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What do I do?

Mom

Fixing computers
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What do I do?
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What do I do?

A college mate

Mom

Applied mathematics, Formal methods

Tingting Han (RWTH Aachen) Diagnosis, Synthesis& Analysis of Probabilistic Models Oct. 16, 2009 2 / 48



What do I do?

A college mate

Mom

Tingting Han (RWTH Aachen) Diagnosis, Synthesis& Analysis of Probabilistic Models Oct. 16, 2009 2 / 48



What do I do?
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Mom Correctness!
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A college mate

Mom
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What do I do?

A researcher in a workshop

A college mate

Mom

add Probability!
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What do I do?

A researcher in a workshop

A college mate

Mom

add Probability! ⇒ probabilistic model checking
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What do I do?

Boss

A researcher in a workshop

A college mate

Mom
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Diagnosis
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Counterexamples are of utmost importance

2008 Turing Award Winner Edmund Clarke:

“It is impossible to overestimate the importance of

the counterexample feature. The counterexamples

are invaluable in debugging complex systems. Some

people use model checking just for this feature.”
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2008 Turing Award Winner Edmund Clarke:

“It is impossible to overestimate the importance of

the counterexample feature. The counterexamples

are invaluable in debugging complex systems. Some

people use model checking just for this feature.”

• provide diagnostic feedback
=⇒ “model checking = bug hunting”

• key to abstraction-refinement framework

• schedule synthesis
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Different shape of counterexamples

• LTL counterexamples are finite paths

• “always Φ”: a path ending in a ¬Φ-state

• “eventually Φ”: a ¬Φ-path leading to a ¬Φ cycle

• BFS yields shortest counterexamples

• CTL counterexamples are (mostly) finite trees

• universal CTL\LTL: tree-like counterexample
or proof-like counterexample

• existential CTL: witnesses, annotated counterexample

• Our work: PCTL counterexamples for DTMCs
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Our contributions

• A formal definition of (smallest) counterexamples

• Algorithms finding (smallest) counterexamples

• Compact representation of counterexamples

• Extensions to other models and logics
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Discrete-time Markov chains

s0 s1 t1

u s2 t2

0.6 0.333

0.1

0.30.7

0.667
0.3

0.1

0.2 10.3

0.9

0.5

a DTMC is a triple (S,P, L) with state space S and state-labelling L

and P a stochastic matrix with P(s, s′) = one-step probability to jump from s to s′
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Probabilistic CTL (Hansson & Jonsson, 1994)

• For a ∈ AP, p ∈ [0, 1], ⊲⊳ ∈ {<, >,≤,≥} and h ∈ N:

Φ, Ψ ::= tt
∣∣ a

∣∣ Φ ∧ Ψ
∣∣ ¬Φ

∣∣ P⊲⊳p(ϕ)

ϕ ::= Φ U Ψ
∣∣ Φ U≤h Ψ

• s0s1s2 . . . |= Φ U≤h Ψ if Φ holds until Ψ holds within h steps

• s |= P⊲⊳p(ϕ) if probability of set of ϕ-paths starting in s lies ⊲⊳ p

Focus on reachability properties:

P≤p(♦ a) and P≤p(♦≤h a)

where ♦a = tt U a and ♦≤ha = tt U≤h a
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PCTL counterexamples for s 6|= P≤p(♦≤h
a) (h ∈ N ∪ {∞})

s 6|= P≤p(♦≤h a) iff Pr
{
Paths(s,♦≤h a)

}
> p
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{
C

}
> p
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evidences

| ∃sn |= a, n ≤ h}
 strongest evi. arg maxPr{evi.}

Informative counterexamples: |C| small, Pr{C} big

Minimal counterexamples: |C| smallest

Smallest counterexamples: arg max
C is minimal Pr{C}

|C| is #evidences in C
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Evidences for s0 6|= P≤ 1
2
(♦ red)

s0 s1 t1

u s2 t2

0.6 0.333

0.1

0.3

0.667
0.3

0.1

0.2 11

0.9

0.5

evidences prob.

σ1 = s0 s1 t1 0.2

σ2 = s0 s1 s2 t1 0.2

σ3 = s0 s2 t1 0.15

σ4 = s0 s1 s2 t2 0.12

σ5 = s0 s2 t2 0.09

. . . . . .
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Strongest evidences
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Counterexamples for s0 6|= P≤ 1
2
(♦ red)

s0 s1 t1

u s2 t2
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evidences prob.

