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Reaktive Systeme

Verteilte computerbasierte Systeme

Systemkomponenten in ständiger Interaktion miteinander
und mit ihrer Umgebung

Keine Terminierung der Komponenten

In sicherheitskritischen Anwendungen eingesetzt
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Bisheriger Entwicklungsprozess

Anforderungen

Spezifikation

Entwurfsmodell

Implementierung

Manuell, daher fehleranfällig und hohe Entwicklungskosten
Bedarf nach einem automatisierten Prozess
Heutige Werkzeuge oft zu spezialisiert

Bsp.: Automobilindustrie
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Bisheriger Entwicklungsprozess

Anforderungen

Spezifikation

Entwurfsmodell

Implementierung

Synthese

Das Ziel: Automatisierung der Synthese
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Vollständiger Entwicklungsprozess

Anforderungen

Spezifikation (Inter-Agent) Entwurf (Intra-Agent)

Implementierung

LSCs I/O-Automaten

Verfeinerung

VerfeinerungSynthese

Verifikation
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Message Sequence Charts (MSC)

A B C

e1
l1 : (A, e1, B) m1 : (A, e1, B)

e2
m2 : (B, e2, C) n1 : (B, e2, C)

e3
m3 : (B, e2, A)l2 : (B, e1, A)
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Message Sequence Charts (MSC)

Ag: endliche Menge von Agenten

M: endliche Menge von Nachrichtenbezeichnern

Σ = Ag ×M× Ag: Menge aller Ereignisse

(a, m, b): ”a schickt Nachricht m an b “

L(B) ⊆ Σ∗: ”Sprache“ eines Diagramms B

Ereignisse sind unmittelbar
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Message Sequence Charts (MSC)

A B C

e1
l1 : (A, e1, B) m1 : (A, e1, B)

e2
m2 : (B, e2, C) n1 : (B, e2, C)

e3
m3 : (B, e2, A)l2 : (B, e1, A)

[l1]
∼

[m2]
∼

[l2]
∼

Zeitgleiche Ereignisse in Äquivalenzklassen
zusammengefasst
Eindeutige Beschriftung von Äquivalenzklassen mit
Ereignissen
⇒ Beschriftete partielle Ordnung 〈LC ,≺C , φC〉
Grunddiagramme von LSCs
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Live Sequence Charts (LSC)
Existentielle LSCs (eLSCs)

♦(B,ΣR)

Mögliche Ereignissequenzen

Kunde Schnittstelle Server Datenbank Versand

daten eingeben

login abfrage

login ok

artikel eingeben

suche abfrage

suche in db

gefunden

artikel verfügbar

bestätigen

sende abfrage

sende befehl

sende vorgang
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Live Sequence Charts (LSC)
Universelle LSCs (uLSCs)

�(P, M,ΣR)
Notwendiges Verhalten

Kunde Server Datenbank Versand

restricts

einloggen

einloggen ok

artikel eingeben

suche in db

artikel verfügbar

bestätigungsabfrage

ausloggen abfrage

ausloggen bestätigung

artikel senden
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Erfüllbarkeit von LSCs

Linearisierung einer partiellen Ordnung:
∀e, e′ ∈ Σ ∧ e 6= e′ : (e ≺C e′) ∨ (e′ ≺C e)

Intuitiv: Folge von Ereignissen

Definition (|=⊂ Σω × LSC)

Sei γ ∈ Σω ein unendlicher Lauf. γ erfüllt ein LSC L (γ |= L)
genau dann, wenn eine der folgenden Bedingungen gilt:

L = �(P, M,ΣR) ∧ ∀ Zerlegungen upγ′ von γ :
p|

ΣR
∈ L(P) ⇒ ∃ Zerlegung mγ′′ von γ′ ∧m|

ΣR
∈ L(M)

L = ♦(B,ΣR) ∧ ∃ Zerlegung uvγ′ von γ : v |
ΣR
∈ L(P)
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Erfüllbarkeit von LSCs
Beispiel

1 (einloggen·einloggen ok·artikel eingeben·
suche in db·artikel verfügbar·bestätigungsabfrage·
ausloggen abfrage· ausloggen bestätigung)ω

Kunde Server Datenbank Versand

restricts

einloggen

einloggen ok

artikel eingeben

suche in db

artikel verfügbar

bestätigungsabfrage

ausloggen abfrage

ausloggen bestätigung

artikel senden
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Erfüllbarkeit von LSCs
Beispiel

2 (einloggen·einloggen fehlgeschlagen)ω

Kunde Server Datenbank Versand

restricts

einloggen

einloggen ok

artikel eingeben

suche in db

artikel verfügbar

bestätigungsabfrage

ausloggen abfrage

ausloggen bestätigung

artikel senden
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Erfüllbarkeit von LSCs

Definition (L(L))

Ein LSC definiert die Sprache L(L) = {γ ∈ Σω|γ |= L}.

