In some cases the hardware (or firmware) of the machine may impose a set D,
of delays; for example, the hardware may ensure correct ordering of accesses
within atomic operations. One needs then to find a minimal relation D, such
that D, U D, enforces correctness. Let D be a minimal delay relation that
enforces correctness, let D’ = (D U D,)*, and let R’ be the transitive reduction
of D’. Finally, let D, = R’ — D,. Then D, is a minimal delay relation that
enforces correctness, together with D;.

On the other hand, the control mechanisms of the computer may not enforce
arbitrary delays. We then look for a minimal delay relation that is enforceable
by the machine, and contains the relation D in its transitive closure. For example,
the RP3 has a fence instruction that delays the execution of the following
memory access until all preceding accesses have executed. We wish to minimize
the number of “fences” used.
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The fences in the code of a processor divide the instructions of this processor
into a disjoint sequence S, . . ., S, of sets such that all accesses in S; are executed
before any access in S;.;; r is the number of fences used. Thus, given a delay
relation D, we wish to find a minimal partition such that, if uDv, u € S;, v € S,
then i < j. Such a partition is easy to compute: Let level(u) be the length of the
longest path reaching u in the graph of D. Define S; to be the set of nodes at
level i. The partition S;, Ss, ... then has the required property. The number of
fences required equals the length of the longest path in the graph of D, and this
is optimal.

Computers may also differ in their support for locking protocols. Locking may
often be optimized when locking sets contain a unique access. Since such a
locking set is executed atomically, it is sufficient to check that the location
accessed by that operation is not currently locked by another processor. (In fact,
we can do even better: If the operation only reads the location, then it is only
necessary to check that no other processor holds a write lock on that location.)
This has the same effect as a lock, access, and unlock, so our previous theorems
still hold with this optimization. If memory is tagged, and hardware supports
“test-and-load” and “test-and-store” operations, then only one access to memory
is needed. In the even more special case when a location is always accessed by
an equivalence class of size 1, no locks on that location are needed at all.

6.2 Conflicts and Branching Programs

We assumed the conflict relation C is known in advance. More often, a compiler
can do only a partial job in extracting this relation: Data dependency analysis
yields a set of pairs of instructions that contains all conflict pairs; we use this set
as our conflict relation, and perform a conservative, safe optimization.

More important, we have assumed that code is straight line; in the general
case, our program segments will contain jump statements, due to branch and
loop constructs. We represent possible control flow in each program segment by
a flow graph (see [1]). An execution of a program corresponds to a (possibly self-
crossing) path in the flow graph.

To simplify the discussion, we consider code with no atomicity constraints;
storage access operations are regular reads and writes. One can reduce this
general setting to the case of straight-line code by requiring that the execution
of a new block does not start until memory references issued by instructions in
other blocks of this program segment have been satisfied: A fence is set at the
entry of each block. For each tuple of blocks, each belonging to another program
segment, delays are introduced that enforce correct concurrent execution of these
blocks.

It is also possible to do global optimization of delays. Delays are introduced
between pairs of instructions; each such instruction may have several executing
instances. If a delay is inserted between instructions u and v, then instruction v
is not issued as long as there is an executing instance of instruction u; a delay
uDu indicates that instruction u is not issued as long as the execution of the
previous instance of u has not terminated. A delay relation D enforces correctness
if for any choice of an execution path within each program segment the concurrent
execution of these paths is correct.
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Let uPv if u and v are instructions in the same program segment, and there is
a path from u to v in the flow graph of this program. P is transitive. P, however,
may not be acyclic; in particular, we may have uPu. The conflict relation C is
defined as usual.

An execution path of a program segment corresponds to a (possibly self-
crossing) path in the graph of P. A critical cycle ¢ for a set of parallel execution
paths corresponds to a cycle ¢ in P U C. The cycle ¢ is not necessarily simple.
The delay relation D enforces correctness if all P edges of such cycles occur in
D. We may use the characterization given in Theorem 3.9 to identify these cycles.

THEOREM 6.1 Let D be the set of P edges in cycles o of P U C with the following
properties:

(i) o contains at most two instructions from the same program segment; these
instructions are consecutive in o.

(it) o contains either zero, two, or three accesses to each variable; these accesses
are consecutive in o. The possible configurations are read x — write x, write x
— read x, write x — write x, or read x — write x — read x.

Then D enforces correctness.

It may not always be possible to resolve references and exactly identify
conflicting accesses. In this case, one has to consider all cycles that have the
above form, for some possible resolution of the references.