σ1 = s0 s1 t1 0.2

σ2 = s0 s1 s2 t1 0.2

σ3 = s0 s2 t1 0.15

σ4 = s0 s1 s2 t2 0.12

σ5 = s0 s2 t2 0.09

. . . . . .

Counterexample |C| Prob.

{σ1, σ2, σ3, σ4, σ5} 5 0.76

{σ1or σ2, σ3, σ4, σ5} 4 0.56

{σ1, σ2, σ4} 3 0.52

{σ1, σ2, σ3} 3 0.55
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smallest −→ {σ1, σ2, σ3} 3 0.55

Tingting Han (RWTH Aachen) Diagnosis, Synthesis& Analysis of Probabilistic Models Oct. 16, 2009 13 / 48



Our contributions

• A formal definition of (smallest) counterexamples

=⇒ Algorithms finding (smallest) counterexamples

• Compact representation of counterexamples

• Extensions to other models and logics
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Obtaining smallest counterexamples — Model adaptation

s0 s1 t1

u s2 t2

0.6 0.333

0.3

0.667
0.3

0.1

0.21

0.5 t

1

1

1

Insert a sink state and redirect all outgoing edges of red-states to it
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A weighted digraph

s0 s1 t1

u s2 t2

log 5
3 log 3

log 10
3

log 3
2

log 10
3

log 10

log 50

log 2
t

0

0

0

Turn it into a weighted digraph with w(s, s′) = log

(
1

P(s, s′)

)
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A simple derivation

For finite path σ = s0 s1 s2 . . . sn:

w(σ) = w(s0, s1) + w(s1, s2) + . . . + w(sn−1, sn)

= log
1

P(s0, s1)
+ log

1

P(s1, s2)
+ . . . + log

1

P(sn−1, sn)

= log
1

P(s0, s1)·P(s1, s2)· . . . ·P(sn−1, sn)

= log
1

Pr(σ)

Pr(σ̂) ≥ Pr(σ)︸ ︷︷ ︸
in DTMC D

if and only if w(σ̂) ≤ w(σ)︸ ︷︷ ︸
in digraph G(D)
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What does this mean?

• Finding a strongest evidence︸ ︷︷ ︸
(most probable path)

is a shortest path (SP) problem

• apply standard SP algorithms

=⇒ linear time complexity

• Finding a smallest counterex︸ ︷︷ ︸
(k most probable paths)

is a k-shortest paths (KSP) problem

• dynamically determine k

=⇒ generate C incrementally and halt when Pr{C} > p
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Algorithms and time complexity

counterexample shortest path algorithm time complexity

problem problem

unbounded SE SP Dijkstra O(M + N · log N)

bounded h SE HSP Bellman-Ford O(h·M)

unbounded SC KSP Eppstein O(M + N · log N + k)

bounded h SC HKSP adapted REA O (h·M + h·k· log N)

N = |S|, M = # transitions, h = hop count, k = # shortest paths
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Our contributions

• A formal definition of (smallest) counterexamples

• Algorithms finding (smallest) counterexamples

=⇒ Compact representation of counterexamples

• Extensions to other models and logics
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On the size of counterexamples

s u t
0.01

1

0.99

1

A smallest counterexample for s 6|= P≤0.9999(♦ red) contains paths

s u t, s u s u t, s u s u s u t, . . . . . . , s u|{z}
k times

t

where k is the smallest integer such that 1− 0.99k−1 > 0.9999

The smallest counterexample has k = 689 evidences
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Synchronous leader election P≤0.99(♦ leader)

#nodes: N = 4

0.0

1.0

100 102 104 106

−
→

P
ro

b
a
b
il
it
y

−→ #evidences

K=2 K=4 K=8 K=12

size of counterexample is double exponential in problem size
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Use regular expressions!

• Size of counterexamples is mainly influenced by loops

• each loop-traversal yields another path in counterexample

• Idea: represent sets of “similar” finite paths by a regular expression

• How?