Definition (Γ |= L)

Eine Menge von Läufen Γ ⊆ Σω erfüllt einen LSC L (Γ |= L)
genau dann, wenn

L = �(P, M,ΣR) ∧ Γ ⊆ L(L) oder
L = ♦(B,ΣR) ∧ Γ ∩ L(L) 6= ∅.
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Komposition von LSCs

Jeder uLSC entspricht einer Anforderung

Definition (uLSC-Spec)
Eine uLSC-Spezifikation ist eine endliche Menge von uLSCs
Li(1 ≤ i ≤ n)

L({L1, . . . , Ln}) =
n⋂

i=1

L(Li).
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Schnitte

Zweck: Zustandsbeschreibung von LSCs

Menge der bereits erreichte Stellen bzw.
Äquivalenzklassen

Nach unten beschränkt

”Erreichbarkeit“: c l−→ c′ ⇔ l /∈ c ∧ c′ = {l} ∪ c

Linearisierung von L = 〈L, <, φ〉:

∅ l1−→ c1
l2−→ c2 . . . cn−1

ln−→ cn ⇔ φ(l1) · . . . · φ(ln).
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Schnitte
Beispiel

w = suche artikel · db leer · artikel verfügbar
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Schnitte

gen(w ,L) ist die Menge aller von w generierten Schnitte

Definition (gen(w ,L))

gen(ε,L) = {∅}

gen(w · a,L) = {∅} ∪ {c′|∃c ∈ gen(w ,L), l : φ(l) = a ∧ c l−→ c′}.

Die Menge aller erzeugbaren Schnitte:
Gen(L) = {gen(w ,L)|w ∈ Σ∗)}
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I/O-Automaten
Beispiel

Σs
Env = Σr

Sys = {OPTi | 1 ≤ i ≤ 2}
Σr

Env = Σs
Sys = {MUSIK, BÜCHER}

auswahl=0 auswahl=1

auswahl=2

OPT1

BÜCHER

OPT2 MUSIK
OPT2

OPT1

OPT1

OPT2
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I/O-Automaten

Deterministische endliche Automaten

Unterscheidung zwischen Eingabe- und
Ausgabeereignissen

Keine Blockierung von Eingaben (”input-enabledness“)
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Modelle

Statiches Modell: Systemstruktur
Statische Information über mögliche Interaktionen zwischen
Agenten oder Instanzen
Unterscheidung von System- und Umgebungsagenten

Definition (Systemstruktur)

〈Ag, (Σs
a)a∈Ag , (Σr

a)a∈Ag , Sys〉,

Ag endliche Menge von Agentenbezeichnern.
Σs

a Sendeereignisse.
Σr

a Empfangsereignisse.
Sys ⊆ Ag Systemagenten.
Env , Ag \ Sys Umgebungsagenten.
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Modelle

Dynamisches Modell: Inter- und Intra-agentes Verhalten

Dynamische Information über das Verhalten von Agenten

Inter-agent: Spezifikation des Verhaltens zwischen
Instanzen mithilfe von LSCs

Intra-agent: Spezifikation des Verhaltens einzelner
Instanzen durch I/O-Automaten
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Inter-agentes Verhalten

Definition (Inter-agente Spezifikation)
Eine Inter-agente Spezifikation ist ein Paar

〈S,U〉,

wobei S eine Systemstruktur und U eine uLSC-Spezifikation ist.
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Intra-agentes Verhalten

Reaktion von Instanzen abhängig von der Vergangenheit
Strategie: fa : Σ∗ → 2Σs

a

Outcome: Out(fa) = {u0w0u1w1 . . . |∀i ≥ 0 : ui ∈
(Σ \ Σs

a)
∗ ∧ wi ∈ fa(u0w0 . . . ui)}.