6.3 Code Motion

The delay analysis of the previous sections can be helpful even if the computer
enforces sequential consistency, that is, there is no overlapping of successive
memory accesses. The performance of the code can be enhanced by changing the
order in which operations are executed. Indeed, code motion is a standard
optimization technique for sequential code: Computations are moved out of loops,
memory loads are executed earlier in order to mask memory latency, etc. Such
optimizations are safe if they do not change the order in which conflicting
operations are executed.

Our analysis of parallel code shows that this safety criterion is not sufficient
any more when a program segment interacts with others via shared variables.
For example, in the code shown in Figure 6 there are no data dependencies within
the program segments; if we reverse the order of the operations in the second
segment, we get the code shown in Figure 7. A (sequentially consistent) execution
of this second code may yield an outcome that is incorrect for the first code.

A naive approach to local optimization would be to assume that any two
accesses to shared variables potentially conflict and the order of two such
operations cannot be reversed. The delay analysis yields a more accurate criterion:
If there is no delay between operations © and v of the same program segment,
then the order of execution of these two operations in memory is arbitrary. In
particular, we can interchange the order they are issued. Any order of issuing
that satisfies the requirement that if uD*v then v is not issued until © has been
completed is acceptable.
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Segment 1 Segment 2 Segment 8

al: read A a2: read B a3: read C

barrier barrier barrier

bl: write B b2: write B b3: write D

Fig. 20. Barrier example.

6.4 Synchronization Operations

Our abstract code model can be used to represent synchronization operations
across processes; these are represented as order constraints between operations
in distinct program segments. For example, suppose a communication event
between two processes is represented by two operations: a send operation in one
segment and a receive operation in another segment. If the communication
mechanism is asynchronous, then we have the added constraint

sendPreceive.
If the communication is synchronous, we have the following stronger constraints:

uPsend iff uPreceive, and
sendPu iff receivePu.

This extends to a barrier that is a synchronization involving an arbitrary
number of processors. If b, . .., by are the barrier synchronization operations in
the different processes, then we have

uPb; iff uPb;, and
bPu iff bPu.

Consider the example in Figure 20. The barrier implies that

P = {(al, b1), (a2, b2), (a3, b3)}
U {(al, b2), (al, b3), (a2, b1), (a2, b3), (a3, b1), (a3, b2)}.

where the second set of P relationships comes from the barrier. The P ordering
can be implemented by creating the delay relation D = {(a2, bl), (a2, b2)}.

We thus obtain a weaker synchronization constraint than suggested by P; one
only needs to delay b1 and b2 until a2 has terminated. This can be used to reduce
the strength of the synchronization operations, thus increasing concurrency and
decreasing synchronization overhead, without changing the meaning of the
program.

7. CONCLUSION

This paper presents a method of enforcing efficient and sequentially consistent
execution of concurrent processes on a shared-memory multiprocessor when
memory access is asynchronous. Our method determines when consecutive op-
erations in the same program segment of a parallel program may execute
concurrently, without violating the programmer’s view that each segment
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executes in its given program order. An actual implementation of this method
depends on two factors that were not discussed.

First, one should be able to detect data dependencies. This is a problem faced
by any optimizing compiler, and sophisticated methods have been developed for
that purpose [1, 15]. In particular, index analysis to discover data dependencies
across loop iterations [3] are relevant to our purpose. In general, the compiler
will not be able to detect existing data dependencies accurately, but will have to
assume further dependencies. These extra data dependencies reduce the efficiency
of the code produced, but do not affect its correctness.

Second, one has to find all the minimal cycles in a graph. This requires time
exponential in the number of nodes in a general graph. The graphs arising from
program segments, however, have a constrained structure that makes the problem
easier. The characterization of critical cycles given in Theorem 3.9 implies the
existence of a polynomial-time algorithm for detection of critical pairs in a code
that consists of a fixed number of serial program segments; this algorithm extends
to the code obtained from a fixed number of high-level language program
segments with bounded nesting of loops and conditionals.

Our analysis presupposes that the processor has the ability to delay the issuing
of an instruction until some previous instruction has been executed. Pipelined
processors often have such locking mechanisms. The processor detects data
dependencies by itself and enforces correct sequencing of data-dependent
operations.

The results of this paper suggest that such a mechanism is inadequate in a
shared-memory parallel computer. Instead, it would be useful to be able to tag
the serial machine code with dependency information; the processor would
enforce correct sequencing of tagged instructions. Such a mechanism could be
used to enforce both data dependencies in serial code, and delays needed to avoid
hazards in parallel code.
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