Automata theory!
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From DTMCs to DFAs

s
1

s2

s3 t

s5

s

s2

s3 t

s5

s0
0.3 0.3

1

0.7
0.2

(0.3, s3) (0.3, t)

(0.2, s2)

(0.7, s2)

(1, s5)

(0.5, s3)0.5

1

(1, s3)

(1, s)

alphabet Σ consists of symbols of the form (p, s)

• DTMC (rooted at s) −→ DFA (t is accepting)

• a set of s-t paths Pathsr ←− a regular expression r

=⇒ probability Pr(Pathsr) = Pr(r)
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Regular expressions

The set of regular expressions R(Σ):

r, r′ ::= ε empty

| (p, s) letter

| r|r′ choice

| r.r′ concatenation

| r∗ repetition

Evaluation val : R(Σ) → [0, 1]:

val(ε) = 1

val((p, s)) = p

val(r|r′) = val(r) + val(r′)

val(r.r′) = val(r) · val(r′)

val(r∗) =

8<: 1 if val(r)=1
1

1 − val(r)
otherwise

For regular express r of DFA AD with accept state t:

val(r) = PrD{σ ∈ Paths(s) | σ |= ♦ t}

• Pr(r) exceeds p (= r is a counterexample)

• r is “minimal”: deletion of some “branch” of r yields no counterexample
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Regular expression counterexample for leader election

start

u1 uiW (N,K)
...... NK−W (N,K)

......
s1 sj

next leader

1
NK 1

NK

1
NK

1
NK

1
1

1
1

1

Regular expression for the counterexample:

r(N, K) = start . [(u1| · · · |ui) .next . start ]∗. (s1| · · · |sj). leader
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Our contributions

• A formal definition of (smallest) counterexamples

• Algorithms finding (smallest) counterexamples

• Compact representation of counterexamples

=⇒ Extensions to other models and logics
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Extensions

The counterexample generation for DTMC + P≤p(♦6ha) can be generalized to

• DTMC +

• full PCTL

• LTL, or PCTL∗

• [nondeterminism]
MDP + (PCTL, or LTL, or PCTL∗, or with fairness conditions)

• [reward] DMRM + PRCTL

• [continuous-time] CTMC + CSL

• ...
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Counterexamples are en vogue

• Different techniques

• Heuristic search algo. for DTMCs/CTMCs (Aljazzar et al. FORMATS’05, ’06, TSE’09)

• Bounded model checking for DTMC counterexamples (Becker et al. VMCAI’09)

• Different models and logics

• Counterexamples for CTMCs (Han & Katoen ATVA’07)

• Counterexamples for MDPs (Andres et al., HVC’08, Aljazzar & Leue QEST’09)

• Counterexamples for conditional PCTL (Andres & van Rossum TACAS’08)

• Counterexamples for LTL (Schmalz et al., CONCUR’09)

• Different applications

• Proof refutations for probabilistic programs (McIver et al. FM’08)

• Counterexample-guided abstraction refinement (Hermanns et al. CAV’08)

(Chadha & Viswamanathan Corr abs 08)

• Counterexample visualization (Aljazzar & Leue QEST’08)
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Diagnosis — Summary

• A formal definition of (smallest) counterexamples

• a set of paths with sufficient probability mass

• Algorithms finding (smallest) counterexamples

• exploit k-shortest path algorithms

• Compact representation of counterexamples

• by regular expressions!

• Extensions to other models and logics

• the framework is general!
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Synthesis
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Problem Statement

Parameters in the model:

• Values are hard to settle in the early phase of design

• Usually have physical meanings: temperature, time, pressure, speed...
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Problem Statement
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• Values are hard to settle in the early phase of design

• Usually have physical meanings: temperature, time, pressure, speed...

Trains[speed :=?, length :=?] and P>0.9999(¬col)
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Problem Statement

Parameters in the model:

• Values are hard to settle in the early phase of design

• Usually have physical meanings: temperature, time, pressure, speed...

Model checking: M[X := V ] |=? Φ

Trains[speed := 275, length := 150] |=? P>0.9999(¬col)
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Problem Statement

Parameters in the model:

• Values are hard to settle in the early phase of design

• Usually have physical meanings: temperature, time, pressure, speed...

Model checking: M[X := V ] |=? Φ

Parameter synthesis: M[X := ?] |= Φ

Trains[speed := ?, length := ?] |= P>0.9999(¬col)

For which parameter values Φ holds?
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Problem Statement

Parameters in the model:

• Values are hard to settle in the early phase of design

• Usually have physical meanings: temperature, time, pressure, speed...