Definition (Intra-agente Spezifikation)
Eine Intra-agente Spezifikation ist ein Paar

〈S, fSys〉,

wobei S eine Systemstruktur und fSys sie Strategie für die
Menge Sys ist.
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Safety und Liveness
Beispiel

w = kontodaten eingeben · verifizieren · gültige daten ·
adresse eingeben
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Safety und Liveness

Definition (Verbotenes Ereignis, Safety)
forbid(w , e) ⇔ ∃�(P, M,ΣR) ∈ U ∧ c ∈ gen(w , P ·M), wobei:

1 LP ⊆ c ⊂ LP·M , das Diagramm ist aktiv,
2 e wird von �(P, M,ΣR) eingeschränkt,

3 ∀l ∈ L : φ(l) = e ⇒ @c′ : c l−→ c′.

Ein Lauf e0e1e2 . . . ∈ Σω ist e-sicher, ⇔
∀i ≥ 0 : forbid(e1 . . . ei , e) ⇒ e 6= ei+1.
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Safety und Liveness

Definition (Benötigtes Ereignis, Liveness)
require(w , e) ⇔ ∃�(P, M,ΣR) ∈ U ∧ c ∈ gen(w , P ·M), wobei:

1 LP ⊆ c ⊂ LP·M ,
2 e wird von �(P, M,ΣR) eingeschränkt,

3 ∃c′ : ∃l : (c l−→ c′) ∧ e = φ(l).

Ein Lauf e0e1e2 . . . ∈ Σω ist e-lebendig, ⇔
∀i ≥ 1 : require(e1 . . . ei , e) ⇒ (∃k : i ≤ k : e = ek ).
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Safety und Liveness

Theorem (uLSC=sicher+lebendig)
Für jedes γ ∈ Σω und jedes uLSC S = �(P, M,ΣR) gilt:

γ |= S ⇔ ∀e ∈ ΣR : γ ist e-sicher und e-lebendig.

Defintion (Korrekte Implementierung)
Eine intra-agente Spezifikation 〈S, fSys〉 ist eine korrekte
Implementierung einer inter-agenten Spezifikation 〈S,U〉 genau
dann, wenn ∀γ ∈ Out(fSys), folgende Bedingungen gelten:

γ ist Σs
Env -lebendig ⇒ γ ist Σs

Sys-lebendig.

γ ist Σs
Env -sicher ⇒ γ ist Σs

Sys-sicher.
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Das Synthese- oder Konsistenz-Problem

Defintion (Synthese)
Eingabe:

eine inter-agente Spezifikation 〈S,U〉,
Ausgabe:

eine intra-agente Spezifikation 〈S, fSys〉, die eine korrekte
Implementierung von 〈S,U〉 ist,
no, falls es keine korrekte Implementierung für 〈S,U〉 gibt.

Beispiele für inkonsistente uLSC-Spezifikationen
Unerfüllbarkeit
Deadlock
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Das Synthese- oder Konsistenz-Problem

Defintion (Synthese)
Eingabe:

eine inter-agente Spezifikation 〈S,U〉,
Ausgabe:

eine intra-agente Spezifikation 〈S, fSys〉, die eine korrekte
Implementierung von 〈S,U〉 ist,
no, falls es keine korrekte Implementierung für 〈S,U〉 gibt.
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Lösungsansatz

Spielbasierter Ansatz

Ziel: Strategie für das System finden
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Lösungsansatz
Transitionssystem

Definition
Sei U = �(P, M,ΣR) und Gen(U) = Gen(P ·M). Für jedes
σ, σ′ ∈ Gen(U) und jedes Ereignis e ∈ Σ gilt σ

e
==⇒ σ′ genau

dann, wenn

e 6∈ ΣR und σ = σ′, oder
e ∈ ΣR und es gilt

∀c ∈ σ : LP ⊆ c ⊂ LP·M ⇒ ∃c′ : c l−→ c′, mit φ(l) = e
und σ′ = {∅} ∪ {c′|∃c ∈ σ : c l−→ c′, mit φ(l) = e}.