Model checking: M[X := V ] |=? Φ

Parameter synthesis: M[X := ?] |= Φ

Trains[speed := ?, length := ?] |= P>0.9999(¬col)

For which parameter values Φ holds?

Parameter synthesis is much harder than model checking!
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Parametric CTMC

• Continuous-Time Markov chain (CTMC) C = (S,R, s0)

2 1 0
2λ λ

µ

failure rate: λ = 3

repair rate: µ = 5
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Parametric CTMC

• Continuous-Time Markov chain (CTMC) C = (S,R, s0)

2 1 0
2λ λ

µ

failure rate: λ = 3

repair rate: µ = 5

• Parametric CTMC (pCTMC) C(X ) = (S,R(X ), s0)

Rates are polynomial expressions
instead of constants!

2 1 0
2(x2 − x1 + 1) x2 − x1 + 1

x2
1 − x2
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Initial region

2 1 0
2(x2 − x1 + 1) x2 − x1 + 1

x2
1 − x2

• Every parameter has a closed range xi ∈ [li, ui], x ∈ X

ζrange =
m∧

i=1

li 6 xi 6 ui (range region)
0 6 x1 6 2.5
0 6 x2 6 2

• Every rate is nonnegative

ζrate =
∧

s,s′∈S

R(X )(s, s′) > 0 (rate region)

• Initial region ζinit = ζrange ∧ ζrate

• Instance CTMC: C[v], instantiation with a valuation (point) in ζinit
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Tasks: Finding synthesis regions

initial region ζinit
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Tasks: Finding synthesis regions

1 Find a synthesis region ζsyn in ζrange , such that for all valuations v in ζsyn ,

C[v] |= P[pl,pu](♦6tsgoal)

initial region ζinit ζsyn
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Tasks: Finding synthesis regions

1 Find a synthesis region ζsyn in ζrange , such that for all valuations v in ζsyn ,

C[v] |= P[pl,pu](♦6tsgoal)

2 Intersect with initial region ζinit s.t. ζ′syn = ζinit ∩ ζsyn

initial region ζinit ζsyn ζ′syn = ζinit ∩ ζsyn
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Solutions

transient probability �

[BHHK03] s0 |=C P<p(♦6tsgoal) iff πsgoal ,t <p
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transient probability �

[BHHK03] s0 |=C P<p(♦6tsgoal) iff πsgoal ,t <p

s0 |=C(X) P<p(♦6tsgoal) iff πsgoal ,t(x1, x2)<p

region boundary curve: πsgoal ,t(x1, x2) = p
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s0 |=C(X) P<p(♦6tsgoal) iff πsgoal ,t(x1, x2)<p

region boundary curve: πsgoal ,t(x1, x2) = p

ODE
d~πt(x1, x2)

dt
= ~πt ·Q(X )
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Solutions

transient probability �

[BHHK03] s0 |=C P<p(♦6tsgoal) iff πsgoal ,t <p

s0 |=C(X) P<p(♦6tsgoal) iff πsgoal ,t(x1, x2)<p

region boundary curve: πsgoal ,t(x1, x2) = p

ODE
d~πt(x1, x2)

dt
= ~πt ·Q(X )

|
(uniformization) ‖~πt − ~̃πt‖6 ε (required accuracy)

↓
polynomial ~̃πt(x1, x2) = ~̃π0·

∑kε

i=0 e−qt (qt)i

i! (P(X ))i
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transient probability �

[BHHK03] s0 |=C P<p(♦6tsgoal) iff πsgoal ,t <p
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region boundary curve: πsgoal ,t(x1, x2) = p
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(uniformization) ‖~πt − ~̃πt‖6 ε (required accuracy)

↓
polynomial ~̃πt(x1, x2) = ~̃π0·

∑kε

i=0 e−qt (qt)i

i! (P(X ))i

|
(discretization) using grid

|
(2 algorithms) symbolic/non-symbolic algorithms

↓
a set of line segments
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Solutions

transient probability �

[BHHK03] s0 |=C P<p(♦6tsgoal) iff πsgoal ,t <p

s0 |=C(X) P<p(♦6tsgoal) iff πsgoal ,t(x1, x2)<p

region boundary curve: πsgoal ,t(x1, x2) = p

ODE
d~πt(x1, x2)

dt
= ~πt ·Q(X )

|
(uniformization) ‖~πt − ~̃πt‖6 ε (required accuracy)