Einleitung Grundlagen Synthese Zusammenfassung

Lösungsansatz
Spielerwechsel

Einführung von Fairness-Szenarien

Dummy0

τ0

Dummy1

τ1

Markierung der Sequenzen mit:
τ0 (, System, Spieler 0) und
τ1 (, Umgebung, Spieler 1)

Nummerierte Ereignisse in ΣSys und ΣEnv
τ0 ist das |ΣSys|+ 1-te Ereignis
τ1 ist das |ΣEnv |+ 1-te Ereignis
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Lösungsansatz
Spielgraph

Definition
Spielgraph GU = 〈V , V0,∆,Ω〉

V = ({0, 1} × Σ×Gen(U1)× . . .×Gen(Un)× [|ΣSys|+
1]× [|ΣEnv |+ 1]) ∪ {sink0, sink1}, Menge der Knoten.
Knoten haben die Form (i , e, σ1, . . . , σn, c0, c1).
V0 = {sink1} ∪ {(0, e, σ1, . . . , σn, c0, c1)}.
Transitionsrelation ∆ ⊂ V × V :

1 ∆((i , e, σ1, . . . , σn, c0, c1), (i ′, e′, σ′
1, . . . , σ

′
n, c′

0, c′
1)).

2 ∆((i , e, σ1, . . . , σn, c0, c1), sinki).
3 ∆(sinki , sinki).

Ω ⊆ V ω, Gewinnläufe für Spieler 0.
Streett-Akzeptanzbedingung, Ω = Streett({(E , F )}) mit

E = {(i , e, σ1 . . . σn, c0, c1)|c1 = |ΣEnv | + 1} ∪ {sink0}.
F = {(i , e, σ1 . . . σn, c0, c1)|c0 = |ΣSys| + 1} ∪ {sink1}.
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F = {(i , e, σ1 . . . σn, c0, c1)|c0 = |ΣSys| + 1} ∪ {sink1}.
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Lösungsansatz
Spielgraph

Definition
Spielgraph GU = 〈V , V0,∆,Ω〉

V = ({0, 1} × Σ×Gen(U1)× . . .×Gen(Un)× [|ΣSys|+
1]× [|ΣEnv |+ 1]) ∪ {sink0, sink1}, Menge der Knoten.
Knoten haben die Form (i , e, σ1, . . . , σn, c0, c1).
V0 = {sink1} ∪ {(0, e, σ1, . . . , σn, c0, c1)}.
Transitionsrelation ∆ ⊂ V × V :

1 ∆((i , e, σ1, . . . , σn, c0, c1), (i ′, e′, σ′
1, . . . , σ

′
n, c′

0, c′
1)).

2 ∆((i , e, σ1, . . . , σn, c0, c1), sinki).
3 ∆(sinki , sinki).

Ω ⊆ V ω, Gewinnläufe für Spieler 0.
Streett-Akzeptanzbedingung, Ω = Streett({(E , F )}) mit

E = {(i , e, σ1 . . . σn, c0, c1)|c1 = |ΣEnv | + 1} ∪ {sink0}.
F = {(i , e, σ1 . . . σn, c0, c1)|c0 = |ΣSys| + 1} ∪ {sink1}.
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Lösungsansatz
Spielgraph

Definition
Spielgraph GU = 〈V , V0,∆,Ω〉

V = ({0, 1} × Σ×Gen(U1)× . . .×Gen(Un)× [|ΣSys|+
1]× [|ΣEnv |+ 1]) ∪ {sink0, sink1}, Menge der Knoten.
Knoten haben die Form (i , e, σ1, . . . , σn, c0, c1).
V0 = {sink1} ∪ {(0, e, σ1, . . . , σn, c0, c1)}.
Transitionsrelation ∆ ⊂ V × V :

1 ∆((i , e, σ1, . . . , σn, c0, c1), (i ′, e′, σ′
1, . . . , σ

′
n, c′

0, c′
1)).

2 ∆((i , e, σ1, . . . , σn, c0, c1), sinki).
3 ∆(sinki , sinki).