↓
polynomial ~̃πt(x1, x2) = ~̃π0·

∑kε

i=0 e−qt (qt)i

i! (P(X ))i

|
(discretization) using grid

|
(2 algorithms) symbolic/non-symbolic algorithms

↓
a set of line segments polygon approximation

Tingting Han (RWTH Aachen) Diagnosis, Synthesis& Analysis of Probabilistic Models Oct. 16, 2009 36 / 48



Non-symbolic method

• For each grid point: Instantiation and checking

C[each grid point] |=? P<p(♦6tgoal )
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Non-symbolic method

• For each grid point: Instantiation and checking

C[each grid point] |=? P<p(♦6tgoal )

=⇒ CTMC model checking
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Non-symbolic method

• For each grid point: Instantiation and checking

C[each grid point] |=? P<p(♦6tgoal )

=⇒ CTMC model checking

=⇒ point =






⊤ if Prob(♦6t goal)< p in C[point] (point in)

⊥ if Prob(♦6t goal)> p in C[point] (point out)

⊥⊤ if Prob(♦6t goal)= p in C[point] (point on)
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Marking

• For each grid cell: Marking

grid cell cell =






⊤ if cell’s grid points are 4⊤ or 3⊤1⊥⊤
⊥ if cell’s grid points are 4⊥ or 3⊥1⊥⊤
? otherwise

A

B

C

D

?
?

?

??

?

??

???

?

?? ?

(a) Marking criterion
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Marking

• For each grid cell: Marking

grid cell cell =






⊤ if cell’s grid points are 4⊤ or 3⊤1⊥⊤
⊥ if cell’s grid points are 4⊥ or 3⊥1⊥⊤
? otherwise

A

B

C

D

?
?

?

??

?

??

???

?

?? ?

(d) Marking criterion

E

F

(e) False positive
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Marking

• For each grid cell: Marking

grid cell cell =






⊤ if cell’s grid points are 4⊤ or 3⊤1⊥⊤
⊥ if cell’s grid points are 4⊥ or 3⊥1⊥⊤
? otherwise

A

B

C

D

?
?

?

??

?

??

???

?

?? ?

(g) Marking criterion

E

F

(h) False positive

G

H

(i) False negative
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Refinement

• For each ?-grid cell: Refinement

∆

(j) Initial grid (k) 1st refinement

∆min

(l) 2nd refinement
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Finding polygon regions

Connect middle points or grid points
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Finding polygon regions

Connect middle points or grid points
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Error bound

half
points

dmax

dmax

∆min

dmax =

√
2

4
∆min
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Time complexity

• Assumption: c percent of “fresh” grid cells are refined in each round

• # rounds of refinement: j = log2

∆

∆min

• # instantiations in the initial grid: O(M̂N1N2)

M̂ : #non-constants in RX ; N1, N2: #grid points

• Total # instantiations: O(
c(1 − c)j

1 − c
· M̂N1N2) (grid points)

• Each point (model checking) takes O(Mqt)

M : |RX |, q: uniformization rate; t: time bound

=⇒ Total time cost: O(
c(1 − c)j

1 − c
· M̂N1N2 · Mqt)
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Synthesis — Summary

• A first try on parameter synthesis in probabilistic setting

• Two algorithms for polygon approximation

• The non-symbolic algorithm can be generally applied
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Analysis
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Analysis

Specifications
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Analysis

How to model check

model︷ ︸︸ ︷
CTMC against ?

For CTMC model:
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Analysis

How to model check

model︷ ︸︸ ︷
CTMC against

specification
︷ ︸︸ ︷
linear real-time specification?

For CTMC model:

CTMC =⇒ probabilistic model checking ⇐= deterministic timed automata (DTA)
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Main result

Given a CTMC C and a DTA A, the model checking problem can be
reduced to the reachability problem in piecewise deterministic Markov
processes.
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Conclusion

In the setting of probabilistic model checking,

• Diagnosis — counterexample generation

• Synthesis — parameter synthesis

• Analysis — CTMC vs. DTA model checking
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