Ω ⊆ V ω, Gewinnläufe für Spieler 0.
Streett-Akzeptanzbedingung, Ω = Streett({(E , F )}) mit

E = {(i , e, σ1 . . . σn, c0, c1)|c1 = |ΣEnv | + 1} ∪ {sink0}.
F = {(i , e, σ1 . . . σn, c0, c1)|c0 = |ΣSys| + 1} ∪ {sink1}.
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Lösungsansatz
Paritätsspiel

Eine inter-agente Spezifikation 〈S, U〉 ist konsistent ⇔

es existiert für alle e ∈ Σ eine Gewinnstrategie f vom
Startzustand (1, e, {∅}, . . . , {∅}, 1, 1) in GU ⇔

eine intra-agente Spezifikation 〈S, fSys〉 ist eine korrekte
Implementierung von 〈S, U〉

Umwandlung in ein Paritätsspiel ⇒ Gewinnstrategie
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Lösungsansatz
Paritätsspiel

Graph mit einer Abbildung Ω : V → [k ] (Färbung)

Gewählte Färbung:
Ω(v) = 2 falls v ∈ F ,
Ω(v) = 1 falls v ∈ E \ F ,
Ω(v) = 0 sonst.
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Lösungsansatz
Beispiel (Inter-agente Spezifikation 〈S,U〉)

Systemstruktur S
Σs

Env = {einloggen, artikel suchen, bestellen}
Σs

Sys = {einloggen ok, falsche daten, artikel verfügbar
sende anforderung, senden}

Kunde Server

Versandinfrastruktur

Σs
Env

Σs
Sys \ {sende anforderung, senden}

sende anforderung

senden
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Lösungsansatz
Beispiel (Inter-agente Spezifikation 〈S,U〉)

uLSC-Spec U = L(U1) ∩ L(U2)

Kunde Server

einloggen

falsche daten

Kunde Server Versand

einloggen

einloggen ok

artikel suchen

artikel verfügbar

bestellen

sende anforderung

senden
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Lösungsansatz
Beispiel (Spielgraph und Paritätsspiel)

(1, ε, ∅, ∅, 1, 1)

(1, einloggen, {∅ ∪ c11}, {∅ ∪ c21}, 1, 2)

(0, τ1, {∅ ∪ c11}, {∅ ∪ c21}, 1, 2)

(0, falsche daten, {∅ ∪ c11 ∪ c12}, {∅ ∪ c21}, 2, 2)

(1, τ0, {∅ ∪ c11 ∪ c12}, {∅ ∪ c21}, 2, 2)

(0, einloggen ok, {∅ ∪ c11}, {∅ ∪ c21 ∪ c22}, 2, 2)

(1, τ0, {∅ ∪ c11}, {∅ ∪ c21 ∪ c22}, 2, 2)

(1, artikel suchen, {∅ ∪ c11}, {∅ ∪ c21 ∪ c22 ∪ c23}, 2, 3)

. . .

(0, senden, {∅ ∪ c11}, {∅ ∪ c21 . . . ∪ c26}, 4, 4)

(1, τ0, {∅ ∪ c11}, {∅ ∪ c21 . . . ∪ c26}, 4, 4)
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Lösungsansatz
Beispiel (Spielgraph und Paritätsspiel)

0 (1, ε, ∅, ∅, 1, 1)

1 (1, einloggen, {∅ ∪ c11}, {∅ ∪ c21}, 1, 2)

1 (0, τ1, {∅ ∪ c11}, {∅ ∪ c21}, 1, 2)

2 (0, falsche daten, {∅ ∪ c11 ∪ c12}, {∅ ∪ c21}, 2, 2)

2 (1, τ0, {∅ ∪ c11 ∪ c12}, {∅ ∪ c21}, 2, 2)

0 (0, einloggen ok, {∅ ∪ c11}, {∅ ∪ c21 ∪ c22}, 2, 2)

0 (1, τ0, {∅ ∪ c11}, {∅ ∪ c21 ∪ c22}, 2, 2)

0 (1, artikel suchen, {∅ ∪ c11}, {∅ ∪ c21 ∪ c22 ∪ c23}, 2, 3)

. . .

2 (0, senden, {∅ ∪ c11}, {∅ ∪ c21 . . . ∪ c26}, 4, 4)

2 (1, τ0, {∅ ∪ c11}, {∅ ∪ c21 . . . ∪ c26}, 4, 4)
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Lösungsansatz
Beispiel (I/O-Automat)

I/O-Automat für die ”linke “ Gewinnstrategie

verif=false verif=true
einloggen

einloggen

falsche daten
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Zusammenfassung

Ersatz von MSCs durch LSCs zur
Anforderungsspezifikation

Synthese von Zustandsautomaten mithilfe eines
spieltheoretischen Ansatzes
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Danke für Ihre Aufmerksamkeit!